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INTRODUCTION

The description of the equilibrium shapes and flow-induced deformations of vesicles and
biological cells membranes is a long-standing problem in biophysics, cell biomechanics
and bioengineering. Especially, the biconcave, disk-like resting shapes of healthy blood
cells attracted a lot of attention. Many authors have computed these shapes of elastic
axisymmetric membranes consisting of a lipid bilayer by minimization of an energy
functional defined in terms of membrane curvatures. E.g., already in 1970, Canham had
proposed in [3] that the “curvature elasticity” is the main shape-controlling factor.

His model is based on the analogy with the simple beam in the plane (Euler elastica)
which equilibrium equation can be derived by considering the variational problem of
minimizing its bending energy E given by the integral of the squared curvature κ

E =
∫

κ2(s)ds (1)

taken over the length of the beam. Assuming that the membrane exhibits pure bending
in two perpendicular planes, one can obtain the stored elastic energy as an integral of
the sum of the squares of the two principal curvatures

E =
∫

(κ2
1 +κ2

2 )dA (2)

taken over the membrane surface. In 1973 Helfrich [6] extended Canham’s model by
suggesting the so-called spontaneous curvature model according to which the equilib-
rium shapes of a lipid vesicle are determined by the extremals of the curvature (shape)
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Abstract. Here we suggest and have exemplified a simple scheme for reconstruction of a plane
curve if its curvature belongs to the class specified in the title by deriving explicit parametrization of
Bernoulli’s lemniscate and newly introduced co-lemniscate curve in terms of the Jacobian elliptic
functions. The relation between them and with the Bernoulli elastica are clarified.
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INTRODUCTION

The most fundamental existence and uniqueness theorem in the theory of plane curves
states that a curve is uniquely determined (up to Euclidean motion) by its curvature
given as a function of its arc-length (see [1, p. 296] or [8, p. 37]). The simplicity of the
situation however is quite elusive because in many cases it is impossible to find the
sought-after curve explicitly. Having this in mind, it is clear that the situation is even
more complicated if the curvature is given as a function of its position. Viewing the
Frenet-Serret equations as a fictitious dynamical system it was proven in [10] that when
the curvature is given just as a function of the distance from the origin the problem
can always be reduced to quadratures. The cited result should not be considered as
entirely new because Singer [9] had already shown that in some cases it is possible
that such curvature gets an interpretation of a central potential in the plane and therefore
the trajectories could be found by the standard procedures in classical mechanics. The
approach which we will follow here, however is entirely different from the group-
theoretical [10] or mechanical one [9] proposed in the above cited papers. The method is
illustrated on the most natural examples in the class of curves whose curvatures depend
solely on the distance from the origin. Here we consider the case in which the function
in question is

κ = σr, r = |x| =
√

x2 + z2 (1)

where x,z are the Cartesian coordinates in the plane XOZ which have to be considered as
functions of the arc-length parameter s, and σ is assumed to be a positive real constant.
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Abstract

Explicit parameterizations of Bernoulli’s Lemniscate and newly introduced
Co-Lemniscate curve in terms of the Jacobian elliptic functions are derived. The
relation between them and with the Bernoulli elastica are clarified.
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1. Introduction. The fundamental existence and uniqueness theorem in
the theory of plane curves states that a curve is uniquely determined (up to
Euclidean motion) by its curvature given as a function of its arc-length (see [1],
p. 296 or [6], p. 37). The simplicity of the situation, however, is elusive as in
many cases it is impossible to find the curve explicitly. Having this in mind, it
is clear that if the curvature is given as a function of its position, the situation
is even more complicated. Viewing the Frenet-Serret equations as a ficticious
dynamical system, it was proven in [8] that, when the curvature is given just as
a function of the distance from the origin the problem can always be reduced to
quadratures. This last result is not entirely new as Singer [7] had already shown
that in some cases it is possible for such curvature to get an interpretation of
a central potential in the plane and, therefore the trajectories (the sought-after
curves) could be found by the standard procedures in classical mechanics. Here
the approach which we will follow, however, is entirely different from the group-
theoretical [8] or mechanical one [7] proposed in the above cited papers. The

This research is partially supported by contract # 35/2009 between the Bulgarian and
Polish Academies of Sciences. The first author would like to acknowledge the support of the
HRD Programme – # BG051PO001-3.3.04/42, financed by the European Union through the
European Social Fund.
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Abstract

The Sturm spirals which can be introduced as those plane curves whose
curvature radius is equal to the distance from the origin are embedded into one-
parameter family of curves. Explicit parametrization of the ordinary Sturmian
spirals along with that of a wider family of curves are found and depicted
graphically.

Key words: Sturm spirals, plane curves, equiangular spiral, logarithmic
spiral, Norwich spiral
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1. Introduction. The fundamental existence and uniqueness theorem in
the theory of plane curves states that a curve is uniquely determined (up to
Euclidean motion) by its curvature given as a function of its arc-length (see
[1], p. 296 or [8], p. 37). The simplicity of the situation, however, is elusive
as in many cases it is impossible to find the curve explicitly. Having that in
mind, it is clear that if the curvature is given as a function of its position, the
situation is even more complicated. A nice exception is provided by the Euler’s
elastica curves [3,6, 7] whose curvature actually is a function of the distance from
a fixed line in the Euclidean plane. Viewing the Frenet-Serret equations as a
fictitious dynamical system, it was proven in [11] that when the curvature is
given just as a function of the distance from the origin the problem can always

This research is partially supported by contract #35/2009 between the Bulgarian and Polish
Academies of Sciences. The second named author takes the opportunity to acknowledge the
support from the Operational Programme “Human Resources Development” #BG051PO001-
3.3.04/42, financed by the European Union through the European Social Fund.
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On Some Deformations of the Cassinian Oval
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Abstract. The work is concerned with the determination of explicit parametric equations of several
plane curves whose curvature depends solely on the distance from the origin. Here we suggest
and exemplify a simple scheme for reconstruction of a plane curve if its curvature belongs to the
above-mentioned class. Explicit parameterizations of generalized Cassinian ovals including also the
trajectories of a charged particle in the field of a magnetic dipole are derived in terms of Jacobian
elliptic functions and elliptic integrals.

Keywords: classical differential geometry, plane curves, curvature, Cassinian oval, magnetic
dipole
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INTRODUCTION

Remarkably, the curvature of a lot of the famous plane curves (see [5, 14]), such as conic
sections, Bernoulli’s lemniscate, Cassinian ovals and many others, depends solely on the
distance from a certain point in the Euclidean plane, which may be chosen as its origin.

The most fundamental existence and uniqueness theorem in the theory of plane curves
states that a curve is uniquely determined (up to Euclidean motion) by its curvature given
as a function of its arc-length (see [3, p. 296] or [9, p. 37]). The simplicity of the situation
however is quite elusive because in many cases it is impossible to find the sought-
after curve explicitly. Having this in mind, it is clear that if the curvature is given by a
function of its position the situation is even more complicated. Viewing the Frenet-Serret
equations as a ficticious dynamical system it was proven in [11] that when the curvature
is given just as a function of the distance from the origin the problem can always be
reduced to quadratures. The cited result should not be considered as entirely new because
Singer [10] had already shown that in some cases it is possible that such curvature gets
an interpretation of a central potential in the plane and therefore the trajectories could be
found by the standard procedures in classical mechanics. The approach which we will
follow here, however is entirely different from the group-theoretical [11] or mechanical
[10] ones proposed in the aforementioned papers. The method is illustrated on a class of
curves whose curvature depend solely on the distance from the origin.
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Analytic Description of the Equilibrium Shapes
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Abstract. The parametric equations of the plane curves determining the equilibrium shapes that a
uniform inextensible elastic ring could take subject to a uniform hydrostatic pressure are presented
in an explicit analytic form. The determination of the equilibrium shape of such a structure corre-
sponding to a given pressure is reduced to the solution of two transcendental equations. The shapes
with points of contact and the corresponding (contact) pressures are determined by the solutions of
three transcendental equations. The analytical results presented here confirm many of the previous
numerical results on this subject but the results concerning the shapes with lines of contact reported
up to now are revised.

Keywords: Elastic ring, hydrostatic pressure, equilibrium shapes, parametric equations
PACS: 02.30.Hq, 02.40.Hw, 46.32.+x, 46.70.Hg

INTRODUCTION

The present paper addresses the problem for determination ofthe equilibrium shapes of
a circular inextensible elastic ring subject to a uniformly distributed external force that
acts normally to the ring in the ring plane.

Maurice Lévy [22] was the first who stated and studied the problem under considera-
tion and reduced the determination of the foregoing equilibrium shapes in polar coordi-
nates to two elliptic integrals for the arclength and polar angle regarded as functions of
the squared radial coordinate. He found also several remarkable properties of the equi-
librium ring shapes and concluded that if the pressurep is such thatp< (9/4)(D/ρ3),
whereD andρ are the ring bending rigidity and radius of the undeformed shape, respec-
tively, then the ring possesses only the circular equilibrium shape.

Later on, Halphen [17] and Greenhill [15] derived exact solutions to this problem in
terms of the Weierstrass elliptic functions on the ground of complicated analyses of the
properties of the aforementioned elliptic integrals. Halphen (see [17, p. 235]) found out
that non-circular shapes withn ≥ 2 axes of symmetry are possible only for pressures
greater thanpn = (n2

− 1)(D/ρ3). Halphen [17] and Greenhill [15] presented also
several examples of non-circular equilibrium ring shapes. It should be noted, however,
that the exact solutions reported in [17, 15], representing the polar angle as a function
of the radius, appeared to be intractable and many researchers continued searching
exact solutions [4–10], while others used various approximations [24, 13] on the way
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Cell Membranes Under Hydrostatic Pressure
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Abstract. The work is concerned with the determination of the mechanical behaviour of cell mem-
branes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming
that the shape of the deformed cell membrane is axisymmetric a variational statement of the prob-
lem is developed on the ground of the so-called spontaneous curvature model. In this setting, the
cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space
providing a stationary value of the shape energy functional under the constraint of fixed total area
and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary con-
ditions are derived, analyzed and used to express the forces and moments in the membrane. Several
examples of such surfaces representing possible shapes of cell membranes under pressure subjected
to micro injection are determined numerically.
Keywords: Cell membrane, micro-injection, spontaneous-curvature model, axisymmetric shapes,
forces and moments, bending energy, variational statement, Euler-Lagrange equations, natural
boundary conditions, jump conditions
PACS: 87.16.D-, 02.40.Hw, 02.30.Hq, 02.30.Ik

INTRODUCTION

The 2010 Nobel Prize in Physiology or Medicine was awarded to Robert Edwards for
the development of human in-vitro fertilization in 1977 (Louise Brown, the world’s first
“test tube baby”, was born on 25 July, 1978). On the other side, genetic engineering is a
rapidly developing area of biology in the past 30 years aimed in creation of transgenic
organisms with desired properties. Recently, the controlled delivery of diamond and gold
nanoparticles within a single cell has being developed (see, e.g. [7]), and is expected to
become a broadly applicable tool for therapy, since these nanoparticles being not toxic
can be used as carriers for therapeutics, proteins, antibodies, DNA and other biologi-
cal agents. Presently, these three fields of the human activity involve the intracellular
delivery of substances by micro-injection. During the process of a micro-injection, a
micro pipette pierces the cell membrane and releases substances within the cell interior.
The success of a micro-injection depends mainly on the mechanical properties of the
injected cell membrane and on the specific way of interaction between the membrane
and the holding and injection pipettes.

Observing the literature on micro-injections of cells one realizes that large cells are
the most often studied, typical examples being the zebrafish and mouse embryos. The

International Workshop on Complex Structures, Integrability and Vector Fields
AIP Conf. Proc. 1340, 234-240 (2011); doi: 10.1063/1.3567141
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a b s t r a c t

The parametric equations of the plane curves determining the equilibrium shapes that a uniform

inextensible elastic ring or tube could take subject to a uniform hydrostatic pressure are presented in

an explicit analytic form. The determination of the equilibrium shape of such a structure corresponding

to a given pressure is reduced to the solution of two transcendental equations. The shapes with points

of contact and the corresponding (contact) pressures are determined by the solutions of three

transcendental equations. The analytic results presented here confirm many of the previous numerical

results on this subject but the results concerning the shapes with lines of contact reported up to now

are revised.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper, the problem for determination of the
equilibrium shapes of a circular inextensible elastic ring subject
to a uniformly distributed external force that acts normally to the
ring in the ring plane is addressed. This problem is also referred to
as the stability problem or buckling of the circular shape of the
ring and the other equilibrium shapes are called buckled [1–3].
It is also known (see, e.g., [4–6]) that if a cylindrical elastic shell of
circular cross section (i.e., a tube) is subject to a uniform external
pressure, which is normal to its middle surface, then the typical
cross section of the deformed tube takes the same shapes as the
axis of a deformed elastic ring does provided that the latter is a
simple curve (i.e., a curve without intersections). Therefore, here
the term ‘‘ring’’ will be used to indicate both a proper ring and a
tube. It should be noted also that in the majority of the works in
this field, the distributed force acting on a ring is called pressure
as in the case of a shell. Following this tradition, we will use the
same term in the present study remembering that pressure
means force per unit length in the case of a ring and force per
unit area in the case of a shell.

Maurice Lévy [7] was the first who stated and studied the
problem under consideration and reduced the determination of the
foregoing equilibrium shapes in polar coordinates to two elliptic

integrals for the arclength and polar angle regarded as functions of
the squared radial coordinate. He found also several remarkable
properties of the equilibrium ring shapes and obtained that if the
pressure p is such that poð9=4ÞðD=r3Þ, where D and r are the ring
bending rigidity and radius of the undeformed shape, respectively,
then the ring possesses only the circular equilibrium shape.

Later on, Halphen [8] and Greenhill [9] derived exact solutions
to this problem in terms of Weierstrass elliptic functions on the
ground of complicated analyses of the properties of the afore-
mentioned elliptic integrals. Halphen (see [8, p. 235]) found out
that non-circular shapes with nZ2 axes of symmetry are possible
only for pressures greater than pn ¼ ðn2�1ÞðD=r3Þ. Halphen [8]
and Greenhill [9] presented also several examples of non-circular
equilibrium ring shapes. It should be noted, however, that the
exact solutions reported in [8,9], representing the polar angle as a
function of the radius, appeared to be intractable and many
researchers continued searching exact solutions [1,10–15], while
others used various approximations [2,4,6,16] on the way to
determine the equilibrium shapes of the ring.

Carrier [1] was the first who reconsidered the foregoing
problem for the buckling of an elastic ring about half a century
after the works by Lévy, Halphen and Greenhill. He expressed the
curvature of the deformed ring in terms of Jacobi cosine func-
tion [17] involving several unknown parameters to be determined
by a system of algebraic equations. However, he succeeded to find
approximate solutions to this system only for small deflections
from the undeformed circular ring shape (see the exhaustive
analysis provided recently by Adams [11] who has criticised and
developed Carrier’s work [1]).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

0020-7403/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmecsci.2011.02.005

� Corresponding author. Tel.: +359 2 979 64 78; fax: +359 2 870 74 98.

E-mail addresses: padjon@imbm.bas.bg (P.A. Djondjorov),

vasilvas@imbm.bas.bg (V.M. Vassilev),

mladenov@obzor.bio21.bas.bg (I.M. Mladenov).

International Journal of Mechanical Sciences 53 (2011) 355–364

www.elsevier.com/locate/ijmecsci
dx.doi.org/10.1016/j.ijmecsci.2011.02.005
mailto:padjon@imbm.bas.bg
mailto:vasilvas@imbm.bas.bg
mailto:mladenov@obzor.bio21.bas.bg
dx.doi.org/10.1016/j.ijmecsci.2011.02.005
Murry
Text Box
8



Traveling Wave Solutions of the Gardner Equation and
Motion of Plane Curves Governed by the mKdV Flow
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Abstract. The Gardner equation is well-known in the mathematical literature since the late sixties of 20th century. Initially,
it appeared in the context of the construction of local conservation laws admitted by the KdV equation. Later on, the Gardner
equation was generalized and found to be applicable in various branches of physics (solid-state and plasma physics, fluid
dynamics and quantum field theory). In this paper, we examine the travelling wave solutions of the Gardner equation and
derive the full set of solutions to the corresponding reduced equation in terms of Weierstrass and Jacobi elliptic functions.
Then, we use the travelling wave solutions of the focusing mKdV equation and obtain in explicit analytic form exact solutions
of a special type of plane curve flow, known as the mKdV flow.

Keywords: Gardner equation, KdV equation, modified KdV equation, travelling wave solutions, Weierstrass and Jacobi elliptic functions,
Motion of plane curves, mKdV flow
PACS: 02.30.Jr, 02.30.Hq, 02.30.Ik

INTRODUCTION

The nonlinear evolution partial differential equation

ut +uux +
1
6

ε2u2ux +uxxx = 0, ε ∈ R (1)

usually referred to as the Gardner equation (see [1]), was introduced almost half a century ago in the fist one [2]
of a series of works (see also [3]) by Miura, Gardner, Kruskal and coauthors devoted to the study of properties and
solutions of the celebrated Korteweg-de Vries (KdV) equation [4]

ut +uux +uxxx = 0 (2)

and its simplest modification
ut +u2ux +uxxx = 0 (3)

currently known as the (focusing) modified Korteweg-de Vries (mKdV) equation. These equations have a great deal in
common with the Camassa-Holm equation, but there are significant differences as well [5]. Here and in what follows,
the subscripts denote partial differentiations of the dependent variable (unknown function) u = u(x, t) with respect to
the indicated independent variables x and t.

In the present paper, by “Gardner equation” we assume a combination of the aforementioned three equations of the
form

ut +α1uxxx +α2ux +α3uux +α4u2ux = 0, α1,α2,α3,α4 ∈ R. (4)

Thus, by setting α1 = α3 = 1, α2 = 0, α4 = (1/6)ε2 in Eq. (4) one obtains the genuine Gardner equation (1), the setting
α1 = 1, α2 = α4 = 0, α3 = 1 yields the KdV equation (2) and, finally, choosing α1 = 1, α2 = α3 = 0, α4 = 1 one gets
to the mKdV equation (3). It should be noted that equations of form (4) have attracted a lot of attention in recent years
being frequently called “extended KdV (mKdV) equations” (see, e.g., [6, 7, 8]) or “combined KdV–mKdV equations”,
see, e.g., [9, 10, 11, 12, 13].
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a b s t r a c t

This study is concerned with the determination of the mechanical behaviour of closed
fluid lipid bilayer membranes (vesicles) under a uniform hydrostatic pressure, pressed
against and adhering onto a flat homogeneous rigid substrate. Assuming that the initial and
deformed shapes of the vesicle are axisymmetric, a variational statement of the problem
is developed on the ground of the so-called spontaneous curvature model. In this setting,
the vesicle is regarded as a closed surface in the three-dimensional Euclidean space and
its equilibrium shapes are supposed to provide stationary values of the bending energy
functional under the constraint of fixed total area. The corresponding Euler–Lagrange
equations and natural boundary conditions are derived, the work done by the pressure
being taken into account, and used to determine the forces andmoments in themembrane.
Several examples of surfaces representing possible equilibrium shapes of so loaded
membranes are determined numerically.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The success of cell manipulations depends mainly on the mechanical properties of the cell membrane and on the
specific way of interaction between the membrane and the other devices. To this end, the determination of the mechanical
behaviour of the cells is of primary interest. An apparent approach to this analysis is theoretical determination of certain cell
equilibrium shapes and their comparisonwith experimental observations, a typical example being presented by Lu et al. [1].

The choice of a model to study the equilibrium shapes of cells depends on the time scale of the phenomena due to the
existence of active processes of permeation of matter through the cell membrane [2]. Phenomena that are much faster than
the active transfer processes are reasonable to treat usingmodels of deformation thatmaintain fixed cell volume. In this case
it iswidely accepted that the deformation of the cellmembrane is localized, typical examples being Lu et al. [1], Boulbitch [3],
Bo [4], Sun et al. [5], Tan et al. [6] andWan et al. [7]. On the other hand, if a phenomenon ismuch slower than the permeation
through the membrane it is reasonable to consider a model that maintains fixed membrane area. In the present study, we
consider cells pressed against a rigid wall and are interested in equilibrium shapes that are attained after the finishing of
the transient transfer of matter through the cell membrane. For this purpose, we employ the simplest model of cells—closed
fluid lipid bilayer membranes (vesicles).

A general theoreticalmodel for deformation of lipid bilayermembraneswas proposed byHelfrich [8]. Thismodel, usually
referred to as the spontaneous curvature model, is widely acknowledged and used by many authors to study stresses
and strains in cell membranes (see, e.g., the exhaustive surveys [9–14]). The corresponding partial differential equations
determining the equilibrium shapes of closed lipid bilayermembranes (vesicles) subjected to hydrostatic pressure is derived
in 1989 by Ou-Yang and Helfrich [15]. Later on, Capovilla et al. [16] and Tu and Ou-Yang [17,18] have extended the foregoing

∗ Corresponding author.
E-mail address: padjon@imbm.bas.bg (P.A. Djondjorov).

0898-1221/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
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A RELATION BETWEEN THE CYLINDRIC FLUID MEMBRANES
AND THE MOTIONS OF PLANAR CURVES

PETKO I. MARINOV AND IVAÏLO M. MLADENOV

Presented by Ivaïlo M. Mladenov

Abstract. We observe a relation between the mKdV equation and the cylindrical

equilibrium shapes of fluid membranes. In our setup mKdV arises from the study

of the evolution of planar curves.

1. Introduction

The goal of this paper is to unify and extend the results presented in [5] and [8]. It

also shows a connection between two problems that appear unrelated.

The first problem comes from the study of equilibrium shapes of fluid membranes.

One starts with a functional proposed by Helfrich (see [2], [8]) and studies the

corresponding Euler-Lagrange equation. The equilibrium shapes are given as the

extremals of the functional

F =
kc
2

∫
S

(2H + Ih)2dA+ kG

∫
S

KdA+ λ

∫
S

dA+ p

∫
dV. (1)

Notice that F is closely related to the Willmore energy functional. The Euler-

Lagrange equation associated with F is as follows

2kcΔSH + kc(2H + Ih)(2H2 − IhH − 2K)− 2λH + p = 0. (2)

Here H and K are the mean and Gauss curvatures respectively, kc and kG - bend-

ing and Gaussian constant rigidity of the membrane, Ih is spontaneous curvature

constant, p and λ - Lagrange multipliers corresponding to fixed volume and total

membrane area and ΔS is the surface Laplacian on the interface of the membrane.

The nature of this equation is complex as it involves the surface Laplacian of the

mean curvature which makes it a fourth-order non-linear PDE. However, as al-

ways, the symmetry of the problem reduces the equation and in the special case of

cylindrical membranes it becomes the ordinary differential equation

2
d2κ

ds2
+ κ3 − μκ− σ = 0. (3)
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An approach for decomposition of finite rotations

Clementina D. Mladenova1,∗ and Ivaïlo M. Mladenov2,∗∗

1 Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, Sofia 1113, Bulgaria
2 Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21, Sofia 1113, Bulgaria

Based on Lie groups theory, this work considers the problem of decomposition of a given rotation into three successive finite
rotations with prescribed in advance axes.

c© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The different parameterizations of the rotation group SO(3) influence strongly the efficiency of the kinematic and dynamic
models as at one rigid body so in multibody mechanical systems. Various analytical representations of rotations are obtained
when the rotations are expressed by defining their action on vectors, quaternions, spinors, etc [1]. On the other hand the most
used explicit parameterizations of the rotations are via: Eulerian angles in the classical 3-1-3 sense and all other combinatons
like: 3-2-3, 3-2-1, 1-2-3 and etc., Bryant angles, Eulerian parameters, Cayley-Klein parameters and etc. (see [2] - [4]). To find
the resultant axis and angle of rotation after two, three or more finite partial rotations is a very important but trivial problem
in multibody mechanics. The inverse problem however, namely, to decompose a finite rotation into three partial rotations
about prescribed axes is a more difficult one and quite important in motion planning in the group of rotations and inverse
kinematic problem at the manipulator systems as well. The present paper gives explicit formulae in solving this problem using
vector-like parameterization of the rotation group [5] - [8].

2 Problem statement and algorithm realization

As an exception in the three-dimensional space, there exists a map (actually isomorphism) between vectors and skew-
symmetric matrices, i.e., if c ∈ R3, we have c → c×, where c× is the corresponding skew-symmetric matrix. Then we
may write the SO(3) matrix in the form

O = O(c) = (I + c×)(I − c×)−1 =
(1− c2)I + 2 c⊗ c+ 2 c×

1 + c2
· (1)

Here I is the 3 × 3 identity matrix, c ⊗ c denotes the diadic matrix formed by the vector c. The formula above provides us
with an explicit parameterization of SO(3). The vector c is called a vector-parameter. It is parallel to the axis of rotation and
its module ‖c‖ is equal to tan(α/2), where α is the angle of rotation. The so defined vector-parameters form a Lie group with
the following composition law

c′ = 〈c1, c2〉 =
c1 + c2 + c1 × c2

1− c1 c2
· (2)

The symbol “×” means cross product of vectors. Conjugating with elements from the SO(3) group leads to linear transfor-
mations in the vector-parameter space O(c)O(c′)O−1(c) = O(c)O(c′)OT (c) = O(c′′) where c′′ = O(c) c′ = Oc c

′ and
“T ” symbolizes the transposed matrix. Such a parameterization in the Lie group theory is called a natural one. It is worth
mentioning also that no other parameterization possesses neither this property nor a manageable superposition law.
Problem statement: Given a vector-parameter c and three axes specified by their unit vectors, find the respective rotation
angles through which the initial vector has to be decomposed.

Let us denote the three unknown vectors by c1 = u ĉ1, c2 = v ĉ2 and c3 = w ĉ3 where ĉi, i = 1, 2, 3 are the unit
vectors along the prescribed axes of rotations. Having in mind the defining relation O(c) = O(c1)O(c2)O(c3) the following
relations for the dot products of vectors are valid (further on by (p, q) we will denote the dot product of the vectors p and q)

(ĉ1, O(c)ĉ3) = (ĉ1, O(c2)ĉ3) (3)

(ĉ2, O(c)ĉ3) = (ĉ2, O(c1)O(c2)ĉ3) = (OT (c1)ĉ2, O(c2)ĉ3) (4)

(ĉ1, O(c)ĉ2) = (ĉ1, O(c2)O(c3)ĉ2) = (OT (c2)ĉ1, O(c3)ĉ2) (5)

(ĉ3, O(c)ĉ3) = (ĉ3, O(c1)O(c2)ĉ3) = (OT (c1)ĉ3, O(c2)ĉ3). (6)

∗ E-mail clem@imbm.bas.bg, phone +35 92 979 6418, fax +35 92 870 7498
∗∗ E-mail mladenov@obzor.bio21.bas.bg, phone +35 92 979 2637

c© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
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МОДЕЛ НА ХЕЛФРИХ ЗА ФОРМАТА НА БИОЛОГИЧНИТЕ  
МЕМБРАНИ: ГРУПОВ АНАЛИЗ, ОПРЕДЕЛЯЩА СИСТЕМА  

И ДОПУСТИМИ СИМЕТРИИ * 

Владимир Пулов, Мариана Хаджилазова, 
Красимира Кърджилова, Валентин Люцканов, Ивайло Младенов 

HELFRICH`S SHAPE MODEL OF BIOLOGICAL MEMBRANES:  
GROUP ANALYSIS, DETERMINING SYSTEM AND SYMMETRIES  

Abstract: Helfrich's membrane shape model [1, 2] is considered from group-theoretical 
viewpoint [5, 6]. Using conformal metric on the surface the Helfrich`s model is represented 
by a system of four nonlinear partial differential equations of second order of the 
derivatives [3, 4]. In order to construct the determining system for the symmetries of the 
conformal metric representation of the Helfrich's model we took advantage of the 
MATHEMATICA package LieSymm-PDE [7]. We obtained a determining system consisting 
of 271 equations. Using the computer algebra system MATHEMATICA we solved most of 
the equations in a semi-automatic way. As a result only 27 equations remained unsolved. 
We present here these equations postponing their solution for future work. 
Keywords: биологични мембрани, групов анализ на диференциални уравнения, ком-
пютърна алгебра biological membranes, group analysis of differential equations, computer 
algebra 

 
 
І. УРАВНЕНИЕ  НА ХЕЛФРИХ ЗА 
ФОРМАТА НА БИОЛОГИЧНИТЕ  
МЕМБРАНИ 
 

Уравнението на Хелфрих 
 

   

 
 
е основно уравнение в теорията на клетъчни-
те биомембрани [1, 2]. С него се описват 
равновесните форми на най-простите затво-
рени мембранни структури  –  така наречени-
те везикули. В биологията везикула се нари-
ча всяко малко мехурче с размери от 15  
до 0.5 cm и дебелина на стената до 4-5 nm. 
Везикулите се формират във водна среда, 
най-често от молекули на фосфолипиди. 
Фосфолипидите са вещества изградени от 
амфифилни молекули. Амфифилни се нари-
чат молекулите, които съчетават в себе си, 
както хидрофилни, така и хидрофобни 
свойства. При фосфолипидите това се дължи 
на добре обособените в двата края на моле-
кулата хидрофилна глава и две хидрофобни 
опашки (Фигура 1).  
 

 

                                                 
* Работата е финансирана по НП  № 11/2012 на ТУ - Варна 

 
Фигура 1. Двоен фосфолипиден слой. 

 
Поставени във воден разтвор фосфо-

липидните молекули образуват двоен слой, 
при който хидрофилните им глави сочат на-
вън към разтвора, а опашките им, за да нямат  
пряк контакт с водните молекули, са обърна-
ти към вътрешността на слоя (Фигура 1). 
След като достигне определена критична 
площ, двойният фосфолипиден  слой, който 
първоначално е плосък, започва спонтанно 
да се огъва, докато образува затворена кухи-
на, изпълнена с течност – това е везикулата. 

В уравнението на Хелфрих (1) двой-
ният липиден слой на везикулите е предста-
вен като повърхнина  със средна кривина  
и гаусова кривина . Физичните параметри, 
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Equilibrium shapes of fluid membranes and 

carbon nanostructures 
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Abstract 
The present chapter concerns the continuum modelling of the mechanical behaviour 
and equilibrium shapes of two types of nano-scale objects: fluid lipid bilayer 
membranes and carbon nano-structures. A unified continuum model is used to 
handle four different case studies. Two of them consist in representing in analytic 
form cylindrical and axisymmetric equilibrium configurations of single-wall carbon 
nanotubes and fluid lipid bilayer membranes subjected to uniform hydrostatic 
pressure. The third one is concerned with determination of possible shapes of 
junctions between a single-wall carbon nanotube and a flat graphene sheet or 
another single-wall carbon nanotube. The last one deals with the mechanical 
behaviour of closed fluid lipid bilayer membranes (vesicles) adhering onto a flat 
homogeneous rigid substrate subjected to micro-injection and uniform hydrostatic 
pressure. 

 
Keywords: graphene, carbon nanotubes and nanostructures, junctions, bending energy,  natural 
boundary conditions, cell injection, adhesion, equilibrium shapes 
 
 
1. Introduction 

 
This chapter is concerned with the mechanical behaviour and shape analysis of two 

types of nano-scale objects of quite different physical and chemical nature: fluid 
membranes (FM’s) and carbon nanostructures (CNS’s). 

Here, by a fluid membrane we mean a membrane formed in aqueous solution by a 
bilayer of lipid molecules, which are in a fluid state, i.e. the molecules can move freely 
within the monolayer they belong to. The structure of the bilayer is such that the 
hydrophobic tails of the lipid molecules situated in different monolayers face one another 
to form a semi-permeable core, while their hydrophilic heads face the aqueous solutions 
on either side of the membrane. It is well-known that the lipid bilayer is the main 
structural component of all biological membranes, the closed lipid bilayer membranes 

mailto:vasilvas@imbm.bas.bg
mailto:padjon@imbm.bas.bg
mailto:murryh@obzor.bio21.bas.bg
mailto:mladenov@obzor.bio21.bas.bg
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c⃝ 2013 Springer Basel

Serret’s Curves, their Generalization and
Explicit Parametrizations

Iväılo M. Mladenov, Mariana Ts. Hadzhilazova,
Peter A. Djondjorov and Vassil M. Vassilev

Abstract. Here we apply our original scheme for the reconstruction of plane
curves whose curvatures are specified by functions of the radial coordinate to
the curves introduced by J.-A. Serret. These curves are associated with the
natural numbers and we extend their definition in order to include them into
a family of curves depending on two continuous real parameters. The explicit
parametrization of this new class of curves is presented as well.

Mathematics Subject Classification (2010). Primary 53A04; Secondary 53A55,
53A17.

Keywords. Classical differential geometry, plane curves, curvature, Frenet-
Serret equations.

1. Introduction

Long time ago Serret [1] has described a family of plane algebraic curves in response
to a question raised by Legendre. The problem was to find algebraic curves other
than the lemniscate, such that their arc lengths are expressed by elliptic integrals
of the first kind, and Serret claimed that he has found all such rational curves.
Besides he provides a mechanical procedure [2] for their construction which will
be described in the next Section. Before that we will mention that the original
Serret curves were indexed by natural numbers but Liouville [3] had recognized
immediately that rational numbers are suited as well as they also lead to algebraic
curves. This has been further elucidated in Krohs’ dissertation [4]. Here, we extend
the definition of Serret’s curves from discrete to continuous two-parameter family
and present their explicit parametrizations.

Actually, the organization of the paper is as follows. The next section presents
the mechanical construction of Serret’s curves followed by another one in which the
Frenet-Serret equations are formulated in Cartan moving frame. Then we outline
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VECTOR DECOMPOSITIONS OF ROTATIONS

DANAIL BREZOV, CLEMENTINA MLADENOVA AND IVAÏLO MLADENOV

Presented by Ivaïlo M. Mladenov

Abstract. Here we derive analytic expressions for the scalar parameters which

appear in the generalized Euler decomposition of the rotational matrices in R3. The

axes of rotations in the decomposition are almost arbitrary and they need only to

obey a simple condition to guarantee that the problem is well posed. A special

attention is given to the case when the rotation is decomposable using only two

rotations and for this case quite elegant expressions for the parameters were derived.

In certain cases one encounters infinite parameters due to the rotations by an angle π
(the so called half turns). We utilize both geometric and algebraic methods to obtain

those conditions that can be used to predict and deal with various configurations

of that kind and then, applying l’Hôpital’s rule, we easily obtain the solutions in

terms of linear fractional functions. The results are summarized in two Tables and

a flowchart presenting in full details the procedure.
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5 Cases Involving a Half Turn 75
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6 The Identity Transformation 84

7 Examples 86

8 Concluding Remarks 91
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An. Şt. Univ. Ovidius Constanţa Vol. 20(2), 2012, 79–88

Geometry of the anisotropic minimal surfaces

Iväılo M. Mladenov and Mariana Ts. Hadzhilazova

Abstract

A simple modification of the surface tension in the axisymmetric case

leads to analogues of the Delaunay surfaces. Here we have derived an

explicit parameterization of the most simple case of this new class of

surfaces which can be considered as a generalization of the catenoids.

The geometry of these surfaces depends on two real parameters and has

been studied in some detail.

1 Introduction

In aqueous solution, amphiphilic molecules (e.g., phospholipids) form bilayers,

the hydrophilic heads of these molecules being located in both outer sides of

the bilayer, which are in contact with the liquid, while their hydrophobic tails

remain at the interior. The handbook [7] is a good starting point for learning

more about this phenomena.

A bilayer may form a closed membrane which bear the name vesicle. Vesi-

cles constitute a well-defined and sufficiently simple model system for studying

the basic physical properties of the more complex cell biomembranes which

Key Words: Delaunay surfaces, membranes, general shape equation.
2010 Mathematics Subject Classification: 53A05, 53A10, 53B50.
Received: August, 2011.

Accepted: February, 2012.
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MATHEMATIQUES

Physique mathématique

QUARTER TURNS AND NEW FACTORIZATIONS
OF ROTATIONS

Danail Brezov, Clementina Mladenova∗, Iväılo Mladenov∗∗

(Submitted by Academician P. Popivanov on March 26, 2013)

Abstract

Here we consider new decompositions of the special orthogonal transfor-
mations in R3 into products of two rotations, one of them has a fixed scalar
parameter, and the other – a fixed axis. The obtained analytic solutions consti-
tute an alternative parametrization of the group SO(3) with charts in S2 × S1.
As it should be expected, from topological point of view, this map has singular-
ities – the number of images varies between zero, one, two and infinitely many.
The corresponding formulae become particularly simple in the cases involving
quarter turns and half turns, although in the latter additional geometric criteria
appear. Transferring the same construction to the universal cover SU(2) ∼= S3
via quaternion parametrization eliminates the problem with infinite scalar pa-
rameters. The so obtained map can also be seen as a realization of the Hopf
fibration S1 → S3 → S2.

Key words: decomposition, half turn, quarter turn, quaternion, vector-
parameter

2010 Mathematics Subject Classification: 17B81, 22E70, 81R05

1. Introduction. It is well known (Euler’s theorem) that all three dimen-
sional rotations have an invariant axis which is unique except in the trivial case
(identity transformation) and can be specified by a unit vector n̂. In order to
describe the rotation itself, we need an extra parameter, usually chosen to be
the angular variable ϕ. Then we may construct the matrix of the transformation
using the famous Rodrigues’ formula

(1) R(n̂, ϕ) = cosϕ I + (1− cosϕ) n̂⊗ n̂t + sinϕ n̂×,
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Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures
∗

Iväı lo M. Mladenov,1,†,‡ Peter A. Djondjorov,2,§ Mariana Ts. Hadzhilazova,1,¶ and Vassil M. Vassilev2,‖
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(Received October 9, 2012; revised manuscript received November 12, 2012)

Abstract The present article concerns the continuum modelling of the mechanical behaviour and equilibrium shapes
of two types of nano-scale objects: fluid lipid bilayer membranes and carbon nanostructures. A unified continuum
model is used to handle four different case studies. Two of them consist in representing in analytic form cylindrical and
axisymmetric equilibrium configurations of single-wall carbon nanotubes and fluid lipid bilayer membranes subjected to
uniform hydrostatic pressure. The third one is concerned with determination of possible shapes of junctions between
a single-wall carbon nanotube and a flat graphene sheet or another single-wall carbon nanotube. The last one deals
with the mechanical behaviour of closed fluid lipid bilayer membranes (vesicles) adhering onto a flat homogeneous rigid
substrate subjected to micro-injection and uniform hydrostatic pressure.

PACS numbers: 61.46.Fg, 81.07.De, 87.16.ad, 87.16.dm, 87.16.D-
Key words: fluid membranes, graphene, carbon nanotubes, carbon nanostructures, junctions, variational

statement, Euler–Lagrange equations, natural boundary conditions, cell injection, adhesion, equi-
librium shapes

1 Introduction

This article is concerned with the mechanical be-

haviour and shape analysis of two types of objects of quite

different physical and chemical nature — fluid membranes

(FM’s) and carbon nanostructures (CNS’).

Here, by a fluid membrane we mean a membrane

formed in aqueous solution by a bilayer of lipid molecules,

which are in a fluid state, i.e., the molecules can move

freely within the monolayer they belong to. The structure

of the bilayer is such that the hydrophobic tails of the

lipid molecules situated in different monolayers face one

another to form a semi-permeable core, while their hy-

drophilic heads face the aqueous solutions on either side

of the membrane. It is well-known that the lipid bilayer

is the main structural component of all biological mem-

branes, the closed lipid bilayer membranes (vesicles) be-

ing thought of as the simplest model systems for studying

basic physical properties of the more complex biological

cells.

By a carbon nanostructure we mean any stable config-

uration of the curved (bended and/or stretched) graphene

such as: carbon nano-tubes (CNT’s), nano-horns, nano-

tori, fullerenes, wormholes, schwartzites and so on. Some

of these structures (especially CNT’s) are utilized as ba-

sic ingredients of nano-structured materials such as nano-

tube-based nano-composites or functionalized CNT mem-

branes used in water desalination, for instance. Others

are basic building blocks of nano-electromechanical sys-

tems (NEMS), nano-sensors and other nano-devices.

The underlying idea behind the present contribution is

to combine the study of the mechanical behaviour of FM’s

and CNS’ on the bases of a unified continuum mechanics

model. In this way, we hope to achieve a significant trans-

fer of knowledge between FM and CNS sciences and thus

to accelerate the development of both fields.

The idea for such a unification emerges in a natural

way when one compares the known configurations of FM’s

and CNS’ and realizes that their shapes are similar. This

similarity is not accidental. It is intimately connected with

the following observations:

(a) Regardless of the particular chemical or physical

structure, the geometry of both the foregoing types of ob-

jects is essentially two-dimensional and therefore it can be

described in terms of the differential geometry of surfaces;

(b) Both types of the considered objects exhibit elas-

tic behaviour within a large scale, their elastic properties

being characterized (in the simplest models) by a few pa-

rameters, and hence one has a good reason to believe that

∗Supported by the Bulgarian Ministry of Education, Youth and Science under the Project “Science and Business” BG051PO001/3.3-05-

001 within “Human Resources Development” Operational Program of the European Social Fund

†Also at Kavil Institute for Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
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MATHEMATICS AND EDUCATION IN MATHEMATICS, 2013

Proceedings of the Forty Second Spring Conference

of the Union of Bulgarian Mathematicians

Borovetz, April 2–6, 2013

VECTOR DECOMPOSITION OF HALF TURNS*

Danail S. Brezov, Clementina D. Mladenova, Iväılo M. Mladenov

This study concerns the special case of the symmetric three-dimensional orthogonal
matrices and here we suggest a direct method for a representation of any such matrix
as a consecutive composition of rotations about three almost arbitrarily chosen axes.
Using a suitable representation the task is reduced to solving of a system of quadratic
equations for the scalar parameters of the rotations in the decomposition. Then a
comparison of the matrix entries selects the actual solutions and dismisses the fake
ones. The algorithm is explained in detail and illustrated at the end of the paper via
an example.

1. Introduction. The necessity of decomposing the complex rotational motions into
two or three successive rotations is dictated by the practical needs of industry and
engineering sciences. It is worth to mention that the factorizations of orthogonal ma-
trices play an important role in modern navigation and control of aircrafts, submarines,
and communication satellites [8], crystallography and diffractometry [2], or digital image
processing [6] and optics [10]. In any of these areas it is necessary to perform several suc-
cessive displacements in order to obtain the desired setting. Besides, one must construct
a framework which is logically and physically free of some constraints because everything
happens in the ordinary Euclidean space. It is exactly this fact which explains why the
group of the orthogonal matrices in R

3 is somewhat special not only because its vari-
ous physical applications, but also because for n= 3 we have an isomorphism between
one-forms and two-forms given by the Hodge duality ∗ : Λk(Rn) → Λn−k(Rn). In this
particular case it can be interpreted as a one-to-one correspondence between the vec-
tors and the skew-symmetric matrices in R

3. Since the latter constitute the Lie algebra
so(3), this allows the standard representation of the rotation generators to be given by
the exceptional formula ∗ : c → A(c) = c×, or in components (c×)ij = εiljcl, where εilj

are the entries of the Levi-Civita symbol and the summation is performed over repeated
indices following Einstein convention. In this way any skew-symmetrical matrix A can
be easily written in the form

A( c) =

 0 −c3 c2
c3 0 −c1

−c2 c1 0

 .

*2000 Mathematics Subject Classification: 22E15, 22E70, 81R05.

Key words: Euler angles, vector parametrization, factorization.
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Some New Results on Three-Dimensional
Rotations and Pseudo-Rotations

D. S. Brezov∗, C. D. Mladenova† and Ivaïlo M. Mladenov∗∗

∗Department of Mathematics, University of Architecture, Civil Engineering and Geodesy,
1 Hristo Smirnenski Blvd., 1046 Sofia, Bulgaria

†Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Block 4, 1113 Sofia, Bulgaria
∗∗Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Block 21, 1113 Sofia, Bulgaria

Abstract. We use a vector parameter technique to obtain the generalized Euler decompositions with respect to arbitrarily
chosen axes for the three-dimensional special orthogonal group SO(3) and the three-dimensional Lorentz group SO(2,1).
Our approach, based on projecting a quaternion (respectively split quaternion) from the corresponding spin cover, has proven
quite effective in various problems of geometry and physics [1, 2, 3]. In particular, we obtain explicit (generally double-valued)
expressions for the three parameters in the decomposition and discuss separately the degenerate and divergent solutions, as
well as decompositions with respect to two axes. There are some straightforward applications of this method in special
relativity and quantum mechanics which are discussed elsewhere (see [4]).

Keywords: Quaternions, split quaternions, vector-parameters, Euler decomposition, Rodrigues’ formula, hyperbolic geometry
PACS: 02.20.Qs, 02.20.Tw, 06.30.Bp, 06.30.Gv, 45.20.dc, 45.40.Bb

THE EUCLIDEAN CASE

We start with the standard representation of the rotations in the Euclidean space R
3 via the unit quaternions [5, 6, 7].

The special orthogonal group is parameterized by the so-called vector parameter (also known as Rodrigues’ or Gibbs’
vector (see [1, 8, 9]). The latter appears to be a particularly convenient tool, especially in the context of the generalized
Euler decomposition considered here. With its help we obtain quite simple explicit expressions for the scalar (angular)
parameters, appropriate for both analytic and numerical use (cf. [10, 11, 12] for comparison).

Quaternions and Vector Parameters

Representing SU(2) ∼= S
3 with unit quaternions leads to a convenient construction for the rotation group via the

two-fold projection SU(2) → SO(3). More precisely, we may choose a basis in su(2)

i =

(
i 0
0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i
i 0

)
(1)

and introduce unit quaternions as
ζ = ζ0 +ζ1i+ζ2j+ζ3k, |ζ |2 = 1,

with norm given by

|ζ |2 =
1
2

trace(ζ ζ̄ ) = det(ζ ) =
3

∑
μ=0

ζ 2
μ ,

where ζ̄ = ζ0 −ζ1i−ζ2j−ζ3k stands for the conjugate quaternion. Note that |ζ |2 = 1 also implies ζ̄ = ζ−1.
Next, we associate with each vector x ∈ R

3 a skew-Hermitian matrix

x → X = x1 i+ x2 j+ x3 k, (x,x) = det X = x2
1 + x2

2 + x2
3,

where xi are the Cartesian coordinates of the vector x in the default basis.

Application of Mathematics in Technical and Natural Sciences
AIP Conf. Proc. 1561, 275-288 (2013); doi: 10.1063/1.4827238

©   2013 AIP Publishing LLC 978-0-7354-1189-0/$30.00

275 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

82.119.72.33 On: Sun, 27 Oct 2013 08:55:59

Murry
Text Box
21



Traveling Wave Solutions of the One-Dimensional
Boussinesq Paradigm Equation

V. M. Vassilev∗, P. A. Djondjorov∗, M. Ts. Hadzhilazova† and
I. M. Mladenov†

∗Institute of Mechanics, Bulgarian Academy of Sciences
Acad. G. Bonchev str., Block 4, 1113 Sofia, Bulgaria

†Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev str., Block 21, 1113 Sofia, Bulgaria

Abstract. The one-dimensional quasi-stationary flow of inviscid liquid in a shallow layer with free surface is described by the
so-called Boussinesq Paradigm Equation (BPE). Slightly generalized this equation appears also in the theory of longitudinal
vibrations of rods and in the continuum limit for lattices. It is well known that the one-dimensional (1-D) BPE admits a
one-parameter family of traveling wave solutions expressed in an analytic form through the “sech” function. In the present
contribution, new analytic solutions to the 1-D BPE representing traveling waves are obtained. These solutions are expressed
through Weierstrass and Jacobi elliptic functions, which in some cases reduce to elementary functions.

Keywords: Boussinesq Paradigm Equation, traveling wave solutions, Weierstrass and Jacobi elliptic functions
PACS: 02.30.Jr, 02.30.Hq, 02.30.Ik

INTRODUCTION

About 140 years ago Boussinesq [1] studied the fluid flow in the so-called “shallow water” approximation. Considering
the shape of the fluid surface, he introduced the fundamental idea that this shape is due to the balance between
nonlinearity and dispersion and derived an equation for the case of weakly nonlinear long waves, which can be written
in the form

utt = Δ
(
u−αu2 +β1utt −β2Δu

)
(1)

where the function u(t,x,y) describes the shape of the fluid surface, t is the time, x and y are the spatial coordinates

utt =
∂ 2u
∂ t2

, Δ =
∂ 2

∂x2 +
∂ 2

∂y2

α , β1 and β2 are real constants – the amplitude parameter and dispersion coefficients, respectively, which are expressed
as

α =
3β
2

, β1 =
β
2

, β2 =
β
6

(2)

in terms of the so-called dispersion parameter β . Nowadays, following Christov [2], Eq. (1) is called Boussinesq
Paradigm Equation (BPE).

In one spatial dimension x, Eq. (1), slightly generalized by introducing a new real constant γ , takes the form

∂ 2

∂x2

(
γu−αu2 +β1

∂ 2u
∂ t2

−β2
∂ 2u
∂x2

)
− ∂ 2u

∂ t2
= 0 (3)

and is sometimes called the double dispersive equation (DDE), cf. [3]. For γ = 1, Eq. (3) coincides with the one-
dimensional (1-D) BPE.

Let us remark that the double dispersive equation governs the longitudinal strain waves in a free lateral surface
rod (see [3, 4] and the references therein). In this case, u(t,x,y) is interpreted as a strain function. Actually, the first
attempts to highlight the existence of solitary waves in solid mechanics problems can be traced to the second half of
the 20th century. Hutchinson et al. [5] considered propagation of longitudinal waves along a straight cylindrical elastic
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VECTOR PARAMETERS IN CLASSICAL HYPERBOLIC GEOMETRY

DANAIL BREZOV, CLEMENTINA MLADENOVA AND IVAÏLO MLADENOV

Presented by Ivaïlo M. Mladenov

Abstract. Here we use an extension of Rodrigues’ vector parameter construction

for pseudo-rotations in order to obtain explicit formulae for the generalized Euler
decomposition with arbitrary axes for the structure groups in the classical models

of hyperbolic geometry. Although the construction is projected from the universal

cover SU(1, 1) � SL(2,R), most attention is paid to the 2 + 1 Minkowski space

model, following the close analogy with the Euclidean case, and various decom-

positions of the restricted Lorentz group SO
+(2, 1) are investigated in detail. At

the end we propose some possible applications in special relativity and scattering
theory.
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CYLINDRICAL FLUID MEMBRANES AND THE EVOLUTIONS
OF PLANAR CURVES

PETKO MARINOV, MARIANA HADZHILAZOVA† and IVAÏLO MLADENOV†
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Abstract. An interesting relation between the mKdV equation and the cylin-
drical equilibrium shapes of fluid membranes is observed. In our setup mKdV
arises from the study of the evolution of planar curves in the normal direction.

1. Introduction

This paper unifies and extends the results of two articles, and shows a relation
between two problems that appears unrelated.
The first problem comes from the study of equilibrium shapes of fluid membranes.
One starts with a functional proposed by Helfrich (see [2], [8]) and studies the
corresponding Euler-Lagrange equation. The equilibrium shapes are given as the
extrema of the functional

F =
kc
2

∫
S

(2H + Ih)2dA+ kG

∫
S

KdA+ λ

∫
S

dA+ p

∫
dV. (1)

Notice that F is closely related to the Willmore energy functional. The Euler-
Lagrange equation associated with F is as follows

2kc�SH + kc(2H + Ih)(2H2 � IhH � 2K)� 2λH + p = 0. (2)

Here H and K are the mean and Gauss curvatures respectively, kc and kG - bending
and Gaussian rigidity constants of the membrane, Ih is the spontaneous curvature
constant, p and λ - the Lagrange multipliers corresponding to the fixed volume
and total membrane area and �S is the surface Laplacian on the interface of the
membrane. The nature of this equation is complex as it is a fourth-order PDE. If

142

Murry
Text Box
24



New Perspective on the Gimbal Lock Problem
Danail S. Brezov∗, Clementina D. Mladenova† and Ivaïlo M. Mladenov∗∗

∗Department of Mathematics, University of Architecture, Civil Engineering and Geodesy,
1 Hristo Smirnenski Blvd., 1046 Sofia, Bulgaria

†Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4,
1113 Sofia, Bulgaria

∗∗Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 21,
1113 Sofia, Bulgaria

Abstract. We exploit a new technique for obtaining the generalized Euler decomposition of three-
dimensional rotations [1], based on the vector parameter (also known as Rodrigues’ or Gibbs’s
vector) construction in the context of the gimbal lock problem, well known in the applications.
From topological point of view the latter may be thought of as a singularity of the parametrization
π : RP2→ T3 resulting in the loss of a degree of freedom that is believed to cause troubles in the
engineering applications [2], so it is generally considered a problem and takes some effort to avoid.
This article, however, focuses on its potential benefits and comments are made on how one can take
advantage of them.

Keywords: quaternions, vector parameters, Euler decomposition, Rodrigues’ formula, gimbal lock
PACS: 02.20.Qs, 02.20.Tw, 06.30.Bp, 06.30.Gv, 45.20.dc, 45.40.Bb

THE VECTOR PARAMETER CONSTRUCTION

Representing SU(2) ∼= S3 with unit quaternions is a standard procedure (see [3]) that
leads to the vector parametrization for the rotation group via projection SU(2)→ SO(3).
More precisely, choosing a basis {ek} in su(2), we introduce the set of unit quaternions1

SU(2) : {ζ = ζ0 +ζk ek, |ζ |2 = 1}, eie j =−δi j e0 + εi jkek (1)

where ζk ∈ R, e0 is the identity, δi j and εi jk - the symbols of Kronecker and Levi-Civita
respectively, and the norm is given by |ζ |2 = ζ

2
0 +ζ

2
1 +ζ

2
2 +ζ

2
3 . Likewise, we associate

vectors x ∈ R3 with skew-Hermitian matrices X = xk ek ∈ su(2), or purely imaginary
quaternions2 and let SU(2) act in its Lie algebra via Adζ : X→ ζ Xζ−1, |ζ |2 = 1⇒
ζ−1 = ζ̄ = (ζo,−ζζζ ), which can be viewed as a norm-preserving automorphism of R3

and the orthogonal matrix, transforming the Cartesian coordinates of x is retrieved as

R(ζ ) = (ζ 2
0 −ζζζ

2
)I +2ζζζ⊗ζζζ

t
+2ζ0 ζζζ

× (2)

where I stands for the identity operator and ζζζ⊗ζζζ
t is the tensor (dyadic) product in R3.

1 summation over repeated upper and lower indices is always assumed in the text
2 we refer to ζζζ ∈ R3 as the imaginary, or vector part of ζ = (ζ0,ζζζ ) and ζ0 - as its real or scalar part
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Unduloid-like Equilibrium Shapes of
Carbon Nanotubes Subjected to
Hydrostatic Pressure

Iväılo M. Mladenov, Mariana Ts. Hadzhilazova,
Vassil M. Vassilev and Peter A. Djondjorov

Abstract. The aim of this work is to obtain numerically unduloid-like equi-
librium shapes of carbon nanotubes subjected to external pressure.

Mathematics Subject Classification (2010). Primary 82D80; Secondary 74G15,
74G65.

Keywords. Carbon nanotubes, equilibrium shapes, unduloid-like shapes.

1. Introduction

Carbon nanotubes are carbon molecules in the shape of hollow cylindrical fibers
of nanometer-size diameter and length-to-diameter ratio of up to 107 : 1. Carbon
nanotubes exhibit extraordinary strength, unique electrical properties, and are
efficient conductors of heat. For this reason, carbon nanotubes have many practical
applications in electronics, optics and other fields of material science. If the tube
wall is composed by one layer of carbon atoms, then the tube is referred to as a
single-walled one (SWNT). Otherwise, the tube is called multi-walled (MWNT).

The predominating opinion among the scientists working in this field is that
they are discovered in 1991 by Sumio Iijima [1]. However, carbon nanotubes have
been produced and observed prior to 1991. In 1952 appeared a paper in the Soviet
Journal of Physical Chemistry (in Russian) by Radushkevich and Lukyanovich [2]
where images of 50 nanometer diameter tubes made of carbon are presented. Ober-
lin, Endo and Koyama [3] reported observations of hollow carbon fibers (SWNT)
with nanometer-scale diameters in 1976. In 1987, Howard G. Tennent of Hyperion
Catalysis was issued a US patent for the production of “. . . cylindrical discrete
carbon fibrils with a constant diameter between about 3.5 and about 70 nanome-
ters . . . , length 102 times the diameter . . . ”
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CYLINDRICAL HELFRICH SURFACES*

Vladimir Pulov, Mariana Hadzhilazova, Iväılo M. Mladenov

The equilibrium shapes of fluid membranes in the spontaneous curvature model (Hel-
frich’s model) are described by the so called Helfrich equation. Surfaces obtained
as solutions of the governing equation are called Helfrich surfaces, respectively. By
making use of the conformal coordinates and applying Lie group reduction method
we construct group-invariant solutions, expressed in terms of the Weierstrass elliptic
℘-function. The explicit analytic formulas for the position vector allow to find out
the closed directrices generating the Helfrich cylindrical surfaces and to display some
of their graphs.

1. Helfrich equation. Membranous biophysical systems, formed in aqueous solu-
tion, such as membranes of cells and lipid configurations in living organisms (e.g. lipid
vesicles), are generally called fluid membranes. Any membrane itself is regarded as a
smooth surface S in the Euclidean space R

3 with the mean and the Gaussian curvatures
H and K, respectively. In the spontaneous curvature model (Helfrich’s model), widely
accepted now, the equilibrium shapes of fluid membranes are determined by solving the
Helfrich equation [1]

(1) ∆SH + 2(H2 + IhH −K)(H − Ih) − 2λH

k
+
p

k
= 0

which is the Euler-Lagrange equation, obtained in a variational approach by minimizing
the free elastic energy functional

F =
k

2

∫

S

(2H + Ih)2dS + k̄

∫

S

KdS

under the constraints of fixed enclosed volume and surface area of the membrane.

In the aforementioned formulas the bending rigidity k, the Gaussian rigidity k̄, the
tensile stress λ, the pressure difference p between the outer and the inner media of
the surface (osmotic pressure) and the spontaneous mean curvature Ih are the physical
characteristics of the membrane, and ∆S denotes the Laplace-Beltrami operator on S.

We will call the surfaces obtained as solutions of the Helfrich equation Helfrich sur-

faces.

*2010 Mathematics Subject Classification: 53A05, 74A50, 74K15.

Key words: symmetries, membranes, variational problems, surfaces.
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COVARIANT VECTOR DECOMPOSITION

OF THREE-DIMENSIONAL ROTATIONS*

Danail S. Brezov, Clementina D. Mladenova, Iväılo M. Mladenov

The main purpose of this paper is to provide an alternative representation for the
generalized Euler decomposition (with respect to arbitrary axes) obtained in [1, 2]
by means of vector parametrization of the Lie group SO(3). The scalar (angular)
parameters of the decomposition are explicitly written here as functions depending
only on the contravariant components of the compound vector-parameter in the ba-
sis, determined by the three axes. We also consider the case of coplanar axes, in
which the basis needs to be completed by a third vector and in particular, two-axes
decompositions.

1. Vector-parameters in the Euler decomposition. Vector-parameters, also
known as Rodrigues’ or Gibbs’ vectors, are naturally introduced via stereographic pro-
jection. For the rotation group in R

3 we consider the spin cover SU(2) ∼= S
3 −→ SO(3) ∼=

RP
3 and identify S

3 with the set of the unit quaternions (cf. [4])

ζ = (ζ0, ζ) = ζ0 + ζ1i + ζ2j + ζ3k, |ζ|2 = ζζ̄ = 1, ζ̄ = (ζ0,− ζ), ζα ∈ R.

The corresponding group morphism is given by the adjoint action of S
3 in its Lie algebra

of skew-Hermitian matrices, in which we expand vectors x ∈ R
3 → x1i+x2j+x3k ∈ su(2).

The resulting SO(3) matrix transforming the Cartesian coordinates of x has the form

(1) R(ζ) = (ζ2
0 − ζ2)I + 2 ζ⊗ ζt + 2 ζ0ζ

×,

where I and ζ⊗ζt denote the identity and the tensor (dyadic) product in R
3 respectively,

whereas ζ× is the skew-symmetric matrix, associated with the vector ζ via Hodge duality.
The famous Rodrigues’ rotation formula then follows directly with the substitution

ζ0 = cos
ϕ

2
, ζ = sin

ϕ

2
n, (n,n) = 1.

On the other hand, we may choose to get rid of the unnecessary fourth coordinate by

projecting ζ → c =
ζ

ζ0
= tan

(ϕ

2

)
n and thus obtain the entries of the rotation matrix

(1) expressed as rational functions of the vector-parameter c in the form

(2) R(c) =
(1 − c2) I + 2 c⊗ ct + 2 c×

1 + c2
·

*2010 Mathematics Subject Classification: 20C35, 22E70, 81R05.

Key words: quaternions, rotations, Lie group representations.
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Abstract

Curves which belong to the class of the generalized Sturmian spirals and
obey to the Elastica equation are studied. Analytical formulae for their para-
metrizations and a few illustrative plots are presented.

Key words: plane curves, spirals, Euler elastica
2010 Mathematics Subject Classification: 14H50, 53A04, 74K10

1. Introduction. In this paper we study planar curves that represent si-
multaneously solutions of the Euler elastica problem and generalized Sturmian
spirals. Let us start with a brief description of these physical concepts.

The elastic curve minimizes the integral of the curvature squared subject to
fixed length and first order initial conditions. Let κ(s) be the curvature of a curve
parametrized by arc length. We want to minimize the bending energy

(1)

∫

γ
κ2(s)ds

among all curves γ with the constraints mentioned above. After solving the
variational problem one gets that for planar curves the curvature satisfies the
following Euler-Lagrange equation

(2) κ̈ = −1

2
κ3 +

λ

2
κ,

where λ is a tension constant and the dot(s) denote the derivative(s) with respect
to the natural parameter s. An immediate integration yields

(3) κ̇2 = −1

4
κ4 +

λ

2
κ2 + 2E,
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Abstract. Strangely enough (in view of the long time since their original
discovery) the description of the Delaunay surfaces via the Weierstrassian
functions is absent in the literature. Here we have filled this gap by providing
this missing explicit parameterization along with some comments about the
alternative parameterization in terms of elliptic integrals.

1. Delaunay Surfaces

Almost two centuries ago the French mathematician Delaunay [3] has classified
all surfaces of revolution in R3 with a constant mean curvature. The respective
(and exhaustive) list includes planes, cylinders, spheres, catenoids, unduloids and
nodoids. In an Appendix to that paper Sturm characterized these surfaces variation-

Cylinder

Circle

Sphere

Line Segment

Catenoid

Parabola

Und�loid

Ellipse

Nodoid

Hyperbola

Figure 1: The profile curves of the Delaunay’s surfaces obtained by rolling the
conics listed below them.
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