Citations of Vessela Krasteva

González-Otero DM., 2015, Feedback systems for the quality of chest compressions during cardiopulmonary resuscitation, PhD Thesis, Department of Communications Engineering, Universidad del Pais Vasco, Bilbao, Spain, 167 pages; N100.

49. Gianotto-Oliveira R, Andrade FP, Toledo AP, Gonzalez MM, Timerman S, (2015), Continuous cardiopulmonary resuscitation training compared to single training by laypersons, Signa Vitae, 10(2),

59. Hedberg P, Lundús K, (2013), Effects of different types of feedback on cardiopulmonary resuscitation skills among nursing students—a pilot study, Journal of Nursing Education and Practice, 3 (10), pp.84-90, ISSN: 1925-4040; http://dx.doi.org/10.5430/jnep.v3n10p84; N6.

Christov I., Jekova I., Krasteva V., Dotsinsky I., Stoyanov T., 2009, Rhythm analysis by heartbeat classification in the electrocardiogram (Review article of the research achievements of the members of the Centre of Biomedical Engineering, Bulgarian Academy of Sciences), Bioautomation, 13(2): 84-96, ISSN 1312 – 451X.

Didon J.P., Dotsinsky I., Jekova I., Krasteva V., 2009, Detection of shockable and non-shockable rhythms in presence of CPR artifacts by time-frequency ECG analysis, Computing in Cardiology, 36, 817-820.

99. Emran M Abu Anas, Soo Y Lee, Md K Hasan, (2010), Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. Biomedical Engineering Online, 9, 43, http://www.biomedical-engineering-online.com/content/9/1/43; ISSN: 1475-925X; N12.

109. Emran M Abu Anas, Soo Y Lee, Md K Hasan, (2010), Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. Biomedical Engineering Online, 9, 43, http://www.biomedical-engineering-online.com/content/9/1/43; ISSN: 1475-925X; N6.

[154.] Mihov GS, Dotsinsky IA, (2010), Subtraction procedure for removing the baseline drift from ECG signals, Annual Journal of Electronics, 2(4), pp.118-122; ISSN 1313-1842; N7.

201. Taba kov C, (2009), Ритмичен анализ на сърдечната дейност, приложим в автономни системи за мониториране, Дисертация за присъждане на научна степен Доктор, Технически Университет – София, Специализиран Съвет по Електронна и Компютърна Техника; N105.

294. Shubhajit Roy Chowdhury, (2015), High-resolution detection of sustained ventricular and supraventricular tachycardia through FPGA-based fuzzy processing of ECG signal, Medical and Biological Engineering and Computing, 53(10), pp. 1037 - 1047, ISSN: 0140-0118; N4.

318. Wang, (2013), Research on the Algorithm of Arrhythmia Classification, MSc Thesis, Shandong University, China, 75 pages, DOI: CNKI:CDMD:2.1013.222585; N70, http://lib.gardensmuseum.cn/auto/db/detail.aspx?db=950002&rid=223319&agf=0&cls=0&uni=False&cid=0&gp=2&showg=1&nd=1&md=0&ps=203&msd=5&psd=203&mdsd=5&psd=203&count=10&reds=%C9%FA%CE%EF%D2%BD%D1%A7%B9%A4%B3%CC

375. Yun-Chi Yeh, Tung-Chien Chiang, Hong-Jhig Lin (2011) Principal component analysis method for detection and classification of ECG beat. IEEE 11th Int. Conf. on Bioinformatics and Bioengineering, 24-26 October, Taichung, Taiwan, pp. 318-322; N3.

393. Зо Зо Тун, С.А. Филлст, С.А. Горбатенкo (2010), Программный модуль для кодирования QRS-комплексов на основе морфологических признаков. Биомедицинская радиоэлектроника. Биомедицинские технологии и радиоэлектроника, №2/2010, pp. 24-29, ISSN: 1560-4136; N3.

416. Wu Wen, Chen Hongbo, Wu Zongming, Laixing Han, Lee Ping Xuan (2009) Development of signal-processing toolbox. Project, Electrical and Mechanical Services Department, National University of Taiwan, pp. 21-26; N9. http://www.mt.ntnu.edu.tw/plan02/doc/%E5%B0%88%E9%A1%8Cfinal981228.pdf

459. Chen Jiande, (2006), The detection of the R wave of electrocardiogram based on concept of slope. MS Thesis, Department of Industrial Engineering and Management, Yuan Ze University, 102 pages; N4; http://etds.yzu.edu.tw/etdservice/detail?m=2&list=1%A1B%A1B&etdun=U0009-2407200710212400&etdun2=U0009-240720062025500&query_field1=keyword&query_word1=MIT-BIH%database&start=1&end=2
460. Тодорова Л, (2006), Система за анализ на състоянието на пациенти при отвикване от продължителна механична вентилация, Дисертация за научна степен Доктор, Централна Лаборатория по Биомедицинско Инженерство – БАН, Специализиран Съвет по Електронна и Компютърна Техника.

475. ^Табаков С, (2009), Ритъмен анализ на сърдечната дейност, приложим в автономни системи за мониториране, Дисертация за присъждане на научна степен Доктор, Технически Университет – София, Специализиран Съвет по Електроника и Компютърна Техника; N107.

Krasteva V., M. Matveev, N. Mudrov, P. Prokopova, 2006, Transthoracic impedance study with large self-adhesive electrodes in two conventional positions for defibrillation, Physiological Measurement, 27, 1009-1022.

522. Табаков С, (2009), Ритъмен анализ на сърдечната дейност, приложим в автономни системи за мониториране, Дисертация за присъждане на научна степен Доктор, Технически Университет – София, Специализиран Съвет по Електроника и Компютърна Техника; N106.

577. Emran M Abu Anas, Soo Y Lee, Md K Hasan, (2010), Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. Biomedical Engineering Online, 9, 43, ISSN: 1475-925X, http://www.biomedical-engineering-online.com/content/9/4/43, ISSN: 1475-925X; N5.

584. Scolari D, Fagunde RDR, Russomano T, Zwetsch IC, (2008), Comparative study between DD-HMM and RBF in ventricular tachycardia and ventricular fibrillation recognition, Medical Engineering and Physics, 30 (2), pp. 213-217; N4.

592. Álvaro Tomas Ferrando, (2005), Estudio experimental de los efectos de la hipotermia y la hipotermia locales sobre los parámetros electrofisiológicos del miocardio y la frecuencia de activación de la fibrilación ventricular, PhD Thesis, Universidad Politecnica de Valencia, Departamento de Ingenieria Electronica, 257 pages; Citation: Page26.

596. Mitov I, (2005), Comment on ‘Real time detection of ventricular fibrillation and tachycardia’, Physiological Measurement, 26, L1; N2.

597. Христов И, (2005), Премахване на смущения, разпознаване на вълни и измерване на параметри в електрокардиографски сигнали, Дисертация за присъждане на научна степен “Доктор на техническите науки”, Централна Лаборатория по Биомедицинско Инженерство – БАН, Специализиран Совет по Електроника и Компютърна Техника; N125.

633. Soto ND, (2011), Characterizing nerve fiber activation by varying fiber diameter and depth within a conductive medium: A finite element approach, MSc Thesis in Biomedical Engineering, The Biomedical Engineering Department, Faculty Of California Polytechnic State University, San Luis Obispo, USA, http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1646&context=theses; N14.

660. Христов И, (2005), Премахване на смущения, разпознаване на вълни и измерване на параметри в електрокардиографски синали, Дисертация за присъждане на научна степен “Доктор на техническите науки”, Централна Лаборатория по Биомедицинско Инженерство – БАН, Специализиран Съвет по Електронна и Компютърна Техника; N130.

Soto ND, (2011), Characterizing nerve fiber activation by varying fiber diameter and depth within a conductive medium: A finite element approach, MSc Thesis in Biomedical Engineering, The Biomedical Engineering Department, Faculty Of California Polytechnic State University, San Luis Obispo, USA; http://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1646&context=theses ; N18.

McAdams E, (2011), Biomedical Electrodes for Biopotential Monitoring and Electrostimulation, In: Biomedical CMOS ICs, Integrated Circuits and Systems, Edited by Hoi-Jun Yoo and Chris van Hoof, Publisher: Springer Science+Business Media, LLC 2011, ISSN: 1558-9412; 526 Pages, [Citation in Page 120, N62].

724. M. Sébastien Luquet, (2009), Contribution à la simulation de la Stimulation Magnétique Transcrânienne: vers une approche dirigée par les modèles, THÈSE pour obtenir le grade de Docteur de L’Université Blaise Pascal École Doctorale Sciences Pour l’Ingénieur, LIMOS - Laboratoire d’Informatique, de Modélisation et d’optimisation des
Systèmes, Université Blaise Pascal, Clermont-Ferrand, France, 155 Pages; [Page 142]. http://tel.archives-ouvertes.fr/docs/00/72/44/76/PDF/2009CLF22001.pdf

760. Христов И, (2005), Премахване на смущения, разпознаване на вълни и измерване на параметри в електрокардиографски сигнали, Дисертация за присъждане на научна степен “Доктор на техническите науки”, Централна Лаборатория по Биомедицинско Инженерство – БАН, Специализиран Съвет по Електроника и Компютърна Техника; N129.

766. Нейчев Т, (2002), Бързо успокояване на електрокардиографски усилвател след дефибрилиационен импулс, Дисертация за присъждане на научна степен Доктор, Централна Лаборатория по Биомедицинско Инженерство – БАН, Специализиран Съвет по Електроника и Компютърна Техника; N36.

777. Востриков ВА, Горбунов ББ, Гусев AN, Гусев ДВ, Иткин ПП, Конъшева ЕГ, Мамекин КА, Нестеренко ИВ, Петухова МН, Селищев СВ, Тельшиев ЕВ, Трухманов СБ, (2009), Динамика изменения сопротивления грудной клетки в процессе воздействия биполярного импульса дефibrилляции Гурвич-Венина, Медицинская Техника, 2009, N6(258), 33-36; N1.

Acknowledgements:

Last updated: 15 Sept 2016