Използваната литература:

1. Баевский РМ Анализ вариабельности сердечного ритма: история и философия, теория и практика. Клиническая информатика и телемедицина 2004 №1. – С.: 54-64
2. Баевский РМ, Берсенева АП Оценка адаптационных возможностей организма и риск развития заболеваний. Медицина, 1997-236
4. Миронова Т. и съавт. Перинопераційная ритмография высокого разрешения в кардиохирургии. Мед. Науки 2013,1 doi:10.17513/spno.2012.1
15. Batchvarov VN, Christov II, Bortolan G et al. Post-extrasystolic changes of the
16. Batchvarov V, Behr, E, Hnatkova K, Malik M. Irregular ST-T Wave alternans with QT
prolongation during ajmaline test for suspected Brugada syndrome. Heart Rhythm.
17. Battler A, Froelicher V, Slutsky R, Ashburn W. Relationship of QRS amplitude changes
during exercise to left ventricular function and volumes and the diagnosis of coronary artery
disease. Circ. 1979;60:1004-12.
cardiovascular autonomic control in patients early after cardiac surgery. Eur J Cardiothorac
20. Bosner MS, Kleiger RE Heart rate variability and risk stratification after myocardial
21. Bellwon J, Siebert J, Rodowski J. Heart rate power analysis in patient before and 6 weeks
22. Berman JL, Wynne J, Cohn PF. Multiple-lead QRS changes with exercise testing. Diagnostic
variability in healthy, middle-aged persons compared with patients with chronic coronary
heart disease or recent acute myocardial infarction. Circulation 91(7): 1936–42.
24. Boineau JP; Cox JL Slow ventricular activation: A source of re-entrant premature ventricular
contractions. Circulation 1973 Vol.48(4) 702-713
between patients likely and patients not likely to benefit from implanted cardiac defibrillator
therapy. A solution to the multicenter automatic defibrillator implantation trial (MADIT) II
26. Boldueva SA, Burak TYa, Sukhov VK et al. Efect of coronary angioplasty ot the QT interval
dispersion in the patients with coronary artery disease, Newsletter of arrhythmias 23/2001;
40-42
27. Bonaduce D. Independent and incremental prognostic value of heart rate variability in
patients with chronic heart failure. Am Heart J. 1999;138:273-84


45. Chess GF; Tam RM; Carlaresu FR. Influence of cardiac neural inputs on rhythmic variation of heart period in cat. Am J Physiol, 1975, 228, 775-780.
52. Christov I. Assessment of the performance of the adaptive thresholding algorithm for QRS detection with the use of AHA database. Bioautomation. 2007;6:27-37,


64. Fihn S, Gardin J, Abrams J, Berra K et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease Am Coll Cardiol. 2012;60(24):e44-e164


94. LaRovere MT, Morata A, Pinna GD, Bernardin L Baroreflex sensitivity and heart rate variability in the assessment of cardiac autonomic status. Heart rate variability / M Malik, AJ Camm New York, 1995 189-205


120. Nemes, J; Roth, E; Kapronczay, O; Mozsik, G. Effect of rilmenidine, a centrally acting imidazoline agonist on the renin-angiotensin-aldosterone and catecholamine system and on the parameters indicating oxidative stress in patients with essential hypertension. Hypertension, 2000, 18, Suppl.2, S119-S119.


132. Pokrovskii M Hierarchy of the heartrhythmogenesis levels is a factor in increasing the realiability of cardiac activity Med. Hypotheses 2006 Vol.66 Suppl.I P158-164

133. Pokrovskii M Integration of the heart rhythmogenesis levels: heart rhythm generator in the brain. J. Methodist De Bakey Heart Center 2006 Vol.2, N2 19-23


