

Intuitionistic Fuzzy Estimations for Similarity Queries Using Sketches of Numeric Data

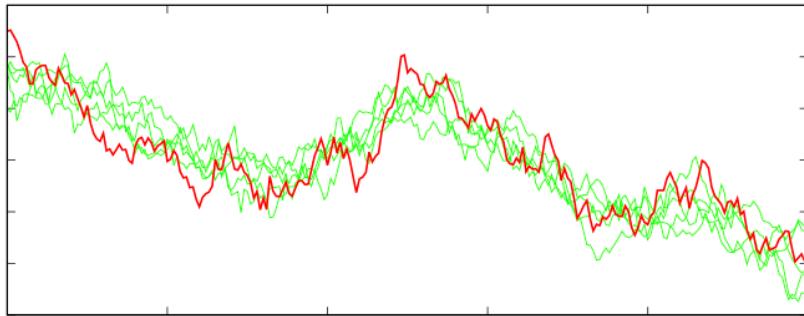
Boyan Kolev

INSTITUTE OF MATHEMATICS AND INFORMATICS
BULGARIAN ACADEMY OF SCIENCES

**Vassia Atanassova
Peter Vassilev**

Twenty Second International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets
Warsaw, Poland, October 18, 2024

- Consider similarity measures over time series
 - Represented as multi-dimensional numerical vectors



- Sketching for dimensionality reduction
 - Project vectors onto a space of much lower dimensionality
 - Approximately preserve Euclidean distances
 - Lower response time \leftrightarrow small accuracy loss

- Intuitionistic fuzzy estimation of similarity measures
 - “is x similar to q ?”
 - Truth mapped to similarity itself
 - Indefiniteness mapped to loss of accuracy
- Validation through SQL-like queries
 - Result set is intuitionistic fuzzy
 - Each row is assigned degrees of membership and non-membership

```
SELECT x  
FROM tsdata  
WHERE x is similar to $q
```

Random Projection

Sketching for Dimensionality Reduction

□ Sketch computation

time series:
n-dimensional row vectors

$\frac{1}{\sqrt{d}}$

$t_1 =$	$t_{1,1} \dots \dots \dots t_{1,n}$
$t_2 =$	$t_{2,1} \dots \dots \dots t_{2,n}$
.....
$t_m =$	$t_{m,1} \dots \dots \dots t_{m,n}$

transformation matrix:
 $n \times d$
 $r_{i,j} = \{-1 \mid 1\}$

\times

$r_1 =$	$r_2 =$...	$r_d =$
$r_{1,1}$	$r_{2,1}$...	$r_{d,1}$
$r_{1,2}$	$r_{2,2}$...	$r_{d,2}$
...
$r_{1,n}$	$r_{2,n}$...	$r_{d,n}$

sketches:
 d -dimensional
 $d \ll n$

$s_1 =$	$s_{1,1} \dots s_{1,d}$
$s_2 =$	$s_{2,1} \dots s_{2,d}$
.....	...
$s_m =$	$s_{m,1} \dots s_{m,d}$

Random Projection

Control Parameters

D. Achlioptas, Database-friendly Random Projection
ACM SIGMOD-PODS, May, Santa Barbara, CA, 2001

Given:

ε – accuracy control parameter

β – probability control parameter

m – number of time series

n – time series dimension

d – reduced dimension

If
$$d \geq \frac{4 + 2\beta}{\frac{\varepsilon^2}{2} - \frac{\varepsilon^3}{3}} \log(m)$$

Then, with probability $Pr = 1 - m^{-\beta}$

Sketches preserve the distance with distortion ε :

$$(1 - \varepsilon) \|t_i - t_j\|^2 \leq \|s_i - s_j\|^2 \leq (1 + \varepsilon) \|t_i - t_j\|^2$$

Similarity Measures

- Q: Is x similar to y ?

- Squared distance

$$D_{x,y} = \|x - y\|^2 = \sum_{i=1}^n (x_i - y_i)^2$$

- Pearson correlation

$$C_{x,y} = \frac{1}{S_x S_y} \sum_{i=1}^n (x_i - M_x)(y_i - M_y)$$

- to convert from distance

$$C_{x,y} = \frac{1}{S_x S_y} \left(\frac{Q_x + Q_y - D_{x,y}}{2} - n M_x M_y \right)$$

- Degree of truth: C scaled to $[0, 1]$

$$T_{x,y} = \frac{1 + C_{x,y}}{2}$$

TS summary:

$$M_x = \frac{1}{n} \sum_{i=1}^n x_i$$

$$S_x = \sqrt{\sum_{i=1}^n (x_i - M_x)^2}$$

$$Q_x = \sum_{i=1}^n x_i^2$$

Intuitionistic Fuzzy Estimates of Similarity Measures

- Q: Is x similar to y ?
 - For efficiency: compute similarity on sketches u and v
 - Accuracy loss \rightarrow degree of indefiniteness

$$D_{x,y}^{min} = \frac{D_{u,v}}{1 + \varepsilon} \leq D_{x,y} \leq \frac{D_{u,v}}{1 - \varepsilon} = D_{x,y}^{max}$$

$$C_{x,y}^{min} = \frac{1}{S_x S_y} \left(\frac{Q_x + Q_y - D_{x,y}^{max}}{2} - n M_x M_y \right) \quad C_{x,y}^{max} = \frac{1}{S_x S_y} \left(\frac{Q_x + Q_y - D_{x,y}^{min}}{2} - n M_x M_y \right)$$

- A: $(\mu_{x,y}, \nu_{x,y})$:

$$\mu_{x,y} = \frac{1 + C_{x,y}^{min}}{2} \quad \nu_{x,y} = \frac{1 - C_{x,y}^{max}}{2}$$

□ Experimental setup

Parameters:

ϵ (accuracy control parameter) = 0.2

β (probability control parameter) = 1

m (number of time series) = 100

n (time series dimension) = 100000

d (reduced dimension) = 1600

$Pr = 0.99$

□ PostgreSQL schema

```
CREATE TABLE data (
    id integer primary key,
    x double precision[],      -- original vector, len=100000
    mean double precision,      --  $M_x$ , i.e. mean of x
    nstd double precision,      --  $S_x$ , i.e. stddev w/o division by n
    sum2 double precision,      --  $Q_x$ , i.e. sum of squares
    sk double precision[]       -- sketch, len=1600
);
```

- Data preparation process
 - Generate time series synthetically from $N(0, 1)$
 - Generate a random matrix into a table:

```
CREATE TABLE rndmx (
    vec boolean[]    -- random vector, len=100000, {t/f} → {±1}
) ;                      -- contains 1600 rows
```

- Compute sketches and store into column: sk
- Compute summaries into the additional columns:
 - $mean(M_x)$, $nstd(S_x)$, $sum2(Q_x)$

- Query on original time series
 - returns degree of membership

```
PREPARE sim_ts AS
select id, (1+c)/2 as mu from (
  select id, ((qsum2+dsum2-d*d)/2 - n*qmean*dmean) / (qnstd*dnstd) as c
  from (select data.id as id,
              array_length(qs.x, 1) as n, array_dist(qs.x, data.x) as d,
              qs.nstd as qnstd, qs.mean as qmean, qs.sum2 as qsum2,
              data.nstd as dnstd, data.mean as dmean, data.sum2 as dsum2
            from data qs, data
            where qs.id = $1
      ) as t
) as t;
```

- Intuitionistic fuzzy query on sketches
 - returns degrees of membership and non-membership

```
PREPARE sim_sketch AS
select id, (1+cmin)/2 as mu, (1-cmax)/2 as nu from (
  select id, ((qsum2+dsum2-d*d/0.8)/2 - n*qmean*dmean)/(qnstd*dnstd) as cmin
    , ((qsum2+dsum2-d*d/1.2)/2 - n*qmean*dmean)/(qnstd*dnstd) as cmax
  from (select data.id as id,
              array_length(qs.x, 1) as n, array_dist(qs.sk, data.sk) as d,
              qs.nstd as qnstd, qs.mean as qmean, qs.sum2 as qsum2,
              data.nstd as dnstd, data.mean as dmean, data.sum2 as dsum2
            from data qs, data
           where qs.id = $1
      ) as t
) as t;
```

- Performance improvement
 - 46 times in our setup (dim. $n=100000 \rightarrow d=1600$)

```
ifsk2=# execute sim_ts(1);
Time: 6523.801 ms (00:06.524)
ifsk2=# execute sim_sketch(1);
Time: 141.545 ms
```

id	mu	nu
1	0.9999999999999998	2.220446049250313e-16
2	0.3693058085968354	0.4204616277890663
3	0.3340468220549211	0.4439653805080609
4	0.38293512934554136	0.4113762596527037
5	0.36981105610112064	0.4201249993652301
6	0.3383522120735153	0.44109817313041266

- Conclusion
 - Accuracy loss mapped to intuitionistic fuzzy uncertainty
 - Can be combined with other intuitionistic fuzzy estimates
 - e.g. predicates in the same IFSQL query *

* Kolev B. *Intuitionistic Fuzzy PostgreSQL*. Advanced Studies in Contemporary Mathematics, Vol. 11, No. 2, 2005. 163-177

Kolev, B. *Intuitionistic Fuzzy Relational Databases And Translation of the Intuitionistic Fuzzy SQL*. Proceeding of the Sixth International FLINS Conference, 1-3 Sep 2004, Blankenberge, Belgium. 189-194

Thank you for the attention!

Boyan Kolev

bkolev@math.bas.bg

INSTITUTE OF MATHEMATICS AND INFORMATICS
BULGARIAN ACADEMY OF SCIENCES

The second and the third authors are grateful for the support under Bulgarian National Science Fund,
Grant No. KP-06-N-72/8 from 14.12.2023.