
BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 1

Genetic Algorithms for a Parameter Estimation
of a Fermentation Process Model: A Comparison

Olympia Roeva

Centre of Biomedical Engineering ”Prof. Ivan Daskalov” - Bulgarian Academy of Sciences
105 Acad. G. Bonchev Str., Sofia 1113, Bulgaria
E-mail: olympia@clbme.bas.bg

Received: May 12, 2005 Accepted: November 30, 2005

 Published: December 16, 2005

Abstract: In this paper the problem of a parameter estimation using genetic algorithms is
examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic
model of E. coli fermentation is presented as a test problem. The parameter estimation
problem is stated as a nonlinear programming problem subject to nonlinear differential-
algebraic constraints. This problem is known to be frequently ill-conditioned and
multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive
satisfied solutions. To overcome their limitations, the use of different genetic algorithms as
stochastic global optimization methods is explored. These algorithms are proved to be very
suitable for the optimization of highly non-linear problems with many variables. Genetic
algorithms can guarantee global optimality and robustness. These facts make them
advantageous in use for parameter identification of fermentation models. A comparison
between simple, modified and multi-population genetic algorithms is presented. The best
result is obtained using the modified genetic algorithm. The considered algorithms
converged very closely to the cost value but the modified algorithm is in times faster than
other two.

Keywords: Genetic algorithms, Parameter estimation, Fermentation processes

Introduction
Mathematical optimization can be used as a computational engine to arrive at the best solution
for a given problem in a systematic and efficient way. In the context of fermentation
processes, coupling optimization with suitable simulation modules opens a whole new area of
possibilities. Fermentation processes are complex, highly nonlinear, dynamic systems and
their modeling and optimization is a complicated and rather time consuming task. The
dynamic behavior of the considered process is described by known structure (a system of
deterministic nonlinear differential equations) according to the mass balance. In order to
optimize a real fermentation process, the model must be regarded as a step to reach more
easily the final aim. The model must describe those aspects of the process that significantly
affect the process performance. The important part of the model development is the choice of
a certain optimization procedure for a parameter estimation, so with a given set of
experimental data, to calibrate the model in order to reproduce the experimental results in the
best possible way. This mathematical problem is a big challenge for traditional local
optimization methods. As an alternative to surmount the parameter estimation difficulties,
global optimization methods are used.

Global optimization methods can be roughly classified as deterministic and stochastic
strategies [13]. Stochastic methods for global optimization ultimately rely on probabilistic
approaches and can locate the vicinity of global solutions with good efficiency. Furthermore,

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 20

stochastic methods are usually quite simple to implement and use, and they do not require
transformation of the original problem, which can be treated as a black box.

There are many different kinds of stochastic methods for global optimization, but the
following groups must be highlighted: adaptive stochastic methods; clustering methods;
evolutionary computation; simulated annealing and other meta-heuristics [13]. The most
competitive stochastic optimization method, especially for large problems is the evolutionary
computation, also known as biologically inspired methods, or population-based stochastic
methods. This is a very popular class of methods based on the ideas of biological evolution,
which is driven by the mechanisms of reproduction, mutation, and the principle of survival of
the fittest. Similarly to biological evolution, evolutionary computing methods generate better
and better solutions by iteratively creating new “generations” by means of those mechanisms
in numerical form. Evolutionary computation methods are usually classified into three groups:
genetic algorithms, evolutionary programming and evolution strategies.

In this study a set of selected genetic algorithms, namely simple genetic algorithm, modified
genetic algorithm and multi-population genetic algorithm, is considered [8, 9, 12, 16, 20]. The
selection has been made based on their results for a set of estimation parameters problems of
fermentation processes [15, 17, 18, 19]. Three different genetic algorithms are examined in
solving the associated parameter estimation problem of E. coli fermentation process. The
main objective is to find the more efficient and reliable algorithm for the considered class of
problems.

Statement of the parameter estimation problem
The parameter estimation problem of fermentation processes models is stated as minimization
of a cost function. The cost function measures the goodness of the model fit with respect to a
given experimental data set, subject to the dynamics of the system (acting as a set of
differential equality constraints) plus possibly other algebraic constraints. Generally, the
formulation is:

Find p to minimize

() ()() () () ()()
0

ft
T

exp mod exp modJ y t y p,t W t y t y p,t dt min= − − →∫ (1)

subject to

0dXf ,x, y, p,v,t
dt

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (2)

()0 0x t x= (3)

() 0h x, y, p,v = (4)

() 0g x, y, p,v ≤ (5)
L Up p p≤ ≤ (6)

where J is the cost function to be minimized, p is the vector of decision variables of the
optimization problem (the set of parameters to be estimated), yexp is the experimental measure
of a subset of the output state variables, ymod(p, t) is the model prediction for those outputs,
W(t) is a weighting (or scaling) matrix, x is the differential state variables, v is a vector of
other (usually time-invariant) parameters that are not estimated, f is the set of differential and
algebraic equality constraints described the system dynamics (i.e. the nonlinear process
model), and h and g are the possible equality and inequality path and point constraints that

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 21

express additional requirements for the system performance. Finally, p is subject to upper and
lower bounds acting as inequality constraints.

The general formulation above is that of a nonlinear programming problem with differential-
algebraic constraints. Due to the nonlinear and constrained nature of the system dynamics,
parameter estimation problems very often are multimodal (nonconvex). Therefore, if these
problems are solved via standard local methods, such as the standard Levenberg-Marquardt
method or Nielder-Mead Simplex search method, it is very likely that the solution found will
be of local nature.

Genetic Algorithms
Today the most common direct methods used for global optimization are evolutionary
algorithms such as genetic algorithms (GA). Genetic algorithms are directed random search
techniques, based on the mechanics of natural selection and natural genetics, which can find
the global optimal solution in complex multidimensional search spaces. Recently, GA have
been used extensively in solving many optimization-searching problems including
mathematical function optimization, very large scale integration chip layout, molecular
docking, parameter fitting, scheduling, manufacturing, clustering, machine learning, etc. [2, 3,
4, 6, 7, 10, 14, 15, 17, 18]. Compared with conventional optimization methods, GA
simultaneously evaluates many points in the parameter space. It is more likely to converge
towards the global solution. A genetic algorithm does not assume that the space is
differentiable or continuous and can also iterate many times on each data received. A
GA requires only information concerning the quality of the solution produced by each
parameter set (objective function value information). This characteristic differs from
optimization methods that require derivative information or, worse yet, complete knowledge
of the problem structure and parameters. Since GA do not demand such problem-specific
information, they are more flexible than most search methods. Also GA do not require
linearity in the parameters which is needed in iterative searching optimization techniques.
Genetic algorithms can solve hard problems, are noise tolerant, easy to interface to existing
simulation models, and easy to hybridize. Therefore, theses properties make genetic
algorithms suitable and more workable in use for a parameter estimation of fermentation
models.

A brief survey (presentation) of the examined here simple, modified and multi-population
genetic algorithms, is presented below.

Simple Genetic Algorithm
Simple genetic algorithms (SGA) are guided largely by the mechanisms of three operators:
reproduction, crossover and mutation [8, 9, 12]. To derive a solution to a problem, the SGA
initializes a single population of n randomly encoded chromosomes (individuals). The
objective functions (cost values) of generated population are then evaluated. In the next step
individuals represented by their associated costs are ranked and the corresponding individual
fitness is received. According to their fitness the best chromosomes from a population are
selected (better fitness, bigger chance to be selected). Thus solutions from one population are
taken and used to form a new population. This is motivated by a hope, that the new
population will be better than the old one. A certain function performs the selection
concordant with the generation gap. Selected individuals are then recombined. To form a new
offspring (children) the parents have to be cross overed with a crossover probability. If no
crossover is performed, the offspring is the exact copy of parents. A mutation is then applied

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 22

with determinate probability. Crossover and mutation operators are realized to yield improved
offspring for successive generations. For the new individuals the objective function and
fitness function values are calculated. The new offspring is inserted in the population. The
new generated population is used for a further run of the algorithm. Natural evolution of the
population continues until a predetermined number of generations is reached.

The Matlab code for the generational loop of SGA is listed in Fig. 1.

Fig. 1 A simple genetic algorithm

Modified Genetic Algorithm
As it was mentioned, the reproduction in SGA is considered for determining which
chromosomes will be chosen as a basis of the next generation. Generating population from
only two parents may cause loss of the best chromosome from the last population. Reached
good solution may be destroyed by either the crossover or the mutation, or both operations.
Thereby, the best solution in SGA popped up from the new population may be inferior to the
old generations. The aim of the proposed modified genetic algorithm (MGA) [16, 20] is to
prevent this demerit. MGA possesses a structure similar to SGA. However, MGA
distinguishes itself from SGA in that the reproduction is processed after both the crossover
and mutation have been performed. Thus the deterioration problem never happens since the
best solution from the current generation will be superior to or at least the same with the past.

In the beginning the modified genetic algorithm creates an initial population of n
chromosomes. In the next step the algorithm evaluates the objective values (cost values) of
the individuals in the current population. After that individuals are reproduced. During the
reproduction, recombination (or crossover) first occurs. Genes from parents combine to form
a whole new chromosome. The newly created offspring then mutates. Then MGA ranked

% Initialise population
Chrom = crtbp(NIND, NVAR*PRECI);
% Counter
gen = 0;
% Evaluate initial population
ObjV = objfun1(bs2rv(Chrom, FieldD));
% Generational loop
while gen < MAXGEN,

% Assign fitness values to entire population
FitnV = ranking(ObjV);
% Select individuals for breeding
SelCh = select(’sus’, Chrom, FitnV, GGAP);
% Recombine individuals (crossover)
SelCh = recombin(’xovsp’, SelCh, 0.7);
% Apply mutation
SelCh = mut(SelCh);
% Evaluate offspring, call objective function
ObjVSel = objfun1(bs2rv(SelCh, FieldD));
% Reinsert offspring into population
[Chrom ObjV] = reins(Chrom, SelCh ,1 ,1 ,ObjV , ObjVSel);
% Increment counter
gen = gen+1;

end

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 23

individuals represented by their associated costs, to be “minimized”, and returns the
corresponding individual fitnesses. Next the most fitted individuals from offspring are
selected. Then the objective values of the individuals in the offspring are evaluated and re-
insertion of offspring in population replacing parents is done. MGA is terminated when some
criteria are satisfied, e.g. a certain number of generations, a mean deviation in the population,
or when a particular point in the search space is encountered.

The Matlab code for the generational loop of MGA is listed in Fig. 2.

Fig. 2 Generational loop of a modified genetic algorithm

Multi-population Genetic Algorithm
To receive better results a single population genetic algorithm can be improved by introducing
many populations, called subpopulations [4, 5, 8]. These algorithms are known as multi-
population genetic algorithm (MpGA).These subpopulations evolve independently from each
other for a certain number of generations (isolation time), like the single population genetic
algorithm. After the isolation time a number of individuals is distributed between the
subpopulations (migration). The migration rate, the selection method of the individuals for
migration and the scheme of migration determines how much genetic diversity can occur in
the subpopulations and the exchange of information between subpopulations. The selection of
the individuals for migration can be uniform at random (pick individuals for migration in a
random manner) and fitness-based (select the best individuals for migration). There are many
possibilities for the structure of the migration of individuals between subpopulations. The
most general migration strategy is that of unrestricted migration (complete net topology).
Here, individuals may migrate from any subpopulation to another. For each subpopulation, a
pool of potential immigrants is constructed from the other subpopulations. The individual
migrants are then uniformly at random determined from this pool.

The multi-population genetic algorithm models the evolution of a species in a way more
similar to nature than the single population genetic algorithm. The MATLAB code for the
generational loop of MpGA is listed in Fig. 3.

% Generational loop
while gen < MAXGEN,

% Recombine individuals (crossover)
NewCh = recombin(’xovsp’, Chrom, 0.7);
% Apply mutation
NewCh = mut(NewCh);
% Assign fitness values to entire population
FitnV = ranking(NewCh);
% Select individuals for breeding
SelCh = select(’sus’, NewCh, FitnV, GGAP);
% Evaluate offspring, call objective function
ObjVSel = objfun1(bs2rv(SelCh, FieldD));
% Reinsert offspring into population
[Chrom ObjV] = reins(Chrom, SelCh ,1 ,1 ,ObjV , ObjVSel);
% Increment counter
gen = gen+1;

end

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 24

Fig. 3 Generational loop of a multi-population genetic algorithm

Parameter estimation of Escherichia coli Fed-batch fermentation model

The mathematical formulation of the nonlinear dynamic model of E. coli fermentation is
commonly described according to the mass balance as follows:

max
S

dX S F= µ X - X
dt k + S V

 (7)

()max in
SX S

dS 1 S F= - µ X + S - S
dt Y k + S V

 (8)

max
AX S

dA 1 S Fµ X A
dt Y k + S V

= − (9)

2

*2
2 2 2()max L

O X S

dO 1 S Fµ X k a O O O
dt Y k + S V

= − + − − (10)

dV F
dt

= , (11)

where: X is the concentration of biomass, [g/l]; S – concentration of substrate (glucose), [g/l];
A – concentration of acetate, [g/l]; O2 – concentration of dissolved oxygen, [%]; O*2 –
saturation concentration of dissolved oxygen, [%]; F – feeding rate, [l/h]; V – bioreactor
volume, [l]; Sin – initial concentration of substrate in the feeding solution, [g/l]; µmax –
maximum values of the specific growth rates, [h-1]; kS – saturation constant, [g/l]; YSX, YAX,

2O XY – yield coefficients, [gg-1]; Lk a – volumetric oxygen transfer coefficient, [h-1].

% Generational loop
while gen < MAXGEN,

% Fitness assignment to whole population
FitnV = ranking(ObjV, 2, SUBPOP);
% Select individuals from population
SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP);
% Recombine selected individuals
SelCh=recombin(XOV_F, SelCh, XOVR, SUBPOP);
% Mutate offspring
SelCh = mutate(MUT_F, SelCh, FieldD, [MUTR], SUBPOP);
% Calculate objective function for offsprings
ObjVOff = feval(OBJ_F, SelCh);
% Insert best offspring replacing worst parents
[Chrom, ObjV] = reins(Chrom, SelCh, SUBPOP, [1 INSR], ObjV, ObjVOff);
% Increment counter
gen=gen+1;
% Migrate individuals between subpopulations
if (rem(gen, MIGGEN) == 0)

[Chrom, ObjV] = migrate(Chrom, SUBPOP, [MIGR, 1, 1], ObjV);
end

end

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 25

The optimization problem consists of the estimation of all 6 kinetic and yield parameters of
the nonlinear dynamic model, formed by 5 ordinary differential equations (7)–(11), described
the alteration of the process variables in time.

The experiment is carried out in the Institute of Technical Chemistry, University of Hannover.
Experimental data set of E. coli MC4110 fermentation is used [1]. On the basis on feeding
rate data and off-line measurements of biomass, substrate (glucose), acetate and dissolved
oxygen, a parameter estimation of the considered mathematical model is carried out.

The application of the simple genetic algorithm, as well as modified and multi-population
genetic algorithms for considered problem is fulfilled in Matlab 5.3 environment. Genetic
Algorithm Toolbox [4, 5, 11] is used with some changes and improvements of the algorithms.

The global optimization problem is stated as the minimization of a weighted distance measure
J between experimental and model predicted values of the state variables, represented by the
vector y:

() (){ }
2

1 1

n m

ij exp mod j
i j

J w y i y i min
= =

⎡ ⎤= − →⎣ ⎦∑∑ (12)

where n is the number of measurements for each variable, m is the number of variables, yexp
represents the known experimental data, and ymod is the vector of states that corresponds to the
predicted theoretical evolution using the model with a given set of 6 model parameters.
Furthermore, wij corresponds to the different weights taken to normalize the contributions of
each term:

()

2

1
i j

exp j

w
max y i

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

 (13)

Some adjustments of the genetic algorithm parameters, according to the regarded problem, are
done to improve the algorithms. Inappropriate choice of operators and parameters in the
evolutionary process makes the GA susceptible to premature convergence. Primary choice of
the genetic operators and parameters depends on the problem, as well as on the chosen
encoding. There is no common theory about tuning the genetic algorithm parameters.

Together with the conventional GA parameters, such as generation gap (GGAP), crossover
(XOVR) and mutation (MUTR) rate, precision of binary representation (PRECI), number of
individuals (NIND) and generations (MAXGEN), set of other parameters associated with
MpGA are defined. Here, insertion rate (INSR) specifies how many of the individuals
produced at each generation are reinserted into the subpopulation. SUBPOP specifies the
number of subpopulations. Each subpopulation contains a certain number of individuals.
Migration rate (MIGR) defines the number of exchanged individuals.

Fitness-based reinsertion with insertion rate equal to 0.9 is used. This means that for each
subpopulation the least-fit 10% of the offspring are not reinserted. Individuals in MpGA
migrate between populations at some interval. Here, at every MIGGEN = 20 generations,
migration takes place between subpopulations. The most fit 20% (MIGR = 0.2) of each
subpopulation (SUBPOP = 5) is selected for a migration. Nearest neighbour subpopulations
then exchange these number of individuals amongst their subpopulations, uniformly
reinserting the immigrant individuals. The values of genetic algorithm parameters are

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 26

summarized in Table 1. The chosen types of encoding, selection (SEL_F), crossover
(XOV_F), mutation (MUT_F) and fitness (FIT_F) functions are listed in Table 2.

Table 1. Genetic parameters Table 2. Genetic operators

Parameter Value Operator Type
GGAP 0.97 encoding binary
XOVR 0.70 reinsertion fitness-based
MUTR 0.05 selection roulette wheel selection
PRECI 20 crossover crossover double point
NIND 100 mutation bit inversion

MAXGEN 100 fitness linear ranking
MIGR 0.20
INSR 0.20

SUBPOP 5
MIGGEN 20

The proposed genetic algorithm operators and parameters are accepted on the basis of lot of
experiments to improve the optimization capability and the decision speed.

All the computations are performed using a PC/Pentium IV (3.00 GHz) platform running
Windows XP. The obtained results are presented in Table 3. For all considered genetic
algorithms the cost values are approximately equal, as well as the model parameter values. In
view of this fact main difference between regarded genetic algorithms is the total computation
time. The best value of cost value (J = 7.305) is obtained using MpGA algorithm after a total
computation time of 943.172 s. Almost equally good result (J = 7.327) is reached using the
MGA algorithm in a less than two minute (79.843 s). From a practical point of view this is
better result. As it can be seen in Table 3, MGA is the fastest algorithm.

Table 3. Results from the model parameter estimation
Parameter SGA MGA MpGA

J 7.369 7.327 7.305
CPU time (s) 282.063 79.843 943.172

maxµ , [h-1] 0.477 0.479 0.473

Sk , [g/l] 0.015 0.018 0.013

SXY , [gg-1] 0.505 0.499 0.504

AXY , [gg-1] 76.747 76.419 71.728

2O XY , [gg-1] 49.053 44.616 47.384

Lk a , [h-1] 169.267 178.345 158.252

Fig. 4 presents simulation results for the considered best decision vector, found with MGA.
As can be seen, the correlation between the experimental and predicted model concentrations
of the process variables is very good.

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 27

6 7 8 9 10 11 12
0

2

4

6

8

10

Time, [h]
B

io
m

as
s,

 [g
/l]

exp. data
model

6 7 8 9 10 11 12
-0.5

0

0.5

1

Time, [h]

S
ub

st
ra

te
, [

g/
l]

exp. data
model

6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

Time, [h]

A
ce

ta
te

, [
g/

l]

exp. data
model

6 7 8 9 10 11 12
20

20.5

21

21.5

Time, [h]

D
is

so
lv

ed
 o

xy
ge

n,
 [%

]

exp. data
model

Fig. 4 Experimental and model data for biomass, glucose, acetate and dissolved oxygen

Conclusion
In this work the parameter estimation problem of E. coli fermentation process using genetic
algorithms is performed. A comparison of three genetic algorithms, namely simple, modified
and multi-population genetic algorithms is examined. The algorithm functions and parameter
adjustments that significantly improve the optimization capability and the decision speed are
proposed. The results show that the genetic algorithms can solve the regarded problem very
well. As a result three very similar solutions of the model parameter values are obtained.
Deviations of the cost values are inessential – around 0.4%. The juxtaposition of the overall
computation times shows that MGA reached the solution in times faster than the other genetic
algorithms, i. e. MGA solved the problem 11.8 times faster than MpGA and 3.5 times than
SGA. So, although the minimum value of the cost function is achieved using the MpGA (J =
7.305), as the most appropriate algorithm for parameter estimation of fermentation processes
the MGA (J = 7.327) is recommended.

Acknowledgements
This work is partially supported from National Science Fund Project № MI – 1505/2005

BIO

Autom
ati

on

Bioautomation, 2005, 3, 19 - 28 ISSN 1312 – 451X

 28

References
1. Arndt M., B. Hitzmann (2001). Feed forward/feedback control of glucose concentration

during cultivation of Escherichia coli, Proceedings of the 8th IFAC Int. Conf. on Comp.
Appl. in Biotechn., Quebec City, Canada, 425-429.

2. Carrillo-Ureta G. E., P. D. Roberts, V. M. Becerra (2001). Genetic Algorithms for
Optimal Control of Beer Fermentation, Proceedings of the 2001 IEEE International
Symposium on Intelligent Control, Mexico City, Mexico, 391-396.

3. Charbonneau P. (2002). An Introduction to Genetic Algorithms for Numerical
Optimization, NCAR Technical Note, Boulder, Colorado.

4. Chipperfield A. J., P. J. Fleming (1995) The Matlab Genetic Algorithm Toolbox.
5. Chipperfield A. J., P. J. Fleming, H. Pohlheim, C. M. Fonseca (1994). Genetic Algorithm

Toolbox for Use with MATLAB. User’s Guide. Version 1.2. Dept. of Automatic Control
and System Engineering, University of Sheffield, U. K.

6. Cordon O., F. Herrera (2001). Hybridizing Genetic Algorithms with Sharing Scheme and
Evolution Strategies for Designing Approximate Fuzzy Rule-based Systems, Fuzzy Sets
and Systems, 118, 235-255.

7. Fleming P. J., R. C. Purshouse (2001). Genetic Algorithm in Control Systems
Engineering, Department of Automatic Control and Systems Engineering, University of
Sheffield, Research Report No. 789.

8. Goldberg D. (1989). Genetic algorithms in search, optimization and machine learning,
Addison-Weslcy Publishing Company, Massachusetts.

9. Holland J. (1975). Adaptation in natural and artificial systems, MIT Press.
10. Lu J., S.-C. Fang (2001). Solving Nonlinear Optimization problems with fuzzy relation

Equation Constraints, Fuzzy Sets and Systems, 119, 1-20.
11. MatWorks Inc. (1999). Genetic Algorithms Toolbox, User’s Guide.
12. Michalewicz Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs,

Second, Exended Edition, Springer-Verlag, Berlin, Heidelberg.
13. Moles C., G., P. Mendes, J. R. Banda (2003). Parameter Estimation in Biochemical

Pathways: A Comparison of Global Optimization Methods, Genome Research, 13, 2467-
2474.

14. Na J.-G., Y. K. Chang, B. H. Chung, H. C. Lim (2002). Adaptive Optimization of Fed-
batch Culture of Yeast by Using Genetic Algorithms, Bioprocess and Biosystems
Engineering, 24, 299-308.

15. Roeva O. (2003). Application of Genetic Algorithms in Fermentation Process
Identification, Journal of the Bulgarian Academy of Sciences, CXVI, 3, 39-43.

16. Roeva O., (2005). A Modified Genetic Algorithm for Parameter Identification of
Fermentation Processes, Biotechnology and Biotechnological Equipment, (in press).

17. Roeva O., St. Tzonkov (2003). Parameter Identification of Fermentation Processes Using
Multi-population Genetic Algorithms, Technical Ideas, XL, 3-4, 18-26.

18. Roeva O., T. Pencheva, B. Hitzmann, St. Tzonkov (2004). A Genetic Algorithms Based
Approach for Identification of Escherichia Coli Fed-batch Fermentation, Bioautomation,
1, 30-41.

19. Roeva O., T. Pencheva, Y. Georgieva, B. Hitzmann, S. Tzonkov (2004). Implementation
of Functional State Approach for Modelling of Escherichia coli Fed-batch Cultivation,
Biotechnology and Biotechnological Equipment, 18 (3), 207-214.

20. Roeva O. (2005). A Modification of Simple Genetic Algorithm, International Symposium
"Bioprocess Systems'2005-BioPS’05”, Sofia, Bulgaria, October 25-26, I.1-I.14.

