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Abstract: In this paper the problem of a parameter estimation using genetic algorithms is 
examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic 
model of E. coli fermentation is presented as a test problem. The parameter estimation 
problem is stated as a nonlinear programming problem subject to nonlinear differential-
algebraic constraints. This problem is known to be frequently ill-conditioned and 
multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive 
satisfied solutions. To overcome their limitations, the use of different genetic algorithms as 
stochastic global optimization methods is explored. These algorithms are proved to be very 
suitable for the optimization of highly non-linear problems with many variables. Genetic 
algorithms can guarantee global optimality and robustness. These facts make them 
advantageous in use for parameter identification of fermentation models. A comparison 
between simple, modified and multi-population genetic algorithms is presented. The best 
result is obtained using the modified genetic algorithm. The considered algorithms 
converged very closely to the cost value but the modified algorithm is in times faster than 
other two. 
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Introduction 
Mathematical optimization can be used as a computational engine to arrive at the best solution 
for a given problem in a systematic and efficient way. In the context of fermentation 
processes, coupling optimization with suitable simulation modules opens a whole new area of 
possibilities. Fermentation processes are complex, highly nonlinear, dynamic systems and 
their modeling and optimization is a complicated and rather time consuming task. The 
dynamic behavior of the considered process is described by known structure (a system of 
deterministic nonlinear differential equations) according to the mass balance. In order to 
optimize a real fermentation process, the model must be regarded as a step to reach more 
easily the final aim. The model must describe those aspects of the process that significantly 
affect the process performance. The important part of the model development is the choice of 
a certain optimization procedure for a parameter estimation, so with a given set of 
experimental data, to calibrate the model in order to reproduce the experimental results in the 
best possible way. This mathematical problem is a big challenge for traditional local 
optimization methods. As an alternative to surmount the parameter estimation difficulties, 
global optimization methods are used. 
 
Global optimization methods can be roughly classified as deterministic and stochastic 
strategies [13]. Stochastic methods for global optimization ultimately rely on probabilistic 
approaches and can locate the vicinity of global solutions with good efficiency. Furthermore, 
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stochastic methods are usually quite simple to implement and use, and they do not require 
transformation of the original problem, which can be treated as a black box.  
 
There are many different kinds of stochastic methods for global optimization, but the 
following groups must be highlighted: adaptive stochastic methods; clustering methods; 
evolutionary computation; simulated annealing and other meta-heuristics [13]. The most 
competitive stochastic optimization method, especially for large problems is the evolutionary 
computation, also known as biologically inspired methods, or population-based stochastic 
methods. This is a very popular class of methods based on the ideas of biological evolution, 
which is driven by the mechanisms of reproduction, mutation, and the principle of survival of 
the fittest. Similarly to biological evolution, evolutionary computing methods generate better 
and better solutions by iteratively creating new “generations” by means of those mechanisms 
in numerical form. Evolutionary computation methods are usually classified into three groups: 
genetic algorithms, evolutionary programming and evolution strategies. 
 
In this study a set of selected genetic algorithms, namely simple genetic algorithm, modified 
genetic algorithm and multi-population genetic algorithm, is considered [8, 9, 12, 16, 20]. The 
selection has been made based on their results for a set of estimation parameters problems of 
fermentation processes [15, 17, 18, 19]. Three different genetic algorithms are examined in 
solving the associated parameter estimation problem of E. coli fermentation process. The 
main objective is to find the more efficient and reliable algorithm for the considered class of 
problems. 
 
Statement of the parameter estimation problem 
The parameter estimation problem of fermentation processes models is stated as minimization 
of a cost function. The cost function measures the goodness of the model fit with respect to a 
given experimental data set, subject to the dynamics of the system (acting as a set of 
differential equality constraints) plus possibly other algebraic constraints. Generally, the 
formulation is:  

 
Find p to minimize 

( ) ( )( ) ( ) ( ) ( )( )
0

ft
T

exp mod exp modJ y t y p,t W t y t y p,t dt min= − − →∫  (1) 
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⎛ ⎞ =⎜ ⎟
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( ) 0g x, y, p,v ≤  (5) 
L Up p p≤ ≤  (6) 

where J is the cost function to be minimized, p is the vector of decision variables of the 
optimization problem (the set of parameters to be estimated), yexp is the experimental measure 
of a subset of the output state variables, ymod(p, t) is the model prediction for those outputs, 
W(t) is a weighting (or scaling) matrix, x is the differential state variables, v is a vector of 
other (usually time-invariant) parameters that are not estimated, f is the set of differential and 
algebraic equality constraints described the system dynamics (i.e. the nonlinear process 
model), and h and g are the possible equality and inequality path and point constraints that 
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express additional requirements for the system performance. Finally, p is subject to upper and 
lower bounds acting as inequality constraints. 
 
The general formulation above is that of a nonlinear programming problem with differential-
algebraic constraints. Due to the nonlinear and constrained nature of the system dynamics, 
parameter estimation problems very often are multimodal (nonconvex). Therefore, if these 
problems are solved via standard local methods, such as the standard Levenberg-Marquardt 
method or Nielder-Mead Simplex search method, it is very likely that the solution found will 
be of local nature. 
 
Genetic Algorithms  
Today the most common direct methods used for global optimization are evolutionary 
algorithms such as genetic algorithms (GA). Genetic algorithms are directed random search 
techniques, based on the mechanics of natural selection and natural genetics, which can find 
the global optimal solution in complex multidimensional search spaces. Recently, GA have 
been used extensively in solving many optimization-searching problems including 
mathematical function optimization, very large scale integration chip layout, molecular 
docking, parameter fitting, scheduling, manufacturing, clustering, machine learning, etc. [2, 3, 
4, 6, 7, 10, 14, 15, 17, 18]. Compared with conventional optimization methods, GA 
simultaneously evaluates many points in the parameter space. It is more likely to converge 
towards the global solution. A genetic algorithm does not assume that the space is 
differentiable or continuous and can also iterate many times on each data received. A 
GA requires only information concerning the quality of the solution produced by each 
parameter set (objective function value information). This characteristic differs from 
optimization methods that require derivative information or, worse yet, complete knowledge 
of the problem structure and parameters. Since GA do not demand such problem-specific 
information, they are more flexible than most search methods. Also GA do not require 
linearity in the parameters which is needed in iterative searching optimization techniques. 
Genetic algorithms can solve hard problems, are noise tolerant, easy to interface to existing 
simulation models, and easy to hybridize. Therefore, theses properties make genetic 
algorithms suitable and more workable in use for a parameter estimation of fermentation 
models. 
 
A brief survey (presentation) of the examined here simple, modified and multi-population 
genetic algorithms, is presented below. 
 
Simple Genetic Algorithm 
Simple genetic algorithms (SGA) are guided largely by the mechanisms of three operators: 
reproduction, crossover and mutation [8, 9, 12]. To derive a solution to a problem, the SGA 
initializes a single population of n randomly encoded chromosomes (individuals). The 
objective functions (cost values) of generated population are then evaluated. In the next step 
individuals represented by their associated costs are ranked and the corresponding individual 
fitness is received. According to their fitness the best chromosomes from a population are 
selected (better fitness, bigger chance to be selected). Thus solutions from one population are 
taken and used to form a new population. This is motivated by a hope, that the new 
population will be better than the old one. A certain function performs the selection 
concordant with the generation gap. Selected individuals are then recombined. To form a new 
offspring (children) the parents have to be cross overed with a crossover probability. If no 
crossover is performed, the offspring is the exact copy of parents. A mutation is then applied 
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with determinate probability. Crossover and mutation operators are realized to yield improved 
offspring for successive generations. For the new individuals the objective function and 
fitness function values are calculated. The new offspring is inserted in the population. The 
new generated population is used for a further run of the algorithm. Natural evolution of the 
population continues until a predetermined number of generations is reached.  
 
The Matlab code for the generational loop of SGA is listed in Fig. 1. 
 

 
 

Fig. 1 A simple genetic algorithm 
 
Modified Genetic Algorithm 
As it was mentioned, the reproduction in SGA is considered for determining which 
chromosomes will be chosen as a basis of the next generation. Generating population from 
only two parents may cause loss of the best chromosome from the last population. Reached 
good solution may be destroyed by either the crossover or the mutation, or both operations. 
Thereby, the best solution in SGA popped up from the new population may be inferior to the 
old generations. The aim of the proposed modified genetic algorithm (MGA) [16, 20] is to 
prevent this demerit. MGA possesses a structure similar to SGA. However, MGA 
distinguishes itself from SGA in that the reproduction is processed after both the crossover 
and mutation have been performed. Thus the deterioration problem never happens since the 
best solution from the current generation will be superior to or at least the same with the past. 
 
In the beginning the modified genetic algorithm creates an initial population of n 
chromosomes. In the next step the algorithm evaluates the objective values (cost values) of 
the individuals in the current population. After that individuals are reproduced. During the 
reproduction, recombination (or crossover) first occurs. Genes from parents combine to form 
a whole new chromosome. The newly created offspring then mutates. Then MGA ranked 

% Initialise population 
Chrom = crtbp(NIND, NVAR*PRECI); 
% Counter 
gen = 0;  
% Evaluate initial population 
ObjV = objfun1(bs2rv(Chrom, FieldD)); 
% Generational loop 
while gen < MAXGEN, 

% Assign fitness values to entire population 
FitnV = ranking(ObjV); 
% Select individuals for breeding 
SelCh = select(’sus’, Chrom, FitnV, GGAP); 
% Recombine individuals (crossover) 
SelCh = recombin(’xovsp’, SelCh, 0.7); 
% Apply mutation 
SelCh = mut(SelCh); 
% Evaluate offspring, call objective function 
ObjVSel = objfun1(bs2rv(SelCh, FieldD)); 
% Reinsert offspring into population 
[Chrom ObjV] = reins(Chrom, SelCh ,1 ,1 ,ObjV , ObjVSel); 
% Increment counter 
gen = gen+1; 

end
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individuals represented by their associated costs, to be “minimized”, and returns the 
corresponding individual fitnesses. Next the most fitted individuals from offspring are 
selected. Then the objective values of the individuals in the offspring are evaluated and re-
insertion of offspring in population replacing parents is done. MGA is terminated when some 
criteria are satisfied, e.g. a certain number of generations, a mean deviation in the population, 
or when a particular point in the search space is encountered.  
 
The Matlab code for the generational loop of MGA is listed in Fig. 2. 
 

 
 

Fig. 2 Generational loop of a modified genetic algorithm 
 
Multi-population Genetic Algorithm 
To receive better results a single population genetic algorithm can be improved by introducing 
many populations, called subpopulations [4, 5, 8]. These algorithms are known as multi-
population genetic algorithm (MpGA).These subpopulations evolve independently from each 
other for a certain number of generations (isolation time), like the single population genetic 
algorithm. After the isolation time a number of individuals is distributed between the 
subpopulations (migration). The migration rate, the selection method of the individuals for 
migration and the scheme of migration determines how much genetic diversity can occur in 
the subpopulations and the exchange of information between subpopulations. The selection of 
the individuals for migration can be uniform at random (pick individuals for migration in a 
random manner) and fitness-based (select the best individuals for migration). There are many 
possibilities for the structure of the migration of individuals between subpopulations. The 
most general migration strategy is that of unrestricted migration (complete net topology). 
Here, individuals may migrate from any subpopulation to another. For each subpopulation, a 
pool of potential immigrants is constructed from the other subpopulations. The individual 
migrants are then uniformly at random determined from this pool. 
 
The multi-population genetic algorithm models the evolution of a species in a way more 
similar to nature than the single population genetic algorithm. The MATLAB code for the 
generational loop of MpGA is listed in Fig. 3. 
 

% Generational loop 
while gen < MAXGEN, 

% Recombine individuals (crossover) 
NewCh = recombin(’xovsp’, Chrom, 0.7); 
% Apply mutation 
NewCh = mut(NewCh); 
% Assign fitness values to entire population 
FitnV = ranking(NewCh); 
% Select individuals for breeding 
SelCh = select(’sus’, NewCh, FitnV, GGAP); 
% Evaluate offspring, call objective function 
ObjVSel = objfun1(bs2rv(SelCh, FieldD)); 
% Reinsert offspring into population 
[Chrom ObjV] = reins(Chrom, SelCh ,1 ,1 ,ObjV , ObjVSel); 
% Increment counter 
gen = gen+1; 

end 
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Fig. 3 Generational loop of a multi-population genetic algorithm 
 
Parameter estimation of Escherichia coli Fed-batch fermentation model 
 
The mathematical formulation of the nonlinear dynamic model of E. coli fermentation is 
commonly described according to the mass balance as follows: 

max
S

dX S F= µ X - X
dt k + S V

 (7) 

( )max in
SX S

dS 1 S F= - µ X + S - S
dt Y k + S V

 (8) 

max
AX S

dA 1 S Fµ X A
dt Y k + S V

= −  (9) 

2

*2
2 2 2( )max L

O X S

dO 1 S Fµ X k a O O O
dt Y k + S V

= − + − −  (10) 

dV F
dt

=    , (11) 

where: X is the concentration of biomass, [g/l]; S – concentration of substrate (glucose), [g/l]; 
A – concentration of acetate, [g/l]; O2 – concentration of dissolved oxygen, [%]; O*2 – 
saturation concentration of dissolved oxygen, [%]; F – feeding rate, [l/h]; V – bioreactor 
volume, [l]; Sin – initial concentration of substrate in the feeding solution, [g/l]; µmax – 
maximum values of the specific growth rates, [h-1]; kS – saturation constant, [g/l]; YSX, YAX, 

2O XY  – yield coefficients, [gg-1]; Lk a  – volumetric oxygen transfer coefficient, [h-1]. 
 

% Generational loop 
while gen < MAXGEN, 

% Fitness assignment to whole population 
FitnV = ranking(ObjV, 2, SUBPOP); 
% Select individuals from population 
SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP); 
% Recombine selected individuals 
SelCh=recombin(XOV_F, SelCh, XOVR, SUBPOP); 
% Mutate offspring 
SelCh = mutate(MUT_F, SelCh, FieldD, [MUTR], SUBPOP); 
% Calculate objective function for offsprings 
ObjVOff = feval(OBJ_F, SelCh); 
% Insert best offspring replacing worst parents 
[Chrom, ObjV] = reins(Chrom, SelCh, SUBPOP, [1 INSR], ObjV, ObjVOff); 
% Increment counter 
gen=gen+1; 
% Migrate individuals between subpopulations 
if (rem(gen, MIGGEN) == 0) 

[Chrom, ObjV] = migrate(Chrom, SUBPOP, [MIGR, 1, 1], ObjV); 
end 

end 
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The optimization problem consists of the estimation of all 6 kinetic and yield parameters of 
the nonlinear dynamic model, formed by 5 ordinary differential equations (7)–(11), described 
the alteration of the process variables in time. 
 
The experiment is carried out in the Institute of Technical Chemistry, University of Hannover. 
Experimental data set of E. coli MC4110 fermentation is used [1]. On the basis on feeding 
rate data and off-line measurements of biomass, substrate (glucose), acetate and dissolved 
oxygen, a parameter estimation of the considered mathematical model is carried out. 
 
The application of the simple genetic algorithm, as well as modified and multi-population 
genetic algorithms for considered problem is fulfilled in Matlab 5.3 environment. Genetic 
Algorithm Toolbox [4, 5, 11] is used with some changes and improvements of the algorithms. 
 
The global optimization problem is stated as the minimization of a weighted distance measure 
J between experimental and model predicted values of the state variables, represented by the 
vector y: 

( ) ( ){ }
2

1 1

n m

ij exp mod j
i j

J w y i y i min
= =

⎡ ⎤= − →⎣ ⎦∑∑  (12) 

where n is the number of measurements for each variable, m is the number of variables, yexp 
represents the known experimental data, and ymod is the vector of states that corresponds to the 
predicted theoretical evolution using the model with a given set of 6 model parameters. 
Furthermore, wij corresponds to the different weights taken to normalize the contributions of 
each term: 

( )

2

1
i j

exp j

w
max y i

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

 (13) 

 
Some adjustments of the genetic algorithm parameters, according to the regarded problem, are 
done to improve the algorithms. Inappropriate choice of operators and parameters in the 
evolutionary process makes the GA susceptible to premature convergence. Primary choice of 
the genetic operators and parameters depends on the problem, as well as on the chosen 
encoding. There is no common theory about tuning the genetic algorithm parameters. 
 
Together with the conventional GA parameters, such as generation gap (GGAP), crossover 
(XOVR) and mutation (MUTR) rate, precision of binary representation (PRECI), number of 
individuals (NIND) and generations (MAXGEN), set of other parameters associated with 
MpGA are defined. Here, insertion rate (INSR) specifies how many of the individuals 
produced at each generation are reinserted into the subpopulation. SUBPOP specifies the 
number of subpopulations. Each subpopulation contains a certain number of individuals. 
Migration rate (MIGR) defines the number of exchanged individuals.  
 
Fitness-based reinsertion with insertion rate equal to 0.9 is used. This means that for each 
subpopulation the least-fit 10% of the offspring are not reinserted. Individuals in MpGA 
migrate between populations at some interval. Here, at every MIGGEN = 20 generations, 
migration takes place between subpopulations. The most fit 20% (MIGR = 0.2) of each 
subpopulation (SUBPOP = 5) is selected for a migration. Nearest neighbour subpopulations 
then exchange these number of individuals amongst their subpopulations, uniformly 
reinserting the immigrant individuals. The values of genetic algorithm parameters are 
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summarized in Table 1. The chosen types of encoding, selection (SEL_F), crossover 
(XOV_F), mutation (MUT_F) and fitness (FIT_F) functions are listed in Table 2.  
   

Table 1. Genetic parameters    Table 2. Genetic operators 
 

Parameter Value  Operator Type 
GGAP 0.97  encoding binary 
XOVR 0.70  reinsertion fitness-based 
MUTR 0.05  selection roulette wheel selection 
PRECI 20  crossover crossover double point 
NIND  100  mutation bit inversion 

MAXGEN  100  fitness linear ranking 
MIGR 0.20    
INSR 0.20    

SUBPOP 5    
MIGGEN 20    

 
The proposed genetic algorithm operators and parameters are accepted on the basis of lot of 
experiments to improve the optimization capability and the decision speed. 
 
All the computations are performed using a PC/Pentium IV (3.00 GHz) platform running 
Windows XP. The obtained results are presented in Table 3. For all considered genetic 
algorithms the cost values are approximately equal, as well as the model parameter values. In 
view of this fact main difference between regarded genetic algorithms is the total computation 
time. The best value of cost value (J = 7.305) is obtained using MpGA algorithm after a total 
computation time of 943.172 s. Almost equally good result (J = 7.327) is reached using the 
MGA algorithm in a less than two minute (79.843 s). From a practical point of view this is 
better result. As it can be seen in Table 3, MGA is the fastest algorithm.  
 

Table 3. Results from the model parameter estimation 
Parameter SGA MGA MpGA 

J 7.369 7.327 7.305 
CPU time (s) 282.063 79.843 943.172 

maxµ , [h-1] 0.477 0.479 0.473 

Sk , [g/l] 0.015 0.018 0.013 

SXY , [gg-1] 0.505 0.499 0.504 

AXY , [gg-1] 76.747 76.419 71.728 

2O XY , [gg-1] 49.053 44.616 47.384 

Lk a , [h-1] 169.267 178.345 158.252 
 
Fig. 4 presents simulation results for the considered best decision vector, found with MGA. 
As can be seen, the correlation between the experimental and predicted model concentrations 
of the process variables is very good. 
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Fig. 4 Experimental and model data for biomass, glucose, acetate and dissolved oxygen 

 
Conclusion 
In this work the parameter estimation problem of E. coli fermentation process using genetic 
algorithms is performed. A comparison of three genetic algorithms, namely simple, modified 
and multi-population genetic algorithms is examined. The algorithm functions and parameter 
adjustments that significantly improve the optimization capability and the decision speed are 
proposed. The results show that the genetic algorithms can solve the regarded problem very 
well. As a result three very similar solutions of the model parameter values are obtained. 
Deviations of the cost values are inessential – around 0.4%. The juxtaposition of the overall 
computation times shows that MGA reached the solution in times faster than the other genetic 
algorithms, i. e. MGA solved the problem 11.8 times faster than MpGA and 3.5 times than 
SGA. So, although the minimum value of the cost function is achieved using the MpGA (J = 
7.305), as the most appropriate algorithm for parameter estimation of fermentation processes 
the MGA (J = 7.327) is recommended. 
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