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Abstract. A fed-batch fermentation process is examined in this paper for experimental and 
further dynamic optimization. The static optimization is developed for to be found out the 
optimal initial concentrations of the basic biochemical variables – biomass, substrate and 
substrate in the feeding solution. For the static optimization of the process the method of 
Dynamic programming is used. After that these initial values are used for the dynamic 
optimization carried out by a submethod of Neuro-dynamic programming-rollout. The 
general advantage of this method is that the number of the iterations in the cost 
approximation part is decreased 
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Introduction 
Many industrial and laboratory important fermentation processes (FP), including production 
of antibiotics, enzymes, organic acids and etc., are carried out in a fed-batch mode of 
operation in which the substrates are added continuously contrariwise to batch operation. Fed-
batch bioreactors are particularly useful when growth and/or metabolite production is 
inhibited because of catabolite repression, where controlled addition of the substrate is 
essential to achieve maximum production of the desired product [4, 7]. This work focuses on 
a laboratory E. coli fed-batch fermentation process and its static and dynamic optimization. 
 
One approach for solving problems of optimization is Dynamic programming (DP), which is 
successfully applied to fermentation processes [1]. However, the approach is largely 
considered impractical as due to the analytical solution of resulting dynamic program is 
seldom possible and the numerical solution suffers from the “curse of dimensionality” [2]. 
 
Neuro-dynamic programming (NDP) is a relatively new class of DP methods for control and 
further decision making under uncertainties [2, 8]. These methods have the potential to deal 
with problems that for a long time were thought to be intractable due to either a large state 
space or the lack of an accurate model. The name NDP expresses the reliance of the methods 
on both DP and neural networks (NN) concepts. In this case, in the artificial intelligence 
community, from where the methods originated, the name reinforcement learning is also 
used. There has been a gradual realization reinforcement learning techniques can be fruitfully 
motivated and interpreted in terms of classical DP concepts such as value and policy iteration 
[6]. Two fundamental DP algorithms, policy iteration and value iteration, are the starting 
points for the NDP methodology. A new policy is then defined by minimization of Bellman’s 
equation, where the optimal cost is replaced by the calculated scoring function, and the 
process repeats [4, 6]. The method is successfully applied for optimal control of FP in the last 
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years, as the computing time was decreased about 2/3 times and the quantity of the desired 
products was increased [3, 4]. 
 
A type of NDP method, called rollout is applied in recent years. It aims to approximate the 
optimal cost-to-go function by the cost of some reasonably good suboptimal policy, called 
base policy. Depending on the context, the cost of the base policy may be calculated either 
analytically, or more commonly by simulation [6]. This submethod will be used for dynamic 
optimization of the process. 
 
The aim of this paper is optimization of the initial conditions of the basic kinetic variables of a 
fed-batch fermentation and further future dynamic optimization. 
 
Model of the process 
The model of the process (E. coli fermentation) is expressed by the following biochemical 
variables: biomass concentration, substrate concentration, oxygen concentration in liquid 
phase and oxygen concentration in gas phase [7]: 
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where: X is biomass concentration, g/l; S-substrate concentration, g/l; S0-substrate 
concentration in the feeding solution, g/l; CL-oxygen concentration in liquid phase, %, CG-
oxygen concentration in gas phase, %; KGa-oxygen mass-transfer coefficient in gas phase, h-1; 
KLa-oxygen mass-transfer coefficient in liquid phase, h-1; F-feeding rate, l/h; µ-specific 
growth rate, h-1; η-specific substrate utilization rate; h-1; Y-yield coefficient, g.g-1; V-
bioreactor volume, l; Ks, Kc, Km, Ki, i=1,2-yield coefficients. 
 
The statistical investigations with comparison between the experimental and the model data 
show high degree of adequacy of the model. This model will be used for static optimization 
and further dynamic optimization of the process aiming maximum of biomass concentration 
at the end of the bioprocess. 
 
Static optimization 
The optimization problem can be formulated in the following way: to be found such initial 
values of the biochemical variables X(0), S(0) and S0 that maximizing the biomass quantity at 
the end of the process: 
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where: t0-initial time, tf - final time of the fermentation. 
 
The vector of control variables has a type: 

[ ]321 ,, uuuuu = , 
where: u1=X(0) g/l, u2=S(0) g/l and u3=S0 g/l. 
 
The intervals of variation of variables are: 

maxminmaxminmaxmin 333222111 ;; uuuuuuuuu ≤≤≤≤≤≤  
 
Based on a few years’ experiences it was found that the best reasonable limits of changing of 
the initial conditions are as follows [7]: 
(0.08≤u1≤5.00) g/l; (2.6≤u2≤3.8) g/l;(85.0≤u3≤135.0) g/l. 
 
To solve this problem DP method was applied. It was established that this method has been 
successfully applied for finding of initial conditions for desired maximum. An algorithm is 
synthesized and a program is developed and the following initial conditions of the 
biochemical variables have been found: u1=0.13 g/l; u2=3.2 g/l; u3 =110 g/l. 
 
Using these initial values, the biomass quantity increases with 5.12% in comparison with the 
original data. Fig. 1 shows the results before and after static optimization for the biomass 
concentration. 
 
The general problem for such increase of biomass concentration is that in practice the 
precisely in hundredths quantity initial values of the kinetic variables often cannot infuse 
descend from measurement errors [8]. Due to that fact it is necessary the stability of the static 
optimization criterion to be investigated in vicinity of the admissible obtained initial values of 
X, S and S0. 
 
Fig. 2 - 4 present how the criterion depends on control variables. The initial values of biomass 
concentration, substrate and substrate in the feeding solution are discretizated respectively 
with steps h1=0.01, h2=0.1 and h3=1. 
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 Fig. 1 Results for biomass concentration Fig. 2 Criterion J in dependence on X(0) 
 before and after static optimization 
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 Fig. 3 Criterion J in dependence on S(0) Fig. 4 Criterion J in dependence on S0 
 
From Fig. 2 - 4 it could be seen that the criterion has a type “plateau” and it is steady in the 
vicinity of the obtained initial values of X, S and S0. 
 
Dynamic optimization 
For determination of the optimal control problem of fed-batch fermentation processes 
maximizing of the optimization criterion at the end of the process max J (in this case biomass) 
on the used substrate S is accepted. Thus the optimization problem is reduced to find a profile 
of the control variable that maximizes the criterion [7]: 
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The feeding rate F is accepted as a control variable. 
 
The optimization problem will be solved by method called rollout NDP. Rollout NDP is 
suggested as a method to alleviation the “curse of dimensionality”. It aims to approximate the 
optimal cost-to-go function by the cost of some reasonably good suboptimal policy, called 
base policy. Depending on the context, the cost of the base policy may be calculated either 
analytically, or more commonly by simulation [6].  
 
With this method the model of the process (1) and the vector of the control variable are 
examined as developing in time processes and they are analyzed of consecutive stages. 
Admissible values for this bioprocess for the control variable are taken in the interval 0≤F≤1, 
with discrete step ∆F=0.01. In the fed-batch fermentation process the control variable (F) is 
limited by [7]: 
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then the total quantity feeding substrate is: 
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where hi=ti-ti-1- is the step of discretization. 
 
The control objective is, therefore, to drive the reactor from the low biomass steady state to 
the desirable high biomass yield state. It may be considered as a step change in the set point at 
time t=0 from the low biomass to the high biomass yield steady state. 
 
Rollout NDP algorithm 
The following steps describe the general procedure of the developed method of rollout NDP 
algorithm: 

1. Starting with a given policy (some rule for choosing a decision u at each possible state i), 
and approximately evaluate the cost of that policy (as a function of the current state) by 
least-squares-fitting a scoring function )(~ XJ j  to the results of many simulated system 
trajectories using that policy [4]; 

2. The solution of one-stage-ahead cost plus cost-to-go problem, results in improvements of  
the cost values [1]; 

3. The resulting deviation from optimality depends on a variety of factors, principal among 
which is the ability of the architecture )X(J~ j  to approximate accurately the cost 
functions of various policies; 

4. Cost-to-go function is calculated using the simulation data for each state visited during 
the simulation, as for each closed loop simulation (simulation part). 

5. A new policy is then defined by minimization of Bellman’s equation, where the optimal 
cost is replaced by the calculated scoring function, and the process repeats. This type of 
algorithm typically generates a sequence of policies that eventually oscillates in a 
neighbourhood of an optimal policy; 

6. Fit a neural network function approximator to the data to approximate cost-to-go function 
as a smooth function of the states; 

7. The improved costs are again fitted to a neural network, as described above, to obtain 
subsequent iterations )(~1 XJ , )(~2 XJ , and so on …, until convergence. 

 
In rollout NDP the approximation part is partially avoided with help of the simulation part, a 
simplified scheme is shown in Fig. 5. 
 
Results 
A functional approximation relating cost function with augmented state was obtained by using 
neural network with eight hidden neurons, nine input and one output neurons. 
 
Cost is said to be “converged” if the sum of the absolute error was less than 10% of the 
maximum cost. The cost converged in 7 iterations for our system. The general advantage of 
this method is that the number of iterations in the cost approximation part is decreased. In this 
case the number of iterations is diminished from 1560 to 1340 for one step. 
The program is developed using rollout NDP method. The results show generally an increase 
of 22.37 % amount of biomass production after the static and dynamic optimization. These 
results are shown in Fig. 6. 
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Fig. 5 Dynamic optimization algorithm 

Conclusion 
A static optimization of an E. coli fed-batch fermentation process is performed in order to be 
found the optimal initial values of the basic biochemical variables. The static optimization 
criterion is investigated and the results show synonymity and stability of the decision. After 
that these initial values are used for the dynamic optimization. For this aim a new method - 
rollout NDP is developed and is applied for dynamic optimization of the process. With this 
method the number of iterations in the cost approximation part are decreased using of the 
simulation part. In this way number of iterations is diminished. The results shows that rollout 
NDP approach is particularly simple to implement and is applicable for on-line 
implementation. 
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Fig. 6 Optimization results 
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