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Abstract: A set of three competing, unstructured models has been proposed to model 
biomass growth, glucose utilization, acetate formation, dissolved oxygen consumption and 
carbon dioxide accumulation of a fed-batch cultivation process of Escherichia coli. The 
inhibiting effect of acetate on growth of E. coli cultures is included in the considered models. 
The model identification is carried out using experimental data from the cultivation process. 
Genetic algorithms are used for parameter estimation. The model discrimination is based on 
the four criteria, namely sum of square errors, Fisher criterion, Akaike information criterion 
and minimum description length criterion. The most suitable model is identified that reflects 
the state variables curves adequately by considering acetate inhibited growth according to 
the Jerusalimsky approach.  
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Introduction 
A significant problem in Escherichia coli cultivation processes that use glucose (as primary 
carbon energy substrate) is the formation of acetate as either an intermediate product or a 
major byproduct. Acetic acid formation by aerobically growing E. coli is already documented. 
Acetate can be both produced and utilized during the growth of E. coli on glucose. Together 
with its counterpart phenomenon in yeast, i.e., the aerobic ethanol production [9, 15], this 
process is now known as glucose overflow metabolism. High specific growth, high specific 
glucose uptake rate, limited respiratory capacity, or a combination of any of the above has 
been suggested to trigger the acetate overflow metabolism. Much more important 
phenomenon as far as acetate formation is inhibition of growth of E. coli cultures by acetate. 
In addition the productivities of recombinant proteins are reduced even at low acetate 
concentrations that may not, in themselves, inhibit growth [12]. Acetate produced in a culture 
has been shown to inhibit several physiological properties of the culture itself [15].  
 
Clearly, when acetate byproduct formation occurs, in glucose growth E. coli cultures, an 
important question arises: What is the nature of inhibition of E. coli by acetate, essentially 
what is the form of the kinetics that is more applicable? 
 
For better understanding and quantitative prediction of the acetate overflow phenomenon, a 
number of mathematical models [4, 7, 11, 15] were reported. Most modelling of E. coli deals 
with acetate formation only and with continuous culture, while the industrial use of E. coli is 
mainly based on fed-batch culture. In the fed-batch cultures acetate is formed or consumed, 
depending on a range of conditions which still require more adequate definition.  
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As a result of the forgoing discussion, the acetate production and inhibition of E. coli by 
acetate has been examined. This paper deals with dynamic modelling of fed-batch culture of 
E. coli MC4110. Three models for microbial growth, glucose utilization, acetate formation, 
dissolved oxygen consumption and carbon dioxide accumulation are formulated as a 
“competing” set of model candidates. The inhibiting effect of acetate on E. coli growth is 
included in the considered models. 
 
Modelling studies are performed to identify simple, easy-to-use, and robust models that are 
suitable to support the engineering tasks of process optimization and control. Мinimal value 
of residual sum of squares, Fisher criterion, Akaike information criterion and minimum 
description length criterion are used as trial functions for discrimination of the various 
models. 
 
Materials and methods 
Description of the cultivation process 
The cultivation condition of the fed-batch cultivation of Escherichia coli MC4110 and the 
experimental data have been published previously [8, 14] as a result of teamwork according to 
DFG Project №113/135 with the Institute of Technical Chemistry, University of Hannover. A 
briefly description of the experiment is presented here.  
 
The cultivation of E. coli MC4110 is performed in a 2 l bioreactor (Bioengineering, 
Switzerland), using a mineral medium [1], in Institute of Technical Chemistry, University of 
Hannover. Before inoculation a glucose concentration of 2,5 g l-1 is established in the 
medium. Glucose in feeding solution is 100 g l-1. Initial liquid volume is 1350 ml, pH is 
controlled at 6,8 and temperature is kept constant at 35°C. The aeration rate is kept at 275 l h-1 
air, stirrer speed at start 900 rpm, after 11h the stirrer speed is increased in steps of 100 rpm 
and at end is 1500 rpm. 
 
Mathematical modelling 
The models used are based on the following a priori assumptions: 
 

• The main products are biomass, CO2, water, and, under some conditions, acetate. With 
the exception of acetate, no further by-products of growth, which might influence the 
biomass development, are produced in significant amounts. 

• The characteristic bottleneck effect for oxidative glucose utilization must be taken into 
account. When the glucose utilization exceeds a critical value, part of the glucose flow 
is converted into acetate instead of being oxidized to CO2.  

• The specific rates of glucose utilization, acetate production, dissolved oxygen 
consumption and carbon dioxide accumulation are assumed to be directly proportional 
to the specific growth rate. 

• Growth inhibition by acetate is considered. 
• Balanced growth condition is assumed. Variations in growth rate, substrate utilization, 

acetate production, dissolved oxygen consumption and carbon dioxide accumulation do 
not significantly change the elemental composition of biomass.  

 
The mathematical model for the considered E. coli fed-batch cultivation, based on the mass 
balance of the components, is presented by the following differential equations: 
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where: X is biomass concentration, [g l-1]; S – glucose concentration, [g l-1]; A – acetate 
concentration, [g l-1]; DO – dissolved oxygen tension, [%]; 2CO  – carbon dioxide 
concentration, [%]; *DO  – saturation concentration of dissolved oxygen tension, [%]; *

2CO  – 
saturation concentration of carbon dioxide, [%]; F – feed rate, [l h-1]; V – bioreactor volume, 
[l]; Sin – glucose concentration of feed, [g l-1]; µ – specific rate of biomass growth, [g g-1 h-1]; 

/S XY  – yield coefficient for biomass, [g g-1]; /A XY  – yield coefficient for acetate, [g g-1]; /DO XY  
– yield coefficient for dissolved oxygen tension, [g g-1]; 

2 /CO XY  – yield coefficient for carbon 

dioxide, [g g-1]; DO
Lk a  – volumetric oxygen transfer coefficient, [h-1]; 2CO

Lk a  – volumetric 
carbon dioxide transfer coefficient, [h-1]. 
 
Due to potential acetate inhibition of growth at high acetate levels three models, based on 
different specific rates kinetics, are presented. In Model 1 a simple acetate inhibition term 
( )1 iA / k− , as indicated by the data of Cockshott et al. [4], is used. In Model 2, according to 

the Jerusalimsky approach [6], the acetate inhibition term ( )i ik / k A+  is included. Finally, in 
Model 3, the well-known Andrews kinetics is considered [16]. The proposed kinetics 
equations, used for description of specific rates of biomass growth, glucose utilization, acetate 
formation, dissolved oxygen consumption and carbon dioxide accumulation in the developed 
models, are summarized in Table 1, where maxµ  is maximum specific growth rate, [h-1]; Sk  – 
saturation constant, [g l-1] and ik  – acetate inhibition constant for growth, [g l-1]. 
 
Results and discussion 
Estimation of models parameters 
As shown in the preceding section, all models consisted of a set of six differential equations 
(Eqs. (1) – (4)) thus represented six depended state variables – X, S, A, DO, 2CO  and V, and 
nine parameters – p = [ maxµ  Sk  ik  /S XY  /A XY  /DO XY  

2 /CO XY  DO
Lk a  2CO

Lk a ]. For the estimation 
of model parameters off-line measurements of biomass and acetate concentrations and on-line 
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measurements of the glucose concentration and of the gases (dissolved oxygen and carbon 
dioxide) are used. 
 
       Table 1 

Model µ 

1 1max
S i

S Aµ
k S k

⎛ ⎞
−⎜ ⎟+ ⎝ ⎠

 

2 i
max

S i

kSµ
k S k A+ +

 

3 max 2
A i

Aµ
k A A /k+ +

 

 
 
The global optimization problem is stated as the minimization of the distance measure J 
(objective function) between experimental and model predicted values of the state variables, 
represented by the vector y: 
 

( ) ( )( )
2

1 1

N M

exp mod j
i j

J y i y i min
= =

⎡ ⎤= − →⎢ ⎥⎣ ⎦∑∑  (7) 

 
where N is the number of data for each variable, M – the number of variables, yexp – known 
experimental data vector, ymod – the vector of states that corresponds to the predicted 
theoretical evolution using the model. 
 
Parameter identification is performed with the genetic algorithms using Genetic Algorithm 
Toolbox [3] under Matlab 5.3 environment. The choice and adjustment of genetic algorithm 
operators and parameters is done with the criterion to be found the best solution with the best 
speed. For the considered parameter estimation the genetic algorithm operators and 
parameters are based on results in [13, 14].  
 
The values of genetic algorithm parameters are respectively: GGAP – 0,97; XOVR – 0,7; 
MUTR – 0,05; PRECI – 20; NIND – 100 and MAXGEN – 100. Binary encoding type and 
linear ranking are used in the algorithm. Selection method is roulette wheel selection. A 
double point crossover is applied here. A bit inversion mutation is used in accepted encoding. 
 
The results from the parameter identification are presented in Table 2. The estimated values 
for the yield of glucose per biomass for different models are the same – /S XY  = 0,5 g l-1. For 
yield of acetate per biomass analogous result ( /A XY  = 0,015 g l-1) is achieved. The inhibition 
followed the presented kinetics with an inhibition constant ik  = 50 ÷ 53 g l-1. Similar results 
are reported in [5, 10]. The slightly increased value of ik  is explained with the fact that the 
host/vector used for this strain of E. coli is especially tolerant to acetate inhibition. The 
estimated values of the rest of parameters ( maxµ , Sk , /DO XY , 

2 /CO XY , DO
Lk a  and 2CO

Lk a ), in the 
three models, are admissible too [2, 5, 10, 16].  
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          Table 2 

Parameter Model 1 Model 2 Model 3 

maxµ , [h-1] 0,547 0,519 0,540 

Sk , [g l-1] 0,039 0,027 0,029 

ik , [g l-1] 51,340 53,602 50,805 

/S XY , [g g-1] 0,501 0,498 0,497 

/A XY , [g g-1] 0,015 0,015 0,015 

/DO XY , [g g-1] 0,551 0,683 0,437 
DO
Lk a , [h-1] 87,800 102,718 80,063 

2 /CO XY , [g g-1] 0,524 0,512 0,476 

2CO
Lk a , [h-1] 81,311 79,818 76,027 

 
Model selection 
Model structure evaluation consists of finding adequate model structures and of comparing 
their quality. The most important criterion for the comparison of models is that the deviations 
between measurements and model calculations (J) should be as small as possible. This 
criterion cannot be used alone, because it favours the use of complex models with many 
parameters which are difficult to identify uniquely. For this reason, this criterion has to be 
complemented by a criterion of ‘parsimony’ leading to a preference for simple model 
structures. 
 
Some of most important techniques for deciding between competing model structures are: 

• quantitative measures of model adequacy 
and 

• graphical comparison for systematic deviations between calculations and measurements. 
 
In most cases, graphical comparisons clearly show the existence or absence of systematic 
deviations between model predictions and measurements. It is evident that a quantitative 
measure of the differences between calculated and measured values is an important criterion 
for the adequacy of a model. However, in order to avoid the above problem of favouring more 
complex models, which in turn will lead to problems in uniquely identifying the model 
parameters, an extra criterion to promote simplicity is necessary.  
 
In this paper the model discrimination is based on the two approaches as follows: 

• quality of fit – the model structure should be able to represent the measured data in a 
proper manner; 

• parsimony – the model structure should be as simple as possible compatible with the 
first requirement. 

 
The first quantitative measure to include both these aspects is the Akaike information criterion 
(AIC) [7]. It is a generalization of the maximum likelihood principle for parameter estimation 
of a given model. The AIC can be formulated as: 
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An alternative information criterion (minimum description length – MDL) is proposed by 
Rissanen [7] as: 
 

( ) ln1 dim NMDL p J
N

⎛ ⎞= +⎜ ⎟
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 (9) 

 
Another wide-spread criterion for model comparison is the Fisher criterion (FC): 
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The proposed criteria (Eqs. (8) – (10)) formulate the trade-off to be made between quality of 
fit and model complexity. The model with the smallest value of the listed trial functions (Eqs. 
(7) – (10)) will be chosen as the best model. 
 
Table 3 provides an overview of the considered criteria values (J, FC, AIC and MDL) 
obtained after the parameter identification. In comparison with the table value of FC it is 
evident that the three models are adequate. As indicated, Models 2 and 3 have the similar and 
at the same time the lowest sum of square errors. The values of Fisher criterion and Akaike 
information criterion for Models 2 and 3 are comparable too. Only the criterion MDL 
obviously gives an advantage of Model 2 over Model 3. Model 1, in which acetate formation 
is described according to the kinetic presented in [4], achieves the lowest accuracy level (J = 
10.065).  
        Table 3 

Criterion Model 1 Model 2 Model 3 
J 10,451 7,490 8,500 

FC* 3,341 3,207 3,263 
AIC 5,482 5,111 5,237 
MDL 10,819 7,753 8,800 

 
* The table value of Fisher criterion for the considered problem here is FCtab = 6,39. 

 
Simulation results 
For each of the simulations the model is given the following information:  

• initial volume  – V(0) = 1,35 l. 
• initial concentration of: 

biomass  – X(0) = 1,25 g l-1; 
glucose  – S(0) = 0,81 g l-1; 
acetate  – A(0) = 0,03 g l-1. 
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 • glucose in feeding solution – Sin = 100 g l-1. 
• glucose feeding profile, presented on Fig. 1.  

 
The medium order method ode45 is used as a solver algorithm. Variable step (auto initial step 
size and maximum step size of 0,001) and relative tolerance of 0,001 are chosen in the 
algorithm. 
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Fig. 1 Time profile of the feeding rate of E. coli MC4110 fed-batch cultivation process 

 
The calculated values of the state variables compared to the experimental data points of the E. 
coli fed-batch cultivation process, are shown on Figs. 2 – 6.  
 
Fig. 2 presents a comparison between models predictions and experimental data for the 
biomass concentration. All models are able to mirror the dynamic behavior of biomass. As it 
can be seen from the graphical mode, the simulated curves of the three models are identical. 
The comparison of the objective functions JX shows that there are some differences in the 
models. The values of the objective functions JX are listed in Table 4. The results show that 
the lowest value of the objective function concerning biomass is achieved of Model 2.  
 
        Table 4 

Criterion Model 1 Model 2 Model 3 
JX 3,215 1,489 2,151 
JS 6,613 5,479 5,608 
JA 3,36.10-4 3,81.10-4 3,55.10-4 

JDO 0,355 0,299 0,410 

2COJ  0,268 0,222 0,332 
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Fig. 2 Time profiles of the biomass concentration: experimental data and models data  
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Fig. 3 Time profiles of the glucose concentration: experimental data and models data  

 
 

Fig. 3 presents a comparison between the three models predictions and experimental data for 
the glucose concentration. The correlation between the experimental and the predicted model 
concentrations of the glucose is the best for Model 2. This fact is confirmed by the results of 
the objective function values JS. The results (Table 4) show that the lowest value of the 
objective function JS is obtained from Model 2.  
 
Fig. 4 presents a comparison between the three models predictions and the experimental data 
for the acetate concentration. The predicted acetate curves fit well the experimental data. 
Once more the best results are reached by Model 2 (see Table 4). 
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Fig. 4 Time profiles of the acetate concentration: experimental data and models data 
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Fig. 5 Time profiles of the dissolved oxygen tension: experimental data and models data 

 
The last two figures (Fig. 5 and Fig. 6) present a comparison between the models predictions 
and the experimental data for the concentration of carbon dioxide and dissolved oxygen 
tension. The graphical modes show that the gases simulated curves of the three models are 
identical. Regarding the objective function, JDO and 

2COJ , the lowest values again are 
obtained from Model 2 (see Table 4). 
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Fig. 6 Time profiles of the carbon dioxide concentration: experimental data and models data 

 
Conclusion 
In this paper the acetate production and the inhibition of E. coli growth by acetate have been 
examined. Three simple, unstructured models have been proposed for description of the 
dynamics in a fed-batch cultivation process of E. coli MC4110, especially the acetate 
inhibition effect. The regarded models are identified by genetic algorithms. The models 
discrimination is based on four criteria, namely sum of square errors, Fisher criterion, Akaike 
information criterion and minimum description length criterion. Using the considered specific 
rates, three acceptable models predictions for cell growth, glucose utilization, acetate 
formation, dissolved oxygen consumption and carbon dioxide accumulation are achieved. The 
presented results show that the Model 2 and 3 predict the experimental data better than Model 
1. On the basis of the proposed criteria Model 2 should thus be favored because it achieved 
the lowest values of trial functions. Furthermore, as indicated by MDL criterion Model 2 is 
simpler than Model 3. 
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