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Abstract: This paper describes an approach to adaptive optimal control in the presence of 
model parameter calculation difficulties. This has wide application in a variety of biological 
and biomedical research and clinical problems. To illustrate the techniques, the approach is 
applied to the development and implementation of a practical adaptive insulin infusion 
algorithm for use with patients with Type 1 diabetes mellitus.  
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Introduction 
Control of many biological processes can involve significant difficulties. Even when a 
suitable control algorithm has been devised for a model of the system, state and parameter 
estimation can be difficult because of time-lags in measurement availability due to inherent 
delays in chemical or other analytical techniques. The problem is further compounded when 
adaptive control is required due to the likelihood of system parameter changes over time. 
 
An example is the case of control of plasma glucose levels in Type 1 (insulin dependent) 
diabetic subjects, a nonlinear problem where glucose/insulin model parameter estimation 
requires clinical tests which take too long to be useful in the dynamic situation. The 
parameters of the glucose/insulin dynamics model may also vary over time for an individual 
due to factors such as sleep, exercise and level of health. We describe a straight-forward 
approach which may be useful in such situations. 
 
Representative parameter sets 
Given a control problem where several parameter sets for a model of the system are known 
for individual cases but the effort involved in calculating them is too high or takes too long to 
allow for continuous updating, the following robust approximation to adaptive control is 
suggested: 
 
(a) Using currently available data for model parameter values, determine a number of 
representative sets that span (in a sense described below) the given data. This can be 
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accomplished before any form of control is attempted and may be reviewed as more relevant 
parameter data become available. 
 
(b) As measurements of the state of the system are taken, determine which of the 
representative parameter sets best accounts for previous data. More recent data may be 
weighted more heavily. The choice of parameter set is then a simple iterative process which 
must converge (as opposed to most minimization techniques). 
 
(c) Determine an appropriate control strategy on the basis of the chosen parameter set. The 
parameter set choice may then be reviewed as often as desired in both (a) and (b) above. 
 
To implement (a) we seek a set of representative parameter points that approximates the 
physical/physiological region of parameter space in the sense that each of the given parameter 
points is within some maximum radius of one of the representative points. 
 
Given a model with parameters 1 2, ,..., kp p p  let 1 2( , ,..., )i k ip p p=p , i = 1,…, m be the set of 
currently known parameter points. Also, let the set of representative points be jP ,  j = 1,…, n, 

with n m< . { }jP  should partition { }ip  so that each jP  is associated with a disjoint subset of 

{ }ip  for whose elements it is the unique closest point. 
 
{ }jP  can be found by minimizing the sum of the squared distances from each existing point 
to the closest representative point; that is, by minimizing 
 

2
min i jji

J = −∑ p P . 

 
Examples 
The following cases illustrate the properties of this cost criterion. 
 
(a) Consider the extreme case of representing two parameter points 1 2,p p  in a one-
dimensional Euclidean parameter space by the one point 1P . It is clear that the result should 
be 1 1 2( ) / 2= +P p p . To minimise J we have 
 

( ) ( )
2 2

2
1 1

1 11 1

2 0  at an extremal point.i i
i i

dJ d
d d = =

= − = − − =∑ ∑p P p P
P P

 

 
Thus, 1 2 12 0+ − =p p P  so 1 1 2( ) / 2= +P p p  as required and it is straightforward to check that 
this is indeed a minimum. 
 
(b) Now consider the one-dimensional case of 1 0=p , 2 2=p , 3 4=p  with two representative 
points required. Possible candidates for 1 2( , )P P  are 
 
i) (1; 3)  ii) (1; 4)  iii) (0; 3)  iv) (2; 2)  v) (0; 2,5)  vi) (0; 3,5). 
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Choice i) is nicely symmetrical but if 1P  is representing 1 2,p p  then 2P  does not need to 
represent both 2p  (again) and 3p . Choices ii) and iii) resolve this and J is in fact lower for 
these than for i). We also see that J may have multiple minima. Further, it is easy to show that 
simply summing the squared distances (rather than the minimum squared distances) in J leads 
to setting all representative points to the centroid of the parameter points, as in iv), which is 
not satisfactory. Finally, if only the distances (rather than the squared distances) to the nearest 
point are summed then choices iii), v) and vi) are equivalent. Indeed, any choice of 2P  
between 2p  and 3p  will result in the same value of J, which is also unsatisfactory. 
 
Some practical considerations arise: 
 
(a) If numerical methods are used to minimize J then initial estimates of { }jP  will be needed. 
The possibility of multiple minima needs to be considered. 
 
(b) An appropriate number of representative points will need to be determined. Too few and 
some system behaviour will be modelled poorly, too many and it may take too long to 
determine the appropriate representative parameter set. 
 
(c) In some instances the only available parameter data may have been derived from a variety 
of (perhaps not entirely compatible) sources and exhibit a much larger overall variation in the 
parameters than occurs in the individual case to be controlled. 
 
As with other adaptive control approaches some time may be required to learn about the 
system and a certain amount of caution in control required in these early stages. As more 
relevant data become available, more appropriate representative sets can be determined. 
 
The approach described above was used to reduce 306 existing parameter sets, each 
calculated by fitting a four parameter model of glucose/insulin kinetics to intravenous glucose 
tolerance test data, to 31 representative parameter sets. These were then used in conjunction 
with a control algorithm previously developed for plasma glucose control in Type 1 diabetic 
subjects [1]. Fig. 1 illustrates the results of an insulin infusion regimen as prescribed by the 
resulting adaptive optimal control algorithm with 10min glucose sampling and in the presence 
of a predetermined glucose infusion challenge designed to simulate a meal. The goal was to 
keep plasma glucose levels at 5mmol/l. The adaptive property is illustrated by the changing 
representative parameter set. 
 
Conclusion 
A robust approach to adaptive optimal control in the presence of model parameter calculation 
difficulties has been described and applied to the development and implementation of a 
practical adaptive insulin infusion algorithm for some actual patients with Type 1 diabetes. 
Other biological control situations can benefit from the techniques presented here. 
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Fig. 1 Four-hour glucose profile of a Type 1 diabetic subject. 
Insulin infusion was controlled adaptively by computer program incorporating representative 

parameter sets. Parameter set 1 was the centroid of all existing parameter sets. 
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