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Abstract: This paper presents an overview of implementation of state decomposition 
approach to modelling of Saccharomyces cerevisiae and Escherichia coli cultivation 
processes. This approach, so-called functional state approach, is an alternative concept 
which helps in modelling and control of such complex processes like fermentation processes. 
The concept implementation leads to a process description with simpler and more 
transparent local models. The functional state approach is originally developed for yeast 
growth processes. Based on the similarities of main metabolic pathways of yeast and 
bacteria, the concept of state decomposition could be applied successfully for modelling of 
Escherichia coli cultivations. 
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Introduction 
Different methodologies have been employed to model or describe nonlinear behavior 
[29, 30]. An approach, that has been extensively used, is the development of an overall 
nonlinear model that performs satisfactorily through the entire operating range, i.e. global 
modelling. Due to the disadvantages of such approach, namely complex structure and big 
number of parameters, the different methods have to be searched to overcome such drawbacks. 
There is a strong intuitive appeal in building systems which operate robustly over a wide range 
of operating conditions by decomposing them into a number of simpler modelling or control 
problems. This appeal has been a factor in the development of increasingly popular multiple-
model approach, and in particular – modelling approach based on functional state 
decomposition, to cope with strongly nonlinear and time-varying systems [17, 34]. 
 
State decomposition of the problem into sub-problems, which can be solved independently, is one 
standard approach when complicated problems have to be solved. The decomposition of the 
system full range of operation into a number of possibly overlapping operating regimes is 
illustrated in Fig. 1. If fermentation processes are being considered, the partition based on glucose 
and dissolved oxygen concentration splits the set of operating regimes as presented in Fig. 2. 
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Fig. 1 
 

In each operating regime, a simple local model could be applied. These local models are then 
combined in some way to yield a global model. In this way the individual solutions of the 
problem lead to the global solution of the complex problem. Hence, model development 
within this framework typically consists of the following tasks: 

• Decompose the system full range of operation into operating regimes. 
• Select simple local model structures within each operating regime. These structures 

will be often determined by the relevant system knowledge that is available under 
different operating conditions, as well as the intended purpose of the model. 

• The local model structures are usually parameterized by certain variables that must be 
determined. 

• A method for combining the local models into a global one must be applied. 
Numerous approaches exist and can be characterized according to deterministic vs. 
stochastic assumptions, soft or hard partitions etc. 
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Fig. 2 
 
In natural problems it will not be always easy to find a natural sequence in which these tasks 
should be approached. Several iterations of the same tasks are usually needed before a 
satisfactory model to be found. The main challenges in the development of dynamic models are: 
 

• Division of the operating space into operating regimes; 
• Construction of local dynamic models; 
• Aggregation of local models through a suitable switching strategy. 

 
These challenges have been subject of many investigations in the field of fermentation 
processes technology. Murray-Smith and Johansen [17] have provided an introduction to the 
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functional state concept and have illustrated it with a simple wire model. Implementation of 
advanced control strategies in bioprocesses is often hindered by the lack of on-line 
measurements reflecting the physiological state of the culture. Although a number of 
techniques have been used to estimate key variables from on-line data monitored, these often 
do not explicitly take into account changes in physiological state and information on many 
aspects of physiological state may not be present in on-line data [8]. Feng and Glassey have 
demonstrated [8] that data obtained from chemical fingerprinting methods, such as pyrolysis 
mass spectrometry; can be used to identify changes in the physiological state during 
cultivation. This information can be utilized for the estimation of the physiological state and 
can enable physiological-state-specific model development for on-line bioprocess control. 
Knop et al. [16] have stated that the goal of physiological-state control systems is to maintain 
key metabolic variables on an optimal trajectory throughout the fermentation. This 
investigation describes the use of a physiological state control algorithm for a high-cell-
density E. coli fermentation to produce quinic acid from glucose. There are a few reports on 
extending metabolic flux analysis to on-line state recognition of fermentation processes, using 
only measured values acquired on-line. In research study of Takiguchi et al. [27] metabolic 
flux analysis is extended to an on-line approach. The fluxes of not only extracellular but also 
intracellular metabolites are calculated in lysine fermentation by Corynebacterium 
glutamicum for physiological state recognition. During the course of the study Fukudome et 
al. [10] have found that the alcian blue adsorption to yeast cell, defined as the alcian blue 
retention ratio, varied according to the culture conditions. These results suggest that the alcian 
blue retention ratio will be useful for the evaluation of yeast physiological states. In the 
research of Tartakovsky et al. [28] two novel approaches for modelling processes are 
suggested and applied to E. coli fermentations. The first approach uses a multi-compartment 
model framework, coupled with knowledge-based logic. In the second approach the multi-
compartment model is reduced into the variable structure model consisting of a battery of 
alternative submodels, each of which qualitatively represents one of the process steps. The 
research of Ruenglertpanyakul and Bellgardt [25] introduces an approach, based on an expert 
system, for developing model of bioprocesses. The expert system is used to develop 
physiological phase models, which is valid only in one physiological phase, as well as the 
switching conditions from one to another phase. The expert system is tested with data from 
cultivation of Klebsiella terrigena. Shimizu et al. [26] have studied on-line state recognition 
in a yeast fed-batch culture with neural networks. Aguilar-Martin et al. [1] have described the 
application of a self learning algorithm generating the classes that correspond to physiological 
states in a bioreactor. The methodology is applied to Saccharomyces cerevisiae production 
process in oxidative regime without ethanol production. The proposed algorithm appeared to 
be particularly helpful for a biotechnological process on behalf to the possibility of having a 
good dialog with the experts, as well as sufficient off-line data for the learning period. 
Intuitively appealing nature of the framework is demonstrated by Murray-Smith and Johansen 
[17] with applications of local methods to problems in the process industries, biomedical 
applications and autonomous systems. 
 
Taking into account all application of modelling approach, based on state decomposition, for 
fermentation processes and reported results it is obviously that the implementation of such 
approach has computational advantages and allows direct incorporation of high-level and 
qualitative plant knowledge into the model. These advantages have proven to be very 
appealing for industrial applications. Due to these opportunities, the aim of this paper is to 
present a theoretical basement and prerequisites for the application of state decomposition 
approach for modelling of Escherichia coli cultivation, based on functional state modelling of 
Saccharomyces cerevisiae. 
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Application of functional state modelling approach to Saccharomyces 
cerevisiae cultivation 
Successful applying of functional state modelling approach requires the specific peculiarities 
and mechanisms of the yeast growth processes to be preliminary clarified. Saccharomyces 
cerevisiae cultivation, as typical representative of yeast, is here considered. S. cerevisiae uses 
three major pathways for growth on glucose, namely fermentation of glucose, oxidation of 
glucose and oxidation of ethanol [6].  

• Fermentation of glucose occurs when glucose concentration is high and/or oxygen 
supply is limited: 

C6H12O6 → 2C2H5OH + 2CO2 + energy 
• Oxidation of glucose occurs when glucose concentration is low and oxygen supply 

is sufficient: 
C6H12O6 + 6O2 → 6H2OH + 6CO2 + energy 

• Oxidation of ethanol occurs when glucose concentration is high and/or oxygen 
supply is limited: 

C2H5OH → 2H2O + 2CO2 + energy 
 
A substrate such as sugar is degrading by yeast to produce a number of carbon intermediates 
as well as to provide some reducing power and energy. Yeast then utilizes the carbon 
intermediates in order to synthesize new cell material. If the sugar concentration during an 
aerobic yeast growth process exceeds some critical level, a part of the sugar is metabolized to 
ethanol. This is because much pyruvate is accumulated in the cell during sugar glycolysis that 
cannot be completely oxidized in the tricarboxylic acid cycle. The surplus pyruvate is reduced 
to ethanol through the reoxidation of NADH that is produced in the latter stages of glycolysis. 
The yeast can also produce ethanol under aerobic conditions if there is high specific rate of 
growth or low dissolved oxygen concentration. In order to be more evident, a metabolic flux 
model of S. cerevisiae is presented in Fig. 3.  
 

 
 

Fig. 3 
 
As it is obvious, there are metabolic changes during the process that determine application of 
functional state modelling approach. The main idea of such approach is the process to be 
divided into macro-states, called functional states (FS), according to behavioral equivalence. 
In each FS certain metabolic pathways are active enough to dominate the overall behavior of 
the process. Based on the presented metabolic mechanisms and a lot of investigations, Zhang 
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et al. [34] have supposed that the whole yeast growth process can be divided into at least five 
functional states in batch and fed-batch cultures. In each functional state the yeast metabolism 
is dominated by certain metabolic pathways. 
 

First ethanol production state (FS I) 
The process is defined to be in this state when the sugar concentration is above the 
critical level and there is sufficient dissolved oxygen. In this state ethanol is produced. 

Mixed oxidative state (FS II) 
The process enters this state when the sugar concentration decreases to be equal to or 
below the critical level and there is sufficient dissolved oxygen in the broth. The 
process remains in this state as long as these conditions are met. Both sugar and 
produced ethanol are co-metabolized through the oxidative pathways in the state. 

Complete sugar oxidative state (FS III) 
The process is defined to be in this state when there is no ethanol available, the sugar 
concentration is not higher than the critical level and the dissolved oxygen is above its 
critical level. In this state, sugar is completely oxidized to water and carbon dioxide. 

Ethanol consumption state (FS IV) 
The process is defined to be in this state when ethanol is available but no sugar is in the 
broth, and the dissolved oxygen concentration is above the critical level. Ethanol is the 
only carbon source for yeast growth. 

Second ethanol production state (FS V) 
The conditions for this state are that both concentrations, for sugar and for dissolved 
oxygen, are below the corresponding critical levels. When the dissolved oxygen 
becomes the limiting factor for yeast growth, ethanol is produced. 

 
According to the Zhang et al. [34], in an industrial aerobic yeast growth process where 
oxygen is often limited, there might exist more functional states. For instance, a state with 
conditions of O2 < O2crit and S > Scrit, and a state with S = 0, E > 0 and O2 < O2crit might be 
possible. Since all of experimental data came from laboratory scale cultivations, these 
functional states do not occur frequently [34]. 
 
A yeast growth process switches from one functional state to another when the metabolic 
conditions are changed. The functional state diagram of the process can be illustrated as it is 
shown in Fig. 4 [34].  
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Fig. 4 
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In principle FS I can appear in all batch, fed-batch and continuous yeast growth processes. FS 
IV normally appears only in batch culture. The functional states FS II, FS III and FS V are 
normally found in fed-batch and continuous cultures. The solid arrows in Fig. 4 indicate the 
necessary or normal transition between various functional states of the process. The dotted 
arrows indicate that the transitions take place when the mode of culture changes between 
batch and fed-batch cultures. It should be noted that the fermentation process could be only in 
one functional state at any time. However, a certain functional state can appear in the process 
more than once during one run. 
 
Table 1 illustrates the interrelationships of different functional states during fed-batch yeast 
cultivation [34]. These interrelationships will be used as rules for recognition of functional 
states during batch and fed-batch cultivation of yeast S. cerevisiae. 
     
  Table 1 

Functional state Rules 
FS I S > critS  and O2 ≥ 2critO  
FS II S ≤ critS  and O2 ≥ 2critO  and E > 0 
FS III S ≤ critS  and O2 ≥ 2critO  and E = 0 
FS IV S = 0 and O2 ≥ 2critO  
FS V S ≤ critS  and O2 < 2critO  

 
In each FS the process is described by a conventional type of model, called local model, 
which is valid only in this FS. At the second hierarchical level some numeric detection 
algorithms and/or rules based on expert knowledge can be used for the recognition of the FS 
and state transitions. A set of local models together with FS “dynamics” can be used to 
describe, monitor and control the overall yeast growth process. 
 
In the first ethanol production state (FS I) the specific growth rate (µ) can be assumed to be 
constant due to dissolved oxygen limitation under high sugar concentration. The specific rate 
of sugar consumption (qS) is described by Monod model. The specific ethanol production rate 
(qE) is directly proportional to the difference between the specific sugar consumption rate and 
the critical specific sugar consumption rate according to the mass balance and the 
stoichiometric equation of the fermentation of sugar to ethanol. The specific dissolved oxygen 
consumption rate (

2Oq ) is directly proportional to the specific growth rate, i.e. also constant. 
The structures of the specific rates for FS I, as well for all FS, could be seen in Table 2.  
 
As sugar is metabolized by yeast, the sugar concentration decreases to the critical level, and 
the process switches from the first ethanol production state (FS I) to the mixed oxidative state 
(FS II). When in a batch culture, the sugar is exhausted so quickly that the mixed oxidative 
state (FS II) needs not to be considered. In practice the functional state dynamics for batch 
culture can be modeled so that the process switches from FS I directly to the ethanol 
consumption state (FS IV) when sugar decreases below the critical level. After entering FS IV, 
the yeast cells begin to synthesize the enzymes for gluconeogenesis so that cells can utilize 
ethanol as the carbon-source for growth. It takes some time to synthesize the induced enzymes 
for gluconeogenesis. This causes a lag in the yeast growth. This is also the reason for diauxic 
growth in the batch process. Hence in FS IV Monod model with a lag term can be used to 
describe the specific growth rate. The specific ethanol consumption rate, as well the specific 
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oxygen consumption rate are directly proportional to the specific growth rate, while the 
specific sugar consumption rate is now zero. 
 
          Table 2 
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rate FS I FS II FS III FS IV FS V 
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The yeast growth process enters the mixed oxidative state (FS II), when the sugar 
concentration in the broth declines below the critical level in fed-batch or continuous culture. 
In this state, both sugar and ethanol are cometabolized to produce energy and the 
intermediates for yeast growth. The specific growth rate is expressed accordingly as a sum of 
two terms, one describing the contribution of sugar and another – the contribution of ethanol 
to yeast growth. Both terms have the structure of Monod model. Monod model is also used 
for the specific ethanol and sugar consumption rates. The specific oxygen consumption rate is 
naturally obtained by a summation over two terms, which are directly proportional to the 
specific sugar consumption rate and the specific ethanol production rate, respectively. When 
the ethanol is depleted and the sugar concentration is below the critical level, the yeast growth 
process enters the complete sugar oxidative state (FS III). The sugar is the only carbon source 
in the broth and the limiting factor for growth as well. In FS III the specific rates of yeast 
growth, sugar utilization and oxygen consumption are described by Monod models. The 
process enters the second ethanol production state (FS V) when the dissolved oxygen 
decreases below its critical level. The specific rates of yeast growth and oxygen consumption 
depend on the dissolved oxygen concentration and the sugar concentration. These rates are 
assumed to have the same structures as in FS III except that the terms are multiplied with a 
term dependent on the dissolved oxygen concentration. The specific rate of sugar 
consumption has the same structure as in the previous states. The specific rate for ethanol 
production is directly proportional to the specific rate of sugar consumption with a factor of 
oxygen limitation. Table 2 summarizes the structures of the specific rates of the local models 
in all functional states [34]. 
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State decomposition of Escherichia coli cultivation 
In this section it will be presented that, the concept of functional state modelling, originally 
developed by Zhang [34] for yeast cultivation processes, could be applied for modelling of 
Escherichia coli cultivation. Based on the many research reports about the changes in E. coli 
process behaviour during different cultivation conditions (high or low glucose concentrations, 
oxygen limitation or oxygen starvation, etc.) it is evident that there are a lot of analogies 
between the yeast and Escherichia coli metabolisms. Some of investigations, substantiated 
this statement, are shortly presented below. 
 
E. coli has a similar behaviour in comparison to yeast. Both yeast and E. coli can undergo 
aerobic and anaerobic metabolism. Both in yeast and E. coli aerobic metabolism results in the 
production of CO2 and water. Yeast anaerobic metabolism results in the production of 
ethanol, while E. coli anaerobically produces acetate. Many types of yeast produce and utilize 
ethanol under aerobic conditions [26, 34]. This fact is taken into account in the Zhang local 
models proposed to functional state modelling of yeast. At the same time, it is known that E. 
coli can also synthesize a significant amount of acetate and utilize the acetate during the 
growth of E. coli on glucose under aerobic conditions [2, 11, 12, 19, 20, 33]. In the presence 
of a glucose feed E. coli utilize acetate 3 times faster than in the absence of glucose [32]. 
Acetate has a critical role as it functions as both a product and a reactant [22]. Together with 
its counterpart phenomenon in yeast, i.e., the aerobic ethanol production, this process is now 
known as glucose overflow metabolism [7, 9, 13, 21, 23, 31, 32]. High specific growth rate, 
high specific glucose uptake rate, bottlenecks in the Krebs cycle, limited respiratory capacity, 
or a combination of any of the above factors has been suggested to trigger acetate or ethanol 
overflow metabolism.  
 
The metabolic flux model of E. coli is presented in Fig. 5. As it can be seen the model is 
identical to the S. cerevisiae one, shown in Fig. 3. 
 

 
 

Fig. 5 
 

When E. coli strains are grown aerobically to high cell densities on glucose, two fundamental 
phenomena occur. There are two distinct metabolic routes that lead to acetate formation in E. 
coli fermentations. The first of these concerns overflow metabolism and occurs at high 
specific growth rates under oxygen excess conditions, where the overabundant supply of 
energy results in acetate excretion. Acetate is produced when carbon flux into the central 

Acetate 
“biomass equivalent” 
energy 

Glucose 

oxidative 
metabolism

overflow 
metabolism 

maintenance energy 

oxygen for glucose oxidation 
growth  

anabolism 
energy 

acetate utilization

anabolism 

acetate production 



BIO

Autom
ati

on

Bioautomation, 2006, 5, 1 – 12 ISSN 1312 – 451X 
 

 9

metabolic pathway exceeds the biosynthetic demands and the capacity for energy generation 
within the cell. [14, 31, 32]. The second phenomenon occurs as a result of either oxygen 
limitation or oxygen starvation, where glucose metabolism occurs via the mixed acid 
fermentation, with acetate again being one of the products [3, 4, 5, 14, 15, 31]. 
 
In general, fermentative metabolism is not the same in all microorganisms, but there are many 
similarities. Nielsen and Villadsen [18] have illustrated the analogy in the fermentative 
metabolism of yeast S. cerevisiae and bacteria E. coli, presented respectively in Fig. 6 and 
Fig. 7 [24]. 
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Fig. 6 
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Fig. 7 
 

Based on foregoing discussion and Zhang investigations for yeast [34], one possible division 
into different functional states according to cultivation conditions (glucose concentration 
value, oxygen concentration value, acetate production or acetate utilization) is proposed here. 
Due to proved similarities between yeast and E. coli metabolisms, Table 3 presents the rules 
for recognition of functional states during fed-batch cultivation of E. coli. Acetate 
consumption state (FS IV), characterized only batch culture, is omitted because fed-batch 
mode is here considered. 
 
 Table 3 

Functional state Rules 
FS I S > critS  and O2 ≥ 2critO  
FS II S ≤ critS  and O2 ≥ 2critO  and A > 0 
FS III S ≤ critS  and O2 ≥ 2critO  and A = 0 
FS V S < critS  and O2 < 2critO  
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The description of different functional states for E. coli cultivation process is the same as one 
for yeast, with the remark that acetate is here considered instead of ethanol. Based on the rules 
presented in Table 3 the state decomposition process could be applied to fed-batch 
fermentations of E. coli. 
 
Conclusion 
Taking into account all application of multiple-model approach for fermentation processes, as 
more convenient for further process control is functional state modelling approach. The 
approach is originally developed by Zhang et al. [34] for aerobic yeast growth process. The 
application of such approach is appropriate because of two reasons. First, the definition of the 
different functional states is possible because of well known mechanisms in aerobic yeast 
growth process. Second, defined functional states could be comparatively easily recognized, 
based on on-line measurements of substrate (glucose) and dissolved oxygen concentrations. 
Known analogies between fermentation metabolisms of yeast and E. coli allow functional state 
modelling approach to be applied for E. coli cultivation as well. The concept implementation 
leads to the process description with simpler and more transparent local models that help to 
understand better the process behavior and to simplify the process modelling. 
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