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Abstract: Despite its superiority over chemically synthesized petroleum-based polymers, 
poly-β-hydroxybutyrate (PHB) has been less successful commercially. A prime reason is the 
low productivity of microbial processes for PHB. High fermentation efficiency requires good 
modelling and optimization. Neither classical mechanistic models nor the recent cybernetic 
models have resulted in sufficiently high yields of PHB. So a neural network description has 
been proposed here. Relative to the other two approaches, neural optimization doubled the 
maximum PHB concentration in fed-batch fermentation with Ralstonia eutropha, the most 
commonly employed organism for PHB production, and it consumed less of the substrates. 
This advantage and their model-free nature make neural networks an attractive technique to 
enhance PHB productivity. 
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Introduction 
Poly-β-hydroxybutyrate (PHB) is a microbially synthesized polymer with properties similar to 
those of polymers such as polyethylene and polypropylene, which are synthesized chemically 
from petroleum products [10, 23]. In addition, it can be biodegraded easily, whereas synthetic 
polymers are recalcitrant, it is compatible with body tissues, and it can be manufactured from 
renewable natural resources. With so many useful features, it may not be surprising that the 
possible applications of PHB cover a wide range of products such as biodegradable carriers 
for medicines and insecticides, food packaging films, disposable cosmetic products, surgical 
sutures and wound dressings [16, 23]. 
 
The rising costs of crude oil and of environmental degradation have led to a resurgence of 
interest in microbial processes for PHB. Presently, the cost of microbial PHB is four to five 
times that of chemically obtained polyesters [6, 40]. Since the raw materials for PHB are less 
expensive than those for polyethylene and polypropylene, and the production conditions are 
milder, the greater cost is largely due to low productivity. Therefore, improvement of 
fermentation efficiency is a key factor in making a microbial PHB process viable [19]. 
 
Ralstonia eutropha and Alcaligenes latus are commonly used bacteria for PHB production, 
largely because they can accumulate large amounts of PHB within the cells. While there is 
growing interest in A. latus, due to its high specific rate of PHB synthesis and the possibility 
of continuous fermentation, current studies are focused on R. eutropha, whose PHB potential 
can theoretically reach 80% of dry cell mass [23, 40]. 
 
The production of PHB by R. eutropha depends critically on the rates of supply of carbon and 
nitrogen. There should be sufficient, but not excess, of carbon to promote cell growth, and a 
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reasonable shortage, but not cessation, of nitrogen to initiate PHB synthesis [19, 44]. This 
suggests fed-batch fermentation as the preferred mode of operation, with the flow rates of the 
two feed streams being varied as the fermentation progresses [6, 19, 40]. Since optimal 
control of the feed rates depends on a good fermentation model and an efficient control 
algorithm, most studies to increase fermentation efficiency have focused on these two 
features. 
 
Fermentation models in the literature are broadly of two kinds. One type are the so-called 
mechanistic models. They are constructed on the basis of postulated mechanisms in a manner 
similar to those of chemical kinetics. The models of Mulchandani et al. [28], Kim et al. [20] 
and Lee et al. [24] are of this type. The other kind of models is called cybernetic. This 
approach takes the view that living cells interact with their environment both mechanistically 
and through internal regulatory processes. The latter enable them to respond to changes in 
their surroundings by remembering their past history and in a manner that maximizes their 
chances of survival. This survival is generally measured by the specific growth rate, but other 
measures are also possible [37, 41]. 
 
Cybernetic modelling is more recent than mechanistic modelling, so there are fewer 
cybernetic models for PHB [13, 46]. 
 
Both cybernetic and mechanistic modelling are equation-based, i.e. they construct a set or sets 
of equations on the basis of certain postulates. However, in the nonideal realistic conditions of 
large bioreactor operations it is not easy to formulate a set of equations or estimate all the 
parameters or have adequate measurements for all the variables. Then a model-free method 
becomes useful. Neural networks offer such a method. Many fermentation studies, under both 
ideal and nonideal conditions, attest the usefulness of neural modelling (see the reviews by 
Montague and Morris [27] and Patnaik [29]). 
 
The effectiveness of neural networks for many fermentations [26, 29, 32] suggests a similar 
possibility for PHB synthesis. Since the use of neural networks will add one more class of 
models, it is useful to know how they compare with mechanistic and cybernetic models. This 
comparison is important because the choice of a good modelling approach is critical in 
deciding the time-dependent feed rates and therefore the productivity of the fermentation. 
 
Description of the fermentation 
PHB is an energy storage polymer which the cells synthesize under adverse conditions, 
particularly the absence of nitrogen or phosphorus or sulfur. Of these, starvation of nitrogen is 
the most common method to induce polymer synthesis because (a) its supply is easy to 
regulate and (b) more of nitrogen than either sulfur or phosphorus is utilized and hence a 
deficiency of nitrogen creates greater environmental stress and consequently more PHB 
formation. The mechanisms underlying this process are described elsewhere [6, 23, 40]. 
 
Apart from depriving the cells of nitrogen, there should also be an adequate supply of a 
carbon substrate to promote growth. However, experimental studies [18, 20, 24, 44] indicate 
that too much of the carbon source or too little of the nitrogen source can be detrimental. The 
optimal ratio of carbon:nitrogen concentrations appears to be between 10 and 20. Given the 
complex metabolic network [6, 40], this optimum ratio is not constant but varies as the 
fermentation progresses and the distributions of cell ages and the concentrations of 
metabolites change. Studies have shown [24, 39, 42] that not only the feed rates of the 
nitrogen and carbon substrates but also their ratio vary nonlinearly with time. 
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R. eutropha catabolizes carbohydrates via the Entner-Doudorhoff pathway to pyruvate, which 
can then be dehydrogenated to acetyl-CoA. During reproductive growth, acetyl-CoA enters 
the TCA cycle and is completely oxidized to CO2, thereby generating ATP, NADH, NADPH 
and biosynthetic precursors [36]. The precursors are converted to amino-acids, which are 
eventually incorporated into nascent proteins. The inflow of acetyl-CoA into the TCA cycle 
depends on the availability of nitrogen, phosphorus, sulfur and other elements. So, starving 
the cells of these elements, principally nitrogen, inhibits the synthesis of these proteins and 
leads to high accumulations of NADH and NADPH. These in turn slow down the TCA cycle 
and channelize acetyl-CoA toward PHB synthesis [8]. 
 
While nitrogen starvation may generate high intra-cellular concentrations of PHB, it also 
slows cell growth and thus lowers the accumulations of PHB in the broth [20, 24]. So, an 
initially high cell density, achieved through balanced growth, is required before polymer 
synthesis is triggered. Thereafter, the relative flow rates of carbon and nitrogen have to be 
manipulated in response to cell growth and product formation. The reported time-variant 
nature of the two feed rates lends itself more easily to fed-batch fermentation, which therefore 
produces greater concentrations of PHB than continuous fermentation [6, 23, 38]. The carbon 
source is either fructose or glucose, and nitrogen is provided by a solution of either 
ammonium chloride or ammonium sulfate. 
 
Kinetic and reactor modelling approaches 
 
Bioreactor model 
Most of the published studies of PHB fermentation have focused on small, laboratory-scale 
bioreactors, typically 2 to 5 l in volume. In such vessels, mixing is usually sufficiently good to 
avoid practically significant spatial gradients of the concentrations of interest. For such fed-
batch fermentations, the reactor model for arbitrary kinetics may be expressed by the mass 
balances given below [2]. 
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The initial values of x, p, sC and sN are known, and the best starting volume was determined as 
part of the optimization process. 
 
Equations (1) - (5) assume that fluid dispersion in the fermentation broth is complete and 
therefore there are no spatial gradients. This assumption is, however, not valid for large 
bioreactors. Experimental measurements with reactors of different sizes and by using different 
techniques [4, 15, 26, 35] have shown that substrate and dissolved oxygen gradients can be 
substantial even in pilot-scale vessels. While gradients may be reduced by better agitation, 
they cannot be eliminated totally from large (production scale) bioreactors. The conventional 
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a priori expectation is that gradients have a negative effect on bioreactor performance. 
However, recent studies [3, 14, 15, 30] have shown that controlled dispersion, i.e. limited 
gradients, can be beneficial. Indeed, there appears to be an optimal level of dispersion for a 
given fermentation system [30, 33, 34] that generates a better performance than complete 
dispersion or too little dispersion. 
 
The degree of dispersion may be quantified by the Peclet number, defined as: 

eD/uLPe =  (6) 
 
When the fluid is fully dispersed, De → ∞ and hence Pe → 0. At the other extreme is fully 
segregated flow, for which De → 0 and Pe → ∞. In small bioreactors, Pe can be small, 
whereas it has finite non-zero values in large reactors. When there is finite dispersion, 
Eqs. (1) - (4) are modified to [2, 12]: 
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where F = FC + FN = total inflow rate of the carbon and nitrogen sources. 
 
Suitable expressions are used for the kinetic rates rC, rN, rP and rX. These may be derived 
through either a mechanistic approach or a cybernetic approach. Both methods have been 
applied here, and the results compared with a new model-free approach utilizing artificial 
neural networks. 
 
Kinetic models 
The classical approach is to derive kinetic equations on the basis of postulated reaction 
networks, just as for homogeneous chemical reactions. In this class, the mechanistic model of 
Lee et al. [24] was chosen because (a) it is simple and physiologically meaningful, (b) it has 
yielded good results and (c) it is based on R. eutropha NCIMB 11599, for which a good 
cybernetic model [46] is available for comparison. The detailed equations are given in 
Appendix A. 
 
A major weakness of mechanistic kinetics is its assumption that living cells respond to 
environmental changes in the same manner as chemical species. Observations of microbial 
culture dynamics do not support this assumption. There are many examples (discussed by 
Patnaik [31]) which show that mechanistic models either fail to predict or do not predict 
satisfactorily fundamental features such as the initial lag phase and transient responses to 
perturbations. 
 
These limitations also showed up in Yoo and Kim’s [46] study of PHB kinetics in batch 
fermentations. So they proposed an alternate cybernetic model based on concepts introduced 
by Ramkrishna and coworkers. Briefly, the cybernetic approach takes the view that microbial 
behavior is regulated both by the environment and by internal regulatory processes. As a 
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result, the cells adjust their metabolic processes so as to maximize their chances of survival 
under the prevailing conditions [9, 31]. 
 
In Yoo and Kim’s [46] cybernetic model, “the carbon source is optimally allocated to the key 
enzyme synthesis system so that the cells have a high degree of flexibility under nitrogen 
starvation”. Under the stress created by a shortage of nitrogen, the cells direct the remaining 
resources toward the synthesis of PHB [6, 40]. Like Lee et al. [24], Yoo and Kim [46] also 
divided each cell into a PHB component and residual biomass. Detailed equations are 
provided in Appendix B. 
 
In production and pilot scale bioreactors, fluid mixing is usually incomplete and may vary as 
the fermentation progresses. In addition, continuous and fed-batch operations are often subject 
to ‘noise’ carried by inflow streams. Under such conditions, microbial behavior is complex, 
time-dependent and difficult to monitor and predict accurately [3, 4, 25]. Then the 
mathematical models described above are inadequate, and a sufficiently good model becomes 
extremely complex and thus difficult to use in on-line applications. 
 
By not requiring a mathematical description of the fermentation, arrays of artificial neural 
networks circumvent these limitations. Previous work [7, 32] has shown that a recurrent 
neural network is more appropriate for an incompletely mixed bioreactor than other common 
configurations. In a recurrent network output signals from downstream neurons are fed back 
to a layer of upstream neurons, and this feature mimics the internal recirculation in a broth 
with finite dispersion. Such a network has two basic variants. In the Elman form, outputs from 
the hidden neurons are recycled to the input layer, while in the Jordan form the signals from 
the output layer are recycled to the input layer. Because the circulation of fluid occurs inside 
the broth, the Elman form represents internal mixing more faithfully than the Jordan 
network [32]. 
 

 
 

Fig. 1 Configuration of the Elman neural network for PHB kinetics 
 

For the present application, the Elman network had the configuration shown in Fig. 1. There 
are four input neurons to receive data of the concentrations and flow rates of the nitrogen and 
carbon substrates. Similarly, the residual (or total) biomass and PHB are the main outputs of 
interest. So the concentrations of these two variables are expressed by the output neurons. In a 
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feedback control system, these two concentrations are used to manipulate the flow rates of the 
two substrates. This is mimicked in an Elman neural network by recycling the output 
concentrations into the input layer. Then, two more neurons are required to receive these 
signals; these are shown in Fig. 1 as the recurrent neurons R1 and R2. In addition, there are 
two bias neurons B1 and B2. These are optional mathematical devices to help convergence 
and avoid the optimization process from getting trapped in a trough [17]. While the inputs and 
outputs fix the number of neurons in those layers, the number in the hidden layer was varied 
during training of the network with data from Lee et al. [24] and Yoo and Kim [46]. The 
optimum number of hidden neurons was determined to be four.  
 
Results and discussion 
To compare the modelling approaches under both ideal and nonideal conditions, they were 
applied to the fermentation at complete dispersion and at optimum dispersion in the 
bioreactor. Complete dispersion is characterized by Pe = 0. In a recent publication [34] it has 
been shown that Pe = 20 maximizes the concentration of PHB. The reasons for the best 
performance at a finite dispersion are discussed in that article and are briefly considered here. 
 
The performances at these two values of Pe and for the three kinds of models are portrayed in 
Figs. 2 - 5. Each figure has three pairs of plots, one pair each for the mechanistic model, the 
cybernetic model and the neural model. For the two output variables, the residual biomass 
(Fig. 2) and PHB (Fig. 3), the lower plot in each pair corresponds to Pe = 0 and the upper plot 
to Pe = 20. This situation is reversed for the two input variables, i.e. the carbon source (Fig. 4) 
and the nitrogen source (Fig. 5). This difference provides a graphic demonstration of the 
benefit of optimal dispersion, irrespective of the type of kinetic model used. At Pe = 20 there 
is better growth of cells, greater synthesis of PHB and improved utilization of both glucose 
and ammonium chloride than achieved in a fully dispersed (ideal) bioreactor. 
 
With a mechanistic model, the concentration of residual biomass (Fig. 2) saturates in about 20 
h and that of PHB (Fig. 3) increases slowly with time. (Hence the sum of the two, i.e. the total 
biomass, also increases slowly with time). On the contrary, both concentrations increase faster 
with cybernetic and neural kinetics, the neural model generating consistently higher 
concentrations. This improvement in bioreactor performance is also reflected in the 
consumption of nutrients, where the unutilized glucose and ammonium chloride are the least 
with an optimized neural model and the highest with a mechanistic model (Figs. 4 and 5). 
 
These results are summarized quantitatively in Tables 1 and 2, which display the final 
percentage differences between different kinetic approaches and between complete dispersion 
(Pe = 0) and optimum dispersion (Pe = 20). While there are consistent improvements from a 
mechanistic to a cybernetic to a neural model and from Pe = 0 to Pe = 20, more significant 
perhaps are their magnitudes, which range from 14.6% to 129.5%. For both values of the 
Peclet number, the increases in PHB content are always larger than the corresponding 
increases in residual biomass. Thus, a change in the kinetic formalism alone enables better 
optimization of the fermentation, regardless of the degree of dispersion, thereby enhancing 
PHB yields per unit volume of the broth and per unit mass of cells. Moreover, these 
improvements are achieved with reduced consumption of glucose and ammonium chloride. 
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Fig. 2 Profiles of the residual biomass in the 

bioreactor predicted by different kinetic 
models. For each pair of plots, the one with 
filled symbols is for Pe = 0 and the plot with 

open symbols is for Pe = 20. 

Fig. 3 Profiles of PHB concentration in the 
bioreactor predicted by different kinetic 

models. For each pair of plots, the one with 
filled symbols is for Pe = 0 and the plot with 

open symbols is for Pe = 20. 
 
 
 

 
Fig. 4 Profiles of glucose concentration in the 

bioreactor predicted by different kinetic 
models. For each pair of plots, the one with 
filled symbols is for Pe = 0 and the plot with 

open symbols is for Pe = 20. 

Fig. 5 Profiles of ammonium chloride 
concentration in the bioreactor predicted by 

different kinetic models. For each pair of plots, 
the one with filled symbols is for Pe = 0 and 
the plot with open symbols is for Pe = 20. 
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Table 1. Percentage increases or reductions in the final 
concentrations of different variables at the end of the fermentation 

Between different kinetic models 
Mechanical→Cybernetic Cybernetic→Neural Mechanical→NeuralConcentration 

variable 
Pe = 0 Pe = 20 Pe = 0 Pe = 20 Pe = 0 Pe = 20 

Residual 
biomass 
 
PHB 
 
Glucose*

 
Ammonium 
Chloride*

51.6 
 
 

69.8 
 

-21.0 
 

-19.0 
 

48.6 
 
 

53.3 
 

-20.0 
 

-20.0 
 

14.6 
 
 

35.4 
 

-15.8 
 

-29.4 
 

15.2 
 
 

24.4 
 

-20.3 
 

-28.6 
 

73.7 
 
 

129.5 
 

-29.3 
 

-42.8 
 

71.1 
 
 

92.9 
 

-36.2 
 

-42.8 
 

 
 Table 2. Percentage increases or reductions in the final 
 concentrations of different variables at the end of the fermentation 

From Pe = 0 to Pe = 20 Concentration 
variable Mechanical Cybernetic Neural 

Residual biomass 
 
PHB 
 
Glucose*

 
Ammonium 
Chloride*

49.5 
 

72.1 
 

-13.0 
 

-16.7 
 

46.5 
 

55.8 
 

-15.8 
 

-17.6 
 

47.3 
 

54.6 
 

-20.3 
 

-16.8 
 

 
* Negative values for these concentrations mean reductions. 

 
The superior performance with a neural model continues for the feed rates of glucose and 
ammonium chloride. The plots for glucose (Fig. 6) show that for a given model, less of the 
substrate is required at the optimum dispersion (Pe = 20) than for complete dispersion 
(Pe = 0). Similarly, for a given degree of dispersion, neural kinetics ensures less of glucose 
requirement than cybernetic and mechanistic kinetics. Corresponding plots for the nitrogen 
source (not shown) had the same trends. 
 
While it is possible, on the basis of these results, to recommend neural kinetics for fed-batch 
fermentation for PHB synthesis, it is also useful to seek explanations for the observations. 
There are two important issues. First, why are neural models better than cybernetic models, 
and mechanistic models the least efficient? In answer to this, we note that a cybernetic model 
portrays experimental data more accurately than a mechanistic model. This has been attributed 
[9, 21, 22, 46] to the inclusion of intra-cellular regulatory controls and of biological ‘memory’ 
in cybernetic models, which are absent in mechanistic models. 



BIO

Autom
ati

on

Bioautomation, 2006, 5, 23 – 38 ISSN 1312 – 451X 
 

 31

 
Fig. 6 Variations of the optimal glucose feed rate predicted by different kinetic models 

as the fermentation progresses. For each pair of plots, the one with filled symbols is 
for Pe = 0 and the plot with open symbols is for Pe = 20. 

 
However, cybernetic models have other limitations. One is that the models can sometimes 
become prohibitively complex. Secondly, it is often difficult to draw correspondences 
between the key enzymes in a kinetic model and the enzymes actually present in a metabolic 
network. Until now, such identifications have been proposed heuristically such that model 
predictions agree with experimental results [41, 43, 46]. A third difficulty is that more than 
one cybernetic objective (i.e. maximization of different goals) can be proposed for a given set 
of observations, and there is yet no rationale to rule out a (weighted) combination of 
objectives. 
 
Both cybernetic and mechanistic models have a common limitation when applied to large 
nonideal bioreactors. Because the conditions in the broth change with both time and location, 
these models have limited ability and flexibility to predict such variations. Neural networks do 
not have these weaknesses, mainly because (a) they do not require a mathematical model, (b) 
they are trained with actual large-scale data, (c) they learn and improve with usage, and (d) 
they are robust to disturbances and measurement errors [27, 29]. These features help a neural 
network to maintain a consistently close fidelity to the fermentation process and consequently 
optimize it to generate higher outputs than cybernetic and mechanistic models. 
 
The second issue concerns the existence of an optimal dispersion, which goes contrary to 
conventional bioreactor theory. In a fully dispersed broth, the nutrients, products and 
intermediates are uniformly distributed. Now, the mechanism of PHB synthesis is such that its 
formation is favored by sufficient amounts of carbon and a shortage of nitrogen [6, 19, 40]. 
However, a preponderance of carbon over nitrogen is not desirable either, and the optimal 
ratio varies between 10 and 20. Now, while nitrogen starvation promotes PHB synthesis, this 
is also coupled with degradation of the polymer. Doi et al.’s [11] experiments showed that 
under restricted nitrogen supply the synthesis of PHB and its degradation to a PHB-co-PHV 
(PHV = poly-hydroxyvalerate) copolymer formed a cyclic process. 
 
The formation of PHB is also connected with the formation and consumption of acetate, an 
intermediate. High concentrations of PHB suppress acetate formation; this is desirable since 
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acetate inhibits cell growth. However, extremely fast synthesis of PHB is also unfavorable to 
the cells since it exerts a high metabolic stress [45]. Therefore, the production of PHB and of 
acetate have to balanced to optimize the fermentation [5]. 
 
The degree of mixing or dispersion in the broth plays an important role in determining the 
balances between synthesis and degradation of PHB and between PHB production and acetate 
production. At complete dispersion the carbon and nitrogen substrates are available freely at 
all positions in the broth. This favors acetate formation, thus inhibiting cell growth and 
resulting in low volumetric productivity of PHB, even though its intra-cellular concentration 
may be high [6, 40, 45]. On the other hand, poor dispersion restricts the availability of the 
substrates to the cells, and hence there is low synthesis of PHB. Between these two extreme 
situations there is a finite degree of dispersion that maximizes PHB production without 
excessive acetate formation. In fact, the role of acetate is more complicated than the short 
account given above. The concentration of acetate in the bioreactor depends not only on that 
of PHB but also on glucose concentration and therefore indirectly on the C:N ratio. At low 
glucose concentrations, acetate provides a supplementary source of carbon so that this ratio 
does not decrease too much. Thus, acetate is involved in a rather complex way in the 
metabolism of carbon and nitrogen, and this is manifested on a macroscopic level by the 
undulating plots of ammonium chloride (Fig. 5). These variations are less conspicuous for 
glucose since its concentration is much higher than that of ammonium chloride. 
 
These considerations suggest that the carbon and nitrogen sources should neither be freely 
available everywhere in the both (as with Pe = 0) nor confined to large stagnant regions with 
little access to the cells (when Pe is very large). An optimal balance between PHB formation 
and degradation, on the one hand, and between PHB synthesis and the net rate of acetate 
formation, on the other, requires an intermediate degree of dispersion. For PHB synthesis by 
R. eutropha, this is attained at Pe = 20. For both this level of dispersion and at complete 
dispersion, optimization of the fermentation through a neural representation generated a 
greater concentration of PHB and required less substrate consumption than with a mechanistic 
model or a cybernetic model. This observation is useful for large bioreactors because, as 
explained earlier, it is difficult to formulate models that are simple, flexible and sufficiently 
accurate. 
 
Conclusions 
In terms of its useful properties, PHB compares favorably with synthetic polymers such as 
polypropylene. However, owing to its low productivity, the microbial production of PHB has 
not yet become competitive with the chemical synthesis of petroleum-based polymers. 
 
Increase of productivity requires a good quantitative description and proper optimization of 
the fermentation. Three kinetic modelling approaches – mechanistic, cybernetic and neural – 
have been compared for a fed-batch fermentation using Ralstonia eutropha. Each model was 
applied to a fully dispersed bioreactor (Pe = 0) and one operated at optimum dispersion  
(Pe = 20). For either value of Pe, both cell growth and PHB synthesis were highest with a 
neural kinetic model and lowest with a mechanistic model. The performance at Pe = 20 was 
superior to that at Pe = 0 for all three models. Moreover, for both complete dispersion and 
optimum dispersion, the increases in PHB concentration upon shifting from a mechanistic 
model to a cybernetic model or to a neural model were larger than those of the residual 
biomass. 
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For a fully dispersed bioreactor, a neural network for the kinetics generated 130% more PHB 
at the end of the fermentation than with a mechanistic model. No less significant was the 
improvement of 93% at optimum dispersion. These improvements were accompanied by 
reduced consumption of glucose and ammonium chloride, the two main substrates. Since 
large bioreactors have incomplete dispersion and are difficult to model, the results thus 
suggest that neural networks may be utilized to exploit the finite dispersion to increase the 
yields in the microbial synthesis of PHB to commercially viable levels. 
 
Nomenclature 
 
De effective dispersion coefficient, [cm2·h-1] 
Ei specific activity of i-th key enzyme, [-] 
FC feed rate of carbon source, [l·h-1] 
FN feed rate of nitrogen source, [l·h-1] 
KC Monod constant for growth on carbon source, [g·l-1] 
KCI inhibition constant for growth on carbon source, [g·l-1] 
KN Monod constant for growth on nitrogen source, [g·l-1] 
KNI inhibition constant for growth on nitrogen source, [g·l-1] 
KPC Monod constant for production of PHB on carbon source, [g·l-1] 
KPCI inhibition constant for production of PHB on carbon source, [g·l-1] 
KPN Monod constant for production of PHB on nitrogen source, [g·l-1] 
KPNI inhibition constant for production of PHB on nitrogen source, [g·l-1] 
L characteristic dimension of bioreactor, [cm] 
me specific maintenance energy, [l·h-1] 
p product (PHB) concentration, [g·l-1] 
Pe Peclet number, [-] 
rC rate of consumption of carbon source, [g·l-1·h-1] 
rN rate of consumption of nitrogen source, [g·l-1·h-1] 
rP rate of formation of product, PHB, [g·l-1·h-1] 
rX rate of formation of biomass, [g/l/h] 
sC carbon source concentration, [g·l-1] 
sCf carbon source concentration in feed stream, [g·l-1] 
sN nitrogen source concentration, [g·l-1] 
sNf  nitrogen source concentration in feed stream, [g·l-1] 
t real time, [h] 
u characteristic fluid in bioreactor, [cm·h-1] 
vi fractional allocation of substrate i to cellular processes, [-] 
V volume of broth in the bioreactor, [l] 
Vw working volume of bioreactor, [l] 
x total biomass concentration, [g·l-1] 
xr residual biomass concentration, [g·l-1] 
YR/C yield coefficient for residual biomass on carbon source, [g·g-1] 
YP/C yield coefficient for PHB on carbon source, [g·g-1] 
YR/N yield coefficient for residual biomass on nitrogen source, [g·g-1] 
αi synthesis rate constant for i-th key enzyme, [l·h-1] 
βi decay rate constant for i-th key enzyme, [l·h-1] 
γi cybernetic variable for substrate i, [-] 
µ specific growth rate of residual biomass, [l·h-1] 
π specific rate of formation of PHB, [l·h-1] 
σC specific consumption rate of carbon source, [l·h-1] 
σN specific consumption rate of nitrogen source, [l·h-1] 
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Appendix A. The mechanistic model of Lee et al. [24] 
 
Lee et al. [24] used a small (2.5 l) bioreactor, in which spatial gradients could be ignored. 
Their fed-batch model was: 

r
r x

dt
dx

µ= ; xr(0) = xr0 (A1) 

rNCCf
C xFs

dt
ds

σ−= ; sC(0) = sC0 (A2) 

rNNNf
N xFs

dt
ds

σ−= ; sN(0) = sN0 (A3) 

rx
dt
dp

π= ; p(0) = p0 (A4) 

NC FF
dt
dV

+= ; V(0) = V0 (A5) 

 
The working volume, Vw, of the bioreactor sets the upper limit on V. The process is stopped at 
or before V = Vw. 
 
For the specific rates µ, σC and σN, Lee et al. [24] modified Asenjo and Suk’s [1] product 
inhibition model to include the production of PHB without ammonium. 
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N/RN Y/µ=σ  (A9) 
 
The values of the parameters are listed in Table 3. 
 
Appendix B. The cybernetic model of Yoo and Kim [46] 
 
Yoo and Kim [46] expressed the growth rate of residual biomass by modified Monod kinetics 
as: 

NN

rN1r
X sK

xsE
dt

dx
r

+
µ

==  (B1) 

 
A similar expression was formulated for the rate of PHB synthesis: 

CC

rC2
P sK

xsE
r

+
π

=  (B2) 

 
Yoo and Kim [46] interpreted maximization of the cells’ survival as maximization of the cell 
mass at each instant of time. So at any time the cells allocate each resource, i.e. glucose or 
ammonium salt, such that their fractional allocations follow: 
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N or Cj,i  ;
)rexp(

)rexp(
v

j
j

i
i ==

∑
 (B3) 

 
The activity of the key enzyme Ei for cell growth or PHB synthesis on substrate i was 
expressed as: 

)]r[exp(max
)rexp(

j
j

i
i =γ ; i, j = C or N (B4) 

 
The γi are the cybernetic variables. If  γi decreases, the corresponding growth and synthesis 
processes become slower, even with sufficient amount of the enzyme Ei. 
 
The rate of change of each key enzyme depends on its induced synthesis, its degradation and 
its dilution due to cell growth. 
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ii

iiii ; i, j = C or N (B5) 

 
The cybernetic variables control the rates of nitrogen and carbon utilization, which have 
familiar forms [21]. 

N
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The growth rate of the total biomass is the sum of its rates on the individual substrates. 

NC rr
dt
dx

+=  (B8) 

 
Since PHB is accumulated intracellularly, 
x = xr + p (B9) 
 
Following Kompala et al. [32], they expressed the maximum specific growth rate on the i-th 
substrate as: 

i

imimi
i

)(
α

β+µµ
=µ  (B10) 

 
Here i is either glucose (C) or ammonium chloride (N). Table 4 lists the values of the 
parameters from Yoo and Kim [46]. 
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Table 3. Values of the parameters in the 
mechanistic model of Lee et al. [10] 

Table 4. Values of the parameters in the 
cybernetic model of Yoo and Kim [46] 

Parameter Units Value  Parameter Units Value 
KC g·l-1 5.81  KN g·l-1 0.254 
KCI g·l-1 14.5  KC g·l-1 3.804 
KN g·l-1 0.69  (P/X)0 - 0.569 
KNI g·l-1 0.15  YN g·g-1 1.653 
KP g·l-1 0.05  '

NY  g·g-1 0.460 
KPC g·l-1 2.09  YC g·g-1 0.439 
KPCI g·l-1 80.0  me 1·h-1 0.010 

KPN g·l-1 0.05  αi (i = C or 
N) 1·h-1 0.001 

KPNI g·l-1 0.9  βi (i = C or 
N) 1·h-1 0.050 

me 1·h-1 0.01 (0 when
sC = 0)  µmN 1·h-1 0.176 

(P/X)m - 0.85  µmC 1·h-1 0.098 
YP/C g·g-1 0.47     
YR/C g·g-1 0.45     
YR/N g·g-1 2.11     
µm 1·h-1 0.875     
πm 1·h-1 0.402     
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