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Abstract: A multiple-objective optimization is applied to find an optimal policy of a fed-batch 
fermentation process for lactose oxidation from a natural substratum of the strain 
Kluyveromyces marxianus var. lactis MC5. The optimal policy is consisted of feed flow rate, 
agitation speed, and gas flow rate. The multiple-objective problem includes: the total price 
of the biomass production, the second objective functions are the separation cost in 
downstream processing and the third objective function corresponds to the oxygen mass-
transfer in the bioreactor. The multiple-objective optimization are transforming to standard 
problem for optimization with single-objective function. Local criteria are defined utility 
function with different weight for single-type vector task. A fuzzy sets method is applied to be 
solved the maximizing decision problem. A simple combined algorithm guideline to find a 
satisfactory solution to the general multiple-objective optimization problem. The obtained 
optimal control results have shown an increase of the process productiveness and a decrease 
of the residual substrate concentration. 
 
Keywords: Multiple-objective optimization, Fuzzy sets, Fuzzy optimal control,   Non-iterative 
algorithm. 

 
Introduction 
Multiple-objective optimization is a natural extension of the traditional optimization of a 
single-objective function. If the multiple-objective functions are commensurate, minimizing 
single objective function it is possible to minimize all criteria and the problem can be solved 
using traditional optimization techniques. On the other hand, if the objective functions are 
incommensurate, or competing, then the minimization of one objective function requires a 
compromise in another objective function. The competition between multiple-objective 
functions is a key distinction between multiple-objective optimization and traditional single-
objective optimization [9]. 
 
Multiple-objective optimization provides a framework for understanding the relationships 
between the various objective functions and allows an engineer to make decisions on how to 
trade-off among the objectives to achieve “the best” process performance. It is an inherently 
interactive algorithm, with the engineer constantly making decisions [4, 6, 14]. 
 
Zhou at all [16] have used of a Pareto optimisation technique to locate the optimal conditions 
for an integrated bioprocessing sequence and the benefits of first reducing the feasible space 
by the development of a series of windows of operation to provide a smaller search area for 
the optimisation. 
 
Vera at all [12] have illustrated a general multiple-objective optimization framework of 
biochemical systems and have applied it optimizing of several metabolic responses involved 
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in the ethanol production process by using Saccharomyces cerevisiae strain. The general 
multiple-objective indirect optimization method (GMIOM) is based on the use of the power 
law formalism to obtain a linear system in logarithmic coordinates. The problem is addressed 
with three variants within the GMIOM: the weighted sum approach, the goal programming 
and the multi-objective optimization. We have compared the advantages and drawbacks of 
each one of GMIOM modes. The obtained results have shown that the optimization of 
biochemical systems was possible even if the underlying process model was not formulated in 
S-system form and that the systematic nature of the method has facilitated the understanding 
of the metabolic design and could be of significant help in devising strategies for 
improvement of biotechnological processes. 
 
Messac at al. [7] have examined optimization problems that can be partitioned into two 
categories hereby so called “blind” optimization and “physical” optimization. In “blind” 
optimization the analyst doesn’t have knowledge about the physical meaning of the problem, 
or about the nature of its anticipated solution. In “physical” optimization the decision maker 
does have substantive knowledge and often clear objectives regarding of the problem aspects 
that can be modelled in physically meaningful terms. Approximately, all operational research 
or engineering design problems belong to the second category. This paper explores a new 
optimization philosophy, linear physical programming, for operational research applications 
by addressing the distinct issues related to multiple objective optimizations. 
 
Tonnon at all [11] have used interactive procedure to solve multiple-objective optimization 
problems. A fuzzy set has been used to model the engineer’s judgment on each objective 
function. The properties of the obtained compromise solution were investigated along with 
the links between the present method and those based fuzzy logic. An uncertainty which has 
been affecting the parameters is modelled by means of fuzzy relations or fuzzy numbers, 
whose probabilistic meaning is clarified by random set and possibility theory. Constraint 
probability bounds that satisfy a solution can be calculated and procedures that consider the 
lower bound as a constraint or as an objective criterion are presented. Some theorems make 
the computational effort particularly limited on a vast class of practical problems. The 
relations with a recent formulation in the context of convex modelling are also pressured. 
 
In the paper of Wang at all [13] a fuzzy-decision-making procedure is applied to find the 
optimal feed policy of a fed-batch fermentation process for fuel ethanol production using a 
genetically engineered Saccharomyces yeast 1400 (pLNH33). The policy consider control 
variables such as - feed flow rate, feed concentration, and fermentation time. By using an 
assigned membership function for each of the objectives, the general multiple-objective 
optimization problem can be converted into a maximizing decision problem. In order to 
obtain a global solution, a hybrid search method of differential evolution is introduced. 
 
In this study multiple-objective optimization of an aerobic fed-batch cultivation of 
Kluyveromyces lactis MC5 was developed. The single-objective functions reflect of the 
biomass process productiveness, substrate utilization and oxygen mass-transfer indexes of the 
bioreactor. The multiple-objective optimization problem was transformed to a problem with a 
single-objective function by utility functions with weight coefficients for each single criterion. 
 
The objective of this study was to apply a multiple-objective optimization and fuzzy optimal 
control strategy to determine the optimal policy of a whey fed-batch fermentation process in 
stirred tank bioreactors with ideal mixing. 
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Material and methods 
Process specific 
Six fermentations where carried out in an aerobic fed-batch cultivation of Kluyveromyces 
lactis. A laboratory bioreactor ABR 02M with capacity 2 liters has been used. The strain 
Kluyveromyces marxianus var. lactis MC5 was cultivated under the following conditions 
(published in details elsewhere [2]): 

 
1. Nutrient medium with basic component – whey ultra filtrate with lactose 

concentration 44 g/l. The ultra filtrate was collected from whey separated in 
production of white cheese and deproteinisation by ultra filtration on LAB 38 DDS 
with GR 61 PP membrane type under the following condition: 
 

- Temperature T = 40-43 °C; 
- Input pressure Pi = 0.65 MPa; 
- Output pressure Po = 0.60 MPa. 

 
The ultra filtrate was used in native condition with lactose concentration 44 g/l. 
Nutrient medium ingredients were as follows: 
 

- (NH)4HPO 0.6 %; 
- yeast's autolisate 5 %; 
- yeast's extract 1 %; 
- pH 5.0-5.2. 

 
2. The gas flow rate was 60 l⋅h-1 up to the 4-th hour and 120 1⋅h-1 up to the end of the 

process under continuous mixing, where n = 800 rpm. 
 
3. Temperature is 29°C. 
 
4. The microbiological process changes (lactose conversion by yeast's cells to protein) 

were studied during the strain growth: 
 

- Lactose concentration in fermentation medium was determined by enzyme 
methods by UV tests (Boehringer Manheim, Germany, 1983); 

- Cell mass concentration and protein content were determined by using 
Kjeltek system 1028 [10]; 

- Dissolved oxygen concentration in the fermentation medium was 
determined by LKB oxygen sensor. 

 
5. Duration of the cultivation was tf = 12 hours. 

 
Fed-batch model 
The kinetics model of whey fed-batch process have included the measurable variables of the 
process such as: biomass concentration, substrate concentration and oxygen concentration in 
the liquid phase [8]: 
 

VXFXCSX /),( −= µ&  (1) 
XCSYVSSFS in ),(/)( 1 µ−−=&  (2) 
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where: X – biomass concentration, [g⋅l-1]; S – substrate concentration, [g⋅l-1]; C – dissolved 
oxygen concentration, [g⋅l-1]; C* – equilibrium dissolved oxygen concentration, [g⋅l-1]; Sin – 
input feed substrate concentration, [g⋅l-1]; V – working liquid volume, [l]; F – feed rate, [l⋅h-1]; 
Y1 and Y2 – yield coefficients [g/g]; kla – volumetric liquid mass transfer coefficient, [h-1]; 
µ(S, C) – specific growth rate, [h-1]; 
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iCS
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Sk

SCS
+++

= µµ ,  

where: µm – maximum specific growth rate, [h-1]; kS, kC – saturation constants [g⋅l-1]; ki – 
inhibition constant, [g⋅l-1]; 
 

( ) 23,038,03 /1052 Gl WVPak −= ;  
where: P – power input, 4.053 Re9.60 −= dnP ρ , [W]; ρ – liquid density, [kg/m3]; n – agitation 
speed, [rpm]; d – impeller diameter, [m]; Re – Reynolds number; WG – gas velocity, 

2/4 DQWG π=  [m/s]; Q – gas flow rate, [m3/s]; D – bioreactor diameter, [m]; εG – gas hold-

up, ( ) 014.03/53.0 −
= ndQGε . 

 
The initial conditions and the kinetics model coefficients values used in the study were as 
follows [8]: 
 
X(0) = X0 = 0.28; S(0) = S0 = 49.7, Sin = 67; C(0) = C0 = 6.3x10-3; C* = C0; F(0) = F0 = 0.01; 
V(0) = V0 = 1; µm = 0.89; kS = 1.62; kC = 3.37x10-3; ki = 0.47; Y1 = 2.25; Y2 = 3.4x10-3. 
 
System constraints 
For the most bioengineering processes have to be applied physical constraints. The bioreactor 
volume constraint can be described as follows 
 

0)(1 ≤−= fVtVg  (5) 
 
The substrate and oxygen concentrations have to be positive over process time. We have 
therefore 
 

0)(2 ≤−= tSg  (6) 
 

0)(3 ≤−= tCg  (7) 
 
In addition, the stoichiometry of the biomass formation from substrate and oxygen must be 
obeyed, posing two constraints as follows 
 

[ ] 01
)()()(

)()(
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4 ≤−

−+−
−

=
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VXtVtXg
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 (8) 

 



BIO

Autom
ati

on

Bioautomation, 2006, 5, 39 – 48 ISSN 1312 – 451X 
 

 43

01

)()()()(
)1(

)()(

2
00

*

00
5 ≤−

−+−
−

−
=

YtVtCVCCCtVak
VXtVtXg

G

l

ε

 (9) 

 
If the constraints in equations (8) and (9) are not included in the optimization problem, an 
unrealistic predicted value may be found [3]. 
 
The control variables constraints (flow rate F(t), agitation speed n(t) and air flow rate Q(t)) 
were as follows: 
 
    0 l⋅h-1 = Fmin ≤ F(t) ≤ Fmax =  0.05 l⋅h-1 
600 rpm = nmin ≤ n(t) ≤ nmax = 1000 rpm 
    0 l⋅h-1 = Qmin ≤ Q(t) ≤ Qmax = 120 l⋅h-1 
 
Because the feed rate F(t), agitation speed n(t), and gas flow rate Q(t) are time dependent 
variables, the optimal control problem can be considered such as an infinite dimensional 
problem. To solve this problem efficiently, the feed flow rate, agitation speed, and gas flow 
rate were represented by a finite set of control parameters in the time interval tj-1 < t < tj as 
follows: 
 
F(t) = F(j), n(t) = n(j), and Q(t) = Q(j) for j = 1, …, K – number of time partitions. 
 
Formulation of multiple-objective optimization problem 
The objective of this work was to find optimal feed flow rate, rotation speed, and gas flow 
rate of the fed-batch process such as the biomass production should be greater than or equal to 
some threshold value. 
 
According to this statement, the optimization task has been formulated as a multiple-objective 
decision-making problem. Two requirements have to be satisfied in such a decision-making 
problem. The first requirement was to find the optimal values of feed flow rate, substrate feed 
concentration, and fermentation time, and the corresponding optimal objective function value. 
Such an optimal solution can be obtained by using multiple-objective optimization 
techniques. On the other hand, the second requirement was to check whether or not the 
optimal solution should have satisfied the pre-assigned threshold values. If the optimal 
solution does not satisfy the threshold values, the decision-making has to trade-off some 
threshold values. The search efforts should be repeated to find another local optimal solution. 
 
This problem is simply called the multiple-objective optimization problem and is expressed as 
 

001 )()(max VXtVtXf ff −=
u
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The first objective function corresponds to the total price of biomass production. The second 
objective function is the separation cost in downstream processing. The third objective 
function stands for the oxygen mass-transfer processes in the bioreactor. 
 
The multiple-objective optimization problem was formulated in the following way: to be 
founded such values of the control variables, united in the vector u, for that the vector 
criterion Q(u), with elements of the separate single-objective function fi(u), (i = 1, 2, 3) 
accepts an optimal value and the formulated constrains are satisfied Eqs. (5) - (9): 
 

[ ]
u

uuuu max)(),(),()( 321 →= fffQ  (13) 

5...,,2,1,0)( =≤ jg j u  
 
For determination of the optimization problem Eq. (17) a utility function method was used for 
one vector problem: 
 

∑∑ ∫∑
===

=−=
k

i
i

j

t

jj
i

ii wdttgrfwQ
f

1

5

1 0

3

1
1,)()(max u

u
 (14) 

 
where: wi – weight coefficients, rj – penalty parameters. 
 
The single-objective functions fi(u) are normalized in the range from 0 to 1. The weights wj 
was connected with the importance of the he separate single-objective criterion fi(u). In this 
study wj were chosen in the following way wj = [0.5, 0.3, 0.2], where basic weight in the 
general criterion was interpreted as the process productiveness Eq. (10). The second 
importance is the substrate utilization degree Eq. (11) and the last one is the mass-transfer in 
the bioreactor. 
 
The optimal decision u* maximizing the general utility function (14) was found by using of a 
fuzzy sets theory method. 
 
Fuzzy optimal control 
The fuzzy sets theory (FTS) allows a possibility to be developed a “flexible” model [15], that 
reflects in more details about criterion possible values and control variables of the developed 
model. The developed model was evaluated as the most acceptable one. As admissible, but 
with a less degree of acceptability were evaluated some diversions of the developed model. 
This was presented by a fuzzy set with a membership function of the following type: 
 

21
1

i
i ε

ν
+

=  (15) 

 
where: εi – deviation of the basic model, i = 1, …, N – number of equations in the main 
model. 
 
The fuzzy criterion was formulated as follows: “The optimum criterion Q(u) to be possibly 
higher” and it was presented by the following membership function: 
 



BIO

Autom
ati

on

Bioautomation, 2006, 5, 39 – 48 ISSN 1312 – 451X 
 

 45

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>

≤≤
−
−

<

=

U

UL
LU

L

L

QQ

QQQ
QQ
QQ

QQ

Q

;1

;

;0

)(0ν  (16) 

 
where QL and QU were lower and upper values for criterion Q. 
 
The following optimization problem in the class of the fuzzy mathematical programming 
problems can be formulated: 
 

u
QQ xa~m≅  (17) 

 
where " xa~m " means “in possibility maximum”; "≅" means "is come into view approximately 
in following relation". 
 
For determination of this problem, an approach generalizing the Bellman-Zadeh’s method [1] 
was used. The fuzzy set of the solution was presented with a membership function νD(u), 
whish was conjunction of the membership functions of the fuzzy set of the criterion ν0(u) and 
the model νi(u): 
 

⎟⎟
⎠
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⎝

⎛
−−+−= ∏∏

==

N

i
i

N

i
iD

ii

00

)1(1)1( θθ νγνγν  (18) 

 
where: γ – parameter characterized the compensation degree;  

θi – the weights of νi, (i = 0, 1, …, N). 
 
The solution was obtained by using common defuzzification method BADD [1, 5]: 
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where: q – number of discrete values of the vector u, nc – number of control variables. 
 
The generalized fuzzy algorithm scheme can be described as follows: 
 
BEGIN 

1. Input: nc – number of control variables, m – number of criterion; 
 wj – weight of each criterion, (j = 1, m); 
 K – number of time partitions; 
 q – number of discrete values of vector u; 

2. Computing criterion QB before optimization from (14); 
3. Computing low and upper values for criterion: QL = 0.80QB and QU = 1.20QB; 
4. Computing discrete values of each control variable u; 
5. Computing of deviations εi from the basic model; 
6. Computing of membership functions of the model νi, (i = 1, 2, …, N) from (15); 
7. Computing of single-objective function Q from (17); 
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8. Computing of membership function of the criterion ν0 from (16); 
9. Computing of membership function of the decision νD from (18); 
10. Obtaining of solution u* using defuzzification operator from (19); 
11. Returns optimal values of each control variables u*; 
12. Computing model after fuzzy optimal control; 
13. Print results: model before and after optimal control; single-objective functions fi and general function Q; 

each control variable in the time partitions. 
END 
All computations were performed on a Pentium IV 1.8 GHz computer using a Windows XP 
operating system. The Fuzzy algorithm was written on a FORTRAN programming language 
version 5.0. 
 
Results and discussion 
The discrete values of each control variable is presented in Table 1, (j = 1, 2, …, 12). 
 
 Table 1 

F(j)x103, [l⋅h-1] 4 8 13 17 21 25 29 33 38 42 46 50
n(j), [rpm] 633 667 700 733 767 800 833 867 900 933 967 1000
Q(j), [l⋅h-1] 65 70 75 80 85 90 95 100 105 110 115 120

 
The optimal values of feed flow rate, agitation speed, and gas flow rate are shown in Fig. 1 to 
Fig. 3. The biomass and substrate profiles are shown in Fig. 4. The oxygen profile is 
presented in Fig. 5. 
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 Fig. 1 Optimal feed flow rate profile Fig. 2 Optimal agitation speed profile 
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        Fig. 3 Optimal gas flow rate profile 
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 Fig. 4 Concentration profiles Fig. 5 Concentration profiles of 
 of biomass and substrate dissolved oxygen 
 
From Fig. 1 to Fig. 3 is shown a vastly change of the control variable as a function time. It is 
especially true about the feeding flow rate and gas flow rate. 
 
When the gas flow rate was included as a control variable it should be noted that the gas 
consumption is considerable less. This is especially important in industrial scale, where the 
energy consumptions in fermentation step have determined product cost. 
 
From Fig. 4, one can observe that the biomass concentration has increased slightly. This fact 
is well known from the biochemical engineering point of view and can be interpreted like 
stationary biomass growth phase where the nutrients are exhausted. Analyzing the presented 
results in this figure one may conclude that there was better substrate consumption under the 
optimal control. 
 
The obtained optimal profile of dissolved oxygen concentration versus time has shown that 
the agitation cost is minimized (Fig. 5). This fact should be analyzed with caution and the 
oxygen values should be compared with the critical oxygen concentration values below which 
a dissolved oxygen limitation takes place. 
 
Conclusions 

1. The obtained results from the study have shown that multiple-objective optimization is 
more complex approach minimizing the risk in the procedure of making of decisions 
and maximizing the formulated objective. 

2. The used method based on the fuzzy sets theory has allowed a direct search of the 
fuzzy optimization problem and gives non-stochastic indeterminateness neglect in the 
tradition methods. Hence, the general defects of the numerical decision have been 
avoided. A disadvantage of the method is that presents the unknowns in discrete form, 
which make the method less successful for large-scale problems. 

3. The obtained optimal profiles of the feed flow rate, agitation speed and gas flow rate 
and received results after the theoretical optimal control have shown clearly practical 
applicability of the used techniques, in particular, for maximization of process 
productivity. 
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