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Abstract: This paper reviews Quantitative Structure-Activity Relationship (QSAR) models for 
acute mammalian toxicity published in the last decade. A number of QSAR models based on 
cytotoxicity data from mammalian cell lines are also included because of their possible use 
as a surrogate system for predicting acute toxicity to mammals. On the basis of the review, 
the following conclusions can be made: i) a relatively small number of models for in vivo 
toxicity are published in the literature. This is due to the nature of the endpoint – acute 
systemic toxicity is usually related to whole body phenomena and therefore is very complex. 
The complexity of the mechanisms involved leads to difficulties in the QSAR modelling; ii) 
most QSAR models identify hydrophobicity as a parameter of high importance for the 
modelled toxicity. In addition, many models indicate the role of the electronic and steric 
effects; iii) most of the literature-based models are restricted to single chemical classes. 
Models based on more heterogeneous data sets are those incorporated in expert systems. In 
general, the QSAR models for mammalian toxicity identified in this review are considered 
useful for investigating the mechanisms of toxicity of defined chemical classes. However, for 
predictive purposes in the regulatory assessment of chemicals most of the models require 
additional information to satisfy internationally agreed validation principles. In addition, the 
development of new models covering larger chemical domains would be useful for the 
regulatory assessment of chemicals. 
 
Keywords: QSAR, Acute mammalian toxicity, Expert system, Review. 

 
Introduction 
In October 2003 a new chemicals regulation was proposed by the European Commission [6]. 
It aims to address the existing data gaps and to obtain the necessary information for all 
substances imported or manufactured in the European market at volumes greater than 1 tonne 
per year [8]. In order to achieve economic and animal savings the future REACH 
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(Registration, Evaluation and Authorisation of Chemicals) legislation envisages development 
of intelligent testing strategies based on (Q)SAR (Quantitative Structure-Activity 
Relationship), read-across, and grouping approaches as well as other alternative approaches to 
animal testing. 
 
The use of QSAR in ecotoxicology is well established, and predictions can be made with 
sufficient accuracy for a number of endpoints and wide variety of chemicals. The situation in 
mammalian toxicology is rather different. There are a number of reasons for this, namely the 
wide variations in the quality and source of experimental data, in the organisms used, 
combined with a limited understanding of the biological mechanisms involved. Thus, 
although a considerable amount of data is available, the modelling can be problematic [11]. 
Often the problem is related to the different laboratories and different protocols used. Despite 
this, there have been numerous efforts for developing QSAR models for acute mammalian 
toxicity [9, 11, 26, 46]. 
 
The aim of this paper was to review QSAR models for acute mammalian toxicity that have 
been published in the last decade and to provide a snapshot on the availability and coverage of 
such models for use under the new chemical legislation in the European Union (EU). Taking 
into account that cytotoxicity data may be helpful in predicting in vivo toxicity [43], the 
review also includes QSAR models based on mammalian cell line data. Analysis of the state-
of-the-art leads to the conclusion that further development in the field is necessary in order to 
meet the needs of the REACH legislation. 
 
Testing methods for acute systemic toxicity 
Acute toxicity studies are based on a single administration of the chemical or several 
administrations given within 24 hours. Most acute toxicity studies aim to determine the 
median lethal dose (LD50) of the chemical. The LD50 is defined as an expression of a single 
dose of a chemical that can be expected to kill 50% of animals in the experimental group [29]. 
The LD50 value is expressed in terms of weight of test substance per unit weight of test 
animal (mg/kg). When the route of exposure is inhalation, the endpoint is either the median 
lethal concentration (LC50) or the median lethal time (LT50). 
 
The principle of the classical LD50 test is to dose groups of animals with a single dose of a 
test substance at concentrations expected to cause death in at least a fraction of the animals 
dosed. Results of the test enable the calculation of the LD50 value, i.e. the dose expected to 
kill 50% of the animals within 14 days after a single exposure. 
 
Since the end of the 1970s, the conventional acute toxicity test has been widely criticised on 
both scientific and animal welfare grounds [3, 23]. At their November meeting in 2001, the 
OECD Joint Meeting of the Chemicals Committee and Working Party on Chemicals, 
Pesticides and Biotechnology, agreed that OECD Test Guideline (TG) 401 [32], based on the 
LD50 test should be deleted from the OECD manual of internationally accepted TGs. 
Alternatives to the traditional procedure include the Fixed Dose Procedure (OECD TG 420; 
[33]), the Acute Toxic Class method (OECD TG 423; [34]), and the Up-and-Down Procedure 
(OECD TG 425; [35]). 
 
Within the EU the standardised testing methods to determine acute toxicity of chemicals are 
included in Annex V of Directive 67/548/EEC [7]. The methods are closely linked with the 
OECD Test Guidelines [44]. 
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Non-testing methods 
Non-testing data can be provided by the following approaches: a) structure-activity 
relationships (SARs) and quantitative structure-activity relationships (QSARs), collectively 
called “(Q)SARs”; b) expert systems incorporating (Q)SARs and/or expert rules; and c) 
grouping methods (categories and read-across). These approaches can be used to assess acute 
toxicity if they provide relevant and adequate data for the chemical of interest [47]. Non-
testing methods should be documented according to the appropriate reporting formats. In the 
case of (Q)SARs and expert systems, a detailed description of available models is provided in 
the ECB (European Chemicals Bureau) Inventory of (Q)SAR Models (http://ecb.jrc.it/qsar). 
 
At the moment there is little information about the formal use of (Q)SARs in support of 
regulatory decisions related to acute toxicity. Read-across has been used to a limited extent, 
and on a case by case basis [37]. Nevertheless, the spirit of REACH for increased safety of 
chemicals by more comprehensive use of existing information and utilization of non-testing 
methods where possible is driving the development of reliable (Q)SAR models and grouping 
approaches. 
 
QSARs for mammalian toxicity in vitro 
The idea of using cytotoxicity assays to predict in vivo toxicity arises from the concept of 
“basal cell cytotoxicity” proposed by Ekwall [13]. He suggested that for most chemicals, 
toxicity is a consequence of non-specific alterations in cellular functions. Evaluating the toxic 
potential of compounds in vitro (cytotoxicity) may therefore give an indication of their toxic 
potential in vivo [15]. A number of studies have analysed the correlation between cytotoxicity 
and in vivo toxicity [21, 39, 43]. 
 
A DEFRA (The Department of Environment, Food and Rural Affairs) – funded research 
project carried out by Liverpool John Moores University and FRAME (Fund for the 
Replacement of Animals in Medical Experiments) aimed to review the status of alternatives to 
animal testing and to recommend areas for further research with respect to the REACH 
proposal [24]. The project considered 12 acute toxicity tests. Among them there is one acute 
toxicity test being validated.  
 
In vitro – in vivo correlations  
The Multicenter Evaluation of in vitro Cytotoxicity (MEIC) programme was set up to evaluate 
the relevance for human acute toxicity of in vitro of cytotoxicity tests [14]. For this purpose, 29 
laboratories tested 50 reference chemicals in 61 cytotoxicity assays. Comparisons performed 
between IC50 values from the 61 assays and the human lethal dosage demonstrated that human 
cell line tests gave better average results (R2 = 0.64), than mammalian ones (R2 = 0.52). 
 
Lessigiarska et al. used the toxicity data collected in the MEIC programme in order to develop 
QSAAR (Quantitative Structure-Activity-Activity Relationship) and QSAR models and to 
evaluate their potential application as alternatives to animal testing [27]. In fact, QSAAR 
models combine both data for biological endpoints and structural descriptors to predict other 
biological especially in vivo endpoints. Data for rat, mouse, and human toxicity of the same 
chemicals were taken from the MEMO programme (MEIC monographs on time-related 
human lethal blood concentrations). Rat and mouse toxicities (rat LD50 and mouse LD50 
values) were collected from the NIOSH (National Institute for Occupational Safety ad Health) 
/ RTECS (Register of Toxicology Effects of Chemical Substances). Human toxicity data were 
collected from publications of clinical and forensic studies. For the QSAR development, 
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octanol-water partition coefficient (logP), aqueous solubility, and approximately 250 different 
quantum-chemical, topological, and charge descriptors were calculated. Human in vivo 
toxicity data were correlated with in vivo rodent toxicity or in vitro human liver cell toxicity 
in combination with structural descriptors, accounting for the H-bond donor ability, molecular 
aromaticity, and electronic properties. It was concluded that the models for HAP (human 
toxicity), represented as acute blood/serum peak LC50 values could be useful alternatives to 
animal testing for hazard and risk assessment. In addition, QSAR models have been obtained 
for HAP, which had slightly better statistical parameters than the QSAAR model and these 
models are also considered as a possible tool to partially replace animal testing. Considering 
HLD (human toxicity represented as the acute oral lethal dose) QSAAR analysis revealed that 
it correlated best with the mouse and rat in vivo toxicity (R2 = 0.74). When the number of H-
bond donors and Kier benzene-likeness index (measure of molecular aromaticity) were added, 
the accuracy of the results was improved. Rat LD50 values correlated best with the toxicity to 
rat hepatocytes (R2 = 0.66). Adding the number of six-membered rings or molecular 
polarisability improved the correlation. The first parameter may be related to the size and/or 
shape of the molecule. The second one might influence the transport or distribution of the 
chemicals across the cell membranes. The QSAR for rat LD50 included the hydrophobicity 
factor, the electrotopological state descriptor and the number of six-membered rings. The 
same descriptors also appeared to describe well the mouse LD50, although the statistical 
parameters were slightly worse. Mouse and rat LD50 values intercorrelated with R2 = 0.71. 
The results showed that in the case of QSAARs for in vivo human and rodent toxicity, including 
in vitro toxicity endpoints in combination with structural descriptors, the addition of the 
structural parameters increases only slightly the goodness-of-fit (R2). In comparison, QSARs for 
the in vivo toxicity endpoints had better statistical parameters. 
 
Analysis of QSAAR models relating in vivo to in vitro endpoints can give an insight into the 
factors that determine differences between the in vivo and in vitro toxicity effects. Generally, 
the descriptors encoded electronic/reactivity properties, the presence of oxygen atoms, and 
size/shape properties, which are probably related to toxicokinetic factors. In general the 
QSAAR and QSAR models for in vivo toxicity developed in the study were regarded as 
suitable priority-setting methods or means of providing supplementary information in a 
weight-of-evidence approach to hazard and risk assessment. 
 
QSAR models for different chemical classes 
There is considerable human exposure to phenols as they are found in tea, fruits and 
vegetables. In recent years, the effects of different substituents on phenol toxicity in vitro 
have been investigated by the Hansch group [20, 25, 41]. The researchers aimed to explain 
how the parameters used in the QSAR models can help in understanding the reasons behind 
the various types of toxicity. The QSAR models obtained for electron-releasing phenols are 
described by Eq. (1) and Eq. (2) [41]. 
 
log1/ID50 = (–1.98 ± 0.15) σ+ + (0.18 ± 0.04) log P + (3.31 ± 0.11) (1) 
n = 51  R2 = 0.895 s = 0.227 R2

cv = 0.882 
 
log1/ID50 = (–0.19 ± 0.02) BDE + (0.21 ± 0.03) log P + (3.11 ± 0.10) (2) 
n = 52  R2 = 0.920 s = 0.202 R2

cv = 0.909 
 
In these models, ID50 represents the molar concentration of phenol that induces 50% growth 
inhibition in murine leukemia L1210 cells, σ+ is the Brown variation of the Hammett σ 
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constant, and logP is calculated octanol-water partition coefficient. BDE (the bond 
dissociation energy) is the energy associated with the abstraction of a hydrogen atom from the 
hydroxy moiety. This term in the equation is related to the formation of the phenoxyl radical, 
a reactive oxygen species. 
 
In both models, the low coefficient with the hydrophobic term (logP) suggests that the radical 
may be interacting with a receptor such as DNA or it may represent the slightly enhanced 
transport of the phenoxy radical in the cellular environment.  
 
Phenols with substituents of an electron-attracting nature have non-specific cytotoxicity 
which is modelled by hydrophobicity according to Eq. (3) [40]: 
 
log1/ID50 = (0.62 ± 0.16) log P + (2.35 ± 0.31) (3) 
n = 15  R2 = 0.845 s = 0.232 R2

cv = 0.800 
 
Recently the same authors examined the activation of caspases by phenols and subsequent 
apoptosis in a murine leukaemia cell line [42]. The results were then compared with their 
corresponding cytotoxicities in the same cell line to determine if apoptosis plays a major role 
in the overall cytotoxicity of monophenolic compounds. The following QSAR equation was 
derived (Eq. (4)): 
 
log1/I50 = (1.06 ± 0.12)B52 + (0.33 ± 0.20)B53 – (0.18 ± 0.09)π2,4 – (0.92 ± 0.46) (4) 
n = 51  R2 = 0.886 s = 0.349 R2

cv = 0.866 
 
In Eq. (4), I50 is the concentration of a substituted phenol that induces caspase-mediated 
apoptosis by 50%. B52 is Verloop’s sterimol descriptor and is a measure of the width of the 
larger substituent in the ortho position. B53 represents the width of the larger substituent in 
the meta position. The hydrophobic parameter π2,4 represents the sum of the hydrophobicity 
of substituents in the para position and the bulkier ortho position. In the model, 81% of the 
variance in the data is explained by the steric parameter B52, which led the authors to suggest 
a receptor-mediated interaction of the phenols, with caspases or mitochondrial proteins being 
the likely targets. 
 
The study of structure-cytotoxicity relationships of 65 electron-releasing phenols in the same 
cell line led to the development of the following model (Eq. (5)): 
 
log1/ID50 = (–1.39 ± 0.19) σ+ – (0.28 ± 0.05) B52,6 + (0.16 ± 0.05)log P 
                   – (0.58 ± 0.24)I2 – (1.04 ± 0.25)I1 + (3.90 ± 0.19) (5) 
n = 65  R2 = 0.840 s = 0.271 R2

cv = 0.808 
 
In Eq. (5) B52,6 represents the sum of the width of the substituents in the ortho position. 
Cytotoxicity decreases as the width of these substituents increase. The negative coefficient 
with σ+ implies that highly electron-releasing substituents enhance stabilisation of the 
phenoxy radical and increase cytotoxicity. I1 and I2 are indicator variables for methyl and 
methoxy substituents respectively. They both decrease the cytotoxicity as evident from the 
equation. 
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The following QSAR for 27 electron-attracting phenols was derived (Eq. (6)): 
 
log1/ID50 = (0.56 ± 0.11)log P – (0.30 ± 0.18) B52 + (2.79 ± 0.22) (6) 
n = 27  R2 = 0.848 s = 0.233 R2

cv = 0.812 
 
In Eq. (6), logP was of critical importance in describing the cytotoxicity, since it accounts for 
85% of the variance in the data. 
 
The significant differences between the cytotoxicity and apoptosis QSAR models suggest that 
apoptosis contributes little to the observed cytotoxicity. 
 
Recently Loader et al. [28] investigated a dataset of ortho alkyl-substituted phenols previously 
studied by the Hansch group as described above. The method of quantum topological 
molecular similarity (QTMS) was used [31]. This method uses electronic descriptors drawn 
from ab initio wavefunctions of geometry-optimised molecules. The results did not support 
the hypothesis that the steric factor is important for the cytotoxicity of the investigated 
compounds. The authors concluded that the cytotoxicity of these phenols is dependent 
primarily on electronic and radical effects.  
 
Argese et al. [2] investigated the toxicity of eighteen substituted anilines by means of a short-
term in vitro assay, using SMPs (SubMitochondrial Particles) as biosensors. The test with 
phosphorylating SMPs was carried out by determining the effect of toxicants on the process of 
reverse electron transfer, where exogenous NAD+ is reduced to NADH, which strongly absorbs 
light at 340 nm. The toxicant concentration at which the rate of NADH production was 
diminished by 50% (EC50 values in mol/l) was used as the endpoint for developing QSARs.  
 
The investigated anilines had substituents with a wide range of the electron donor/acceptor 
capabilities, whereas hydrophobicity varied in a narrow range (logP values varied from 
0.04 to 1.89). Thus, the study aimed to assess the influence on the toxicity of the electronic 
properties of the substituents only. This is reasonable taking into account that the investigated 
anilines with comparable logP values exhibited different toxic effects. A small correlation 
between logP and compound toxicity was found (R2 = 0.22), probably due to the low 
variation in compound hydrophobicity. 
 
The EC50 values were correlated with the Hammett sigma constants (σ), LUMO (Lowest 
Unoccupied Molecular Orbital), HOMO (Highest Occupied Molecular Orbital), qH+ (the 
largest positive partial charge on any hydrogen atom) and q- (the largest negative partial 
charge on any atom). For strong electron-withdrawing substituents (COCH3, CN, NO2), the 
nucleophilic σ-

p was used, which takes into account the resonance effect, present when these 
groups are conjugated with an electron-donating group, such as NH2 in anilines. For the 
disubstituted anilines, a summation of the single substituent constants was used. 
 
The QSARs derived by Argese et al. [2] are given in Table 1. The electronic Hammett 
parameter σ gave the best fit. It showed that toxicity increases by increasing the electron-
withdrawing effects of the substituents. Two compounds, 3,5-dinitroaniline and 
4’-aminoacetophenone, were found to be outliers and were excluded from the regression. 
According to the authors, the excess toxicity exhibited by these compounds could be related to 
the possibility of the NO2 and COCH3 groups to form further H-bonds by acting as 
H-atom acceptors. 
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 Table 1. Results of the regression analysis [2] 

Descriptors n R2 R2
cv s F a 1 b 1 

σ 18 0.81 0.76 0.25 69 3.20 ± 0.08 0.57 ± 0.07

σ (excluding outliers) 16 0.91 0.88 0.16 136 3.16 ± 0.05 0.53 ± 0.05

HOMO 18 0.71 0.65 0.31 39 -0.83 ± 0.71 -13.4 ± 2.1 

HOMO (excluding outliers) 15 0.84 0.74 0.20 66 -0.30 ± 0.47 -11.7 ± 1.4 

LUMO 18 0.82 0.78 0.25 72 4.62 ± 0.13 -11.0 ± 1.3 

LUMO (excluding outliers) 17 0.86 0.83 0.22 90 4.58 ± 0.12 -11.0 ± 1.2 

qH+ 18 0.67 0.59 0.39 33 -12.2 ± 2.8 44.0 ± 7.7 

qH+ (excluding outliers) 17 0.77 0.70 0.28 50 -13.1 ± 2.4 46.2 ± 6.5 

 1 a and b – the regression coefficients in the general equation: log1/EC50 = a + b*X;  
   X – the molecular descriptor.  
 
The following two-variable QSARs was obtained (Eqs. (7), (8)): 
 
log1/EC50 = 0.68 σ – 8.4 q- – 4.0 (7) 
n = 18  R2 = 0.89 s = 0.20 F = 59 
 
The exclusion of the identified statistical outliers (3,5-dinitroaniline and 4’-
aminoacetophenone) resulted in Eq. (8): 
 
log1/EC50 = 0.61 σ – 5.9 q- – 1.9 (8) 
n = 16  R2 = 0.95 s = 0.12 F = 130 
 
According to the authors, the QSARs indicate the importance of electronic interactions and 
H-bonding donor capacity in the toxicity of anilines. These findings support a mechanism of 
toxic action based on H-bonding between the NH2 group of substituted anilines and polar 
groups at the membrane/water interface of the SMPs, leading to a disruption in the membrane 
structure and disturbance of its functioning. 
 
Polybrominated diphenyl ethers (PBDEs) have become widely distributed as environmental 
contaminants due to their use as flame retardants. Their structural similarity to other 
halogenated aromatic pollutants has led to speculation that they might share toxicological 
properties such as hepatic enzyme induction [5]. In order to develop predictive models for the 
toxicity of PBDEs congeners, Wang et al. used 3D-QSAR approaches [48]. They used a data 
set of 18 PBDEs taken from [5]. The affinity to the rat hepatic Ah receptor (aryl hydrocarbon 
receptor), as derived from competitive binding assays was used as the endpoint. For the 
molecular modelling study, CoMFA (Comparative Molecular Field Analysis) and CoMSIA 
(Comparative Molecular Similarity Indices Analysis) approaches were applied. In the 
alignment of the structures a set of rules were defined for selecting a template molecule, 
namely: (i) the most active compound; (ii) the lead and/or commercial compound; and (iii) the 
compound containing the greatest number of functional groups. The alignment of the 
structures was carried out by flexible fitting. CoMFA and CoMSIA regression models were 
built by PLS (partial least squares) regression and the LOO (leave-one-out) cross-validation 
procedure was used to check the internal consistency and to estimate the predictive ability of 
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the resulting QSAR models. The statistical parameters of the obtained models were the 
following: 
 
CoMFA (steric+electrostatic field): R2

cv = 0.580; R2 = 0.995; F = 337.627 
CoMSIA (steric+electrostatic+hydrophobic field): R2

cv = 0.680; R2 = 0.982; F =   98.049 
 
Both models identified the electrostatic field as the most important determinant of the relative 
binding affinity of PBDEs. On the basis of the models, 3D contour plots were built. They 
indicated the regions with the highest influence of the steric, electrostatic and hydrophobic 
fields on the relative binding affinity values. The results also showed that non-planar 
conformations of PBDEs resulted in the lowest energy level. 
 
The two 3D QSAR models were used to predict the RBA value of 46 PBDEs not included in 
the training set. However, since the experimental values were unavailable, it was not possible 
to make conclusions about the external predictive power of the models. 
 
QSARs for acute mammalian toxicity in vivo 
QSARs for inhalational toxicity 
Some simple regression models have been developed for predicting the inhalational toxicity of 
volatile substances. Typically, parameters such as vapour pressure (VP) and boiling point (BP) 
have been found to be useful predictors of the acute toxic effect. These models are based on the 
assumption that toxicity occurs by the non-specific mechanism of narcosis, and that the LC50 
data are based on tests in which a steady-state concentration has been reached in the blood. 
 
For instance acute (non-lethal) neurotoxicty toxicity data for the neurotropic effects of some 
common solvents on both rats and mice were subjected to QSAR analysis by Cronin [10], 
using data taken from Frantik et al. [16]. In the study, 44 chemicals were included and the 
logarithm of the micromolar toxicity was used as the endpoint in the QSAR analysis. After 
removing four outliers identified as being much less toxic relative to the other compounds and 
three other considered atypical of the data set, the stepwise regression analysis of the 4h 
toxicity data causing the 30% depression in response (log1/ECR30) in rats gave the following 
equation (Eq. (9)): 
 
log1/ECR30 = 0.361 ClogP – 0.117 χ0  – 1.76 (9) 
n = 37 R2 = 0.817 s = 0.280 F = 35.2 
 
This relationship demonstrated a partial dependence of toxicity on logP. In addition, the 
negative correlation with the zero-order molecular connectivity suggests that the membrane 
permeability of large molecules may be reduced. 
 
Stepwise regression for mouse neurotoxicity gave the following equation (Eq. (10)): 
 
log1/ECM30 = 0.212 ClogP  + 0.00767BP – 0.176 χ0  - 2.03 (10) 
n = 39 R2 = 0.811 s = 0.271 F = 22.4 
 
Principal Component Analysis (PCA) was performed on all 17 physiochemical parameters 
included in the study. The analysis identified six physicochemical descriptors as most 
successful at separating out compounds of high neurotoxicity from those of low neurotoxicity: 
ClogP, (ClogP)2, boiling point, melting point, CMR and χ0 . When any of these parameters 
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(or any combination) were omitted from the analysis, the separation between groups was 
poorer. On this basis, the author suggested that parameters describing hydrophobicity, 
molecular volume and size, melting and boiling point were important for toxicity, despite the 
fact that some were not found to be important by stepwise regression. Overall the analysis 
suggested that in addition to partitioning through a membrane, aqueous solubility and 
volatility are also important factors governing toxicity. 
 
QSARs for predicting LD50 
The study of Amaral et al. aimed at obtaining a better understanding of the structural features 
contributing to the lethal toxicity of local anesthetics [1]. For this purpose a set of sixteen 
para-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides structurally related to 
procaine was used. The median lethal doses (LD50, mM/kg) of the compounds were assessed 
in the mouse. Log 1/LD50 was taken in the QSAR analysis as the biological parameter, 
indicating the lethal potency of the compounds. The apparent partition coefficients were 
determined experimentally (shake-flask or HPLC methods). A number of physicochemical 
parameters were taken from the literature: hydrophobic parameter π (Hansch-Fujita 
substituent constant), electronic parameters σ, ℑ Swain-Lupton substituent constant, ℜ 
substituent constant, and polarizability-related parameter MR4 (molar refractivity of the 
substituent at the para-position). The IR stretching frequencies of the carbonyl group (νC=O) 
were determined in chloroform and taken as one of the electronic parameters. Its use was 
justified by the significant correlation with σ, and ℑ and ℜ. In order to evaluate the nature and 
relative contribution of the physicochemical parameters significantly involved in lethal 
potency in the set of investigated compounds a Hansch analysis was performed. First the 
correlations of each physicochemical parameter and the lethal potency were analysed. The 
results indicated that the lipophilic term explained a larger portion of the observed variation in 
the lethal potency. Further, the relative contributions to lethal toxicity of both lipophilic and 
electronic terms were evaluated in a subset of 15 compounds: 
 
log 1/LD50 = 0.24 (±0.06) logPapp – 0.32 (±0.32) ℜ +2.19 (± 0.12) (11) 
N = 15  R = 0.952 s = 0.116 F = 57.518 R2

cv = 0.859 
 
log 1/LD50 = 0.23 (±0.07) logPapp – 0.017 (±0.015) νC=0 +31.41 (± 25.2) (12) 
N = 15  R = 0.956 s = 0.111 F = 64.433 R2

cv = 0.869 
 
The simultaneous use of logPapp and MR4 did not improve the statistical significance of the 
models. The authors concluded that hydrophobicity has major contribution to the lethal toxicity 
of the studied anesthetics. Borderline contribution of electronic properties was outlined. 
 
QSAR models were derived for the acute oral toxicity of organophosphorus pesticides to male 
and female rats [12]. The training set included 51 chemicals. Additionally nine chemicals 
were used for external validation. The toxicity data (LD50 for adult male and female Sherman 
rats) were extracted from papers by Gaines [17, 18, 19]. The autocorrelation method was used 
to describe the molecules. First, from the fragmental constants of Rekker and Mannhold for 
each molecule, an autocorrelation vector H representing lipophilicity was derived. Second, an 
autocorrelation vector MR, encoding molar refractivity was designed from the fragmental 
constants of Hansch and Leo or directly from the classical Lorentz-Lorentz equation. Third, 
autocorrelation vectors encoding the H-bonding acceptor ability (HBA) and H-bonding donor 
ability (HBD) of the molecules were calculated by means of Boolean contributions. In order 
to relate the LD50 values to the autocorrelation descriptors, the PLS regression method was 
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used. The model was constructed by using the NIPALS (Nonlinear estimation by Iterative 
Partial Least Squares) algorithm. 
 
As a second step, attempts were made to derive a non-linear QSAR model from a three-layer 
feed forward neural network trained by different algorithms – back-propagation, conjugate 
gradient descent, quasi-Newton, Levenberg-Marquardt, quick propagation, and delta-bar-delta 
algorithm. During the design of the neural network model, four LD50 values were randomly 
selected from the testing set to constitute a cross-validation set to correctly monitor the 
learning phase. 
 
The best results were obtained with an 8/4/1 ANN (Artificial Neural Network) model 
designed from the autocorrelation descriptors and trained with the back-propagation and 
conjugate gradient descent algorithms. The root mean square residual for the training and test 
set was equal to 0.29 and 0.26 respectively. This model allows simultaneous calculation of 
LD50 for males and females. 
 
Expert Systems 
The complexity of the mammalian toxicity endpoint as well as the lack of large and consistent 
databases with measured data are the main reasons for the limited number of models, more of 
them restricted to a given chemical class. Historically the complexity of the endpoints is one 
of the reasons for the development of so called expert systems [22]. Knowledge based expert 
systems, such as HazardExpert, use expert knowledge rules about generalised relationships 
between structure and toxicity and these rules are derived from human expert opinion. 
Statistically based expert systems, such as TOPKAT and Multicase, use structural descriptors 
and apply statistical methods to derive QSAR models. In the section below some of the expert 
systems predicting acute mammalian toxicity are shortly described. 
 
The TOPKAT software package computes the toxic and environmental effects of chemicals 
solely from their molecular structure [45]. It employs cross-validated quantitative structure – 
toxicity relationship (QSTR) models for assessing various measures of toxicity. The 
descriptors used in the TOPKAT models quantify the electronic, shape, and symmetry 
attributes of a molecular structure. The electronic attributes are expressed by the 
electrotopological state (E-state) values of specially designed 1-atom and 2-atom fragments of 
non-hydrogen atoms in different hybridization states.  
 
In conjunction with a prediction of toxicity, TOPKAT provides an assessment of its 
reliability. For this purpose, the program performs an analysis of whether all of the structural 
fragments of the query chemical are well represented in the training set and also whether the 
query structure fits within or near the periphery of the Optimum Prediction Space (OPS) of 
the model. The OPS is a multi-dimensional space in which the number of dimensions is more 
than the number of model parameters. If a query structure is inside all dimensions of the 
model’s OPS, the computed toxicity value is considered “acceptable”. If the query structure is 
outside one or more dimensions, the computed toxicity value may or may not be “acceptable”, 
depending on the query chemical’s distance from the OPS. Every TOPKAT model has a 
permissible limit of distance from OPS and above this value the assigned toxicity is 
considered “unacceptable”. 
 
The Rat Oral LD50 module of the TOPKAT includes 19 QSAR regression models. The 
accuracy of the models as estimated by LOO procedure is presented in Table 2. 
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Table 2. Accuracy of the 19 submodels determined by the LOO procedure [45] 

% of chemicals predicted 
within a factor of Class No of 

chemicals 
2 3 4 5 

95% of 
chemicals 

predicted within 
a factor of 

Organophosphates 
(P=O) 

230 48 67 80 86 9 

Organophosphates 
(P=S) 

285 58 81 90 95 5 

Carbamates 205 63 84 91 96 5 
Heteroaromatics 429 63 83 92 97 5 
Multiple Benzenes 367 70 85 92 95 5 
Fused Benzenes 75 84 100   3 
Single Benzenes 
(1 substituent) 

196 80 96 99 100 3 

Single Benzenes  
(2 substituents) 

274 76 93 98 100 3 

Single Benzenes  
(3 substituents) 

162 80 92 97 100 4 

Single Benzenes 
(> 3 substituents) 

101 74 92 99 100 4 

Alicyclic 361 65 85 93 97 4 
Acyclic Amines 225 68 87 93 96 4 
Acyclic 
Halo/Hydrocarbons 

63 73 88 98 100 4 

Acyclic 
Acids/Esters 

138 67 89 98 100 3 

Acylic Alcohols 74 90 98 100  3 
Acyclic Carbonyls 60 81 94 100  3 
Acyclic Ethers 47 93 100   2 
Acylic C, O, H 
Miscellaneous 

108 90 100   2 

Acyclic (others) 224 59 81 89 93 6 
 
The models are based on a number of structural, topological and electrotopological indices, 
and make predictions of the oral acute median lethal dose in the rat (LD50). The models 
report results in units of chemical weight/body weight. 
 
The TOPKAT rat oral LD50 models are based on experimental values of 4000 chemicals 
from the RTECS (Register of Toxicology Effects of Chemical Substances). Since RTECS 
lists the most toxic value when multiple values exist, the TOPKAT model tends to 
overestimate the toxicity of query structures. 
 
The Rat Inhalation LC50 module of TOPKAT contains five submodels related to different 
chemical classes (Table 3). For the model development only exposure times in the range of 
0.5 to 14 hours were accepted. Endpoints were modelled as log10(1/C) – log10 (hours of 
exposure), where C is the concentration in mols/m3. 
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 Table 3. Inhalation LC50 submodels in TOPKAT [45] 

Class No of chemicals 
in the model R2 adj R2 SEE 

Single benzenes 133 0.849 0.772 0.408 
Heteroaromatics and multiple benzenes 134 0.864 0.806 0.36 
Alicyclics   71 0.874 0.837 0.399 
Acyclics (without halogens) 187 0.851 0.812 0.517 
Acyclics (with halogens) 118 0.849 0.810 0.571 

 
The MultiCASE software uses a fragment based technology [30]. It is based on a hierarchical 
statistical analysis of a database composed of a number of chemicals associated with their 
toxicity data. The program discovers substructures that appear mostly in active molecules and 
therefore most likely to be responsible for the observed activity. At the beginning it identifies 
the statistically most significant substructure within the training set. This fragment, labelled 
the top biophore, is considered responsible for the activity of the largest possible number of 
active molecules. The active molecules containing this biophore are then removed from the 
database, and the rest of them are submitted to a new analysis for identification of a new 
biophore. The procedure is repeated until either the activity of all the molecules in the training 
set has been accounted for or no additional statistically significant substructure can be found. 
Then for each set of molecules containing a specific biophore, the program identifies 
additional parameters called modulators. They consist of certain substructures or 
physicochemical parameters, such as HOMO/LUMO energies, logP, water solubility, location 
of hydrogen donors/acceptors, lipophilic centers with respect to biophore, that significantly 
enhance or diminish the activity attributable to the biophore. QSARs are then derived by 
using these modulators. The knowledge that the program gains during the training process can 
then be used to predict the biological activity of new chemicals not included in the training 
set. Multicase mammalian toxicity modules are presented in the Table 4. 

 
 Table 4. Multicase mammalian toxicity modules [30] 

Module Number of compounds 
in the training set 

FDA  NTP  WHO Rat LD50 7920 
NTP Maximum Tolerated Dose - Mice 321 
NTP Maximum Tolerated Dose - Rats 321 
FDA MRTD humans 1169 
FDA Maximum tolerated dose Male Rat -nontoxic dose 1014 
FDA Maximum tolerated dose Female Rat  -nontoxic dose 1020 
FDA Maximum tolerated dose Male Mouse -nontoxic dose 939 
FDA Maximum tolerated dose Female Mouse-nontoxic dose 951 
FDA Maximum tolerated dose Male Rat -lethal dose 1015 
FDA Maximum tolerated dose Female Rat  -lethal dose 1020 
FDA Maximum tolerated dose Male Mouse -lethal dose 939 
FDA Maximum tolerated dose Female Mouse -lethal dose 951 
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HazardExpert is a module of the Pallas software developed by CompuDrug Limited [38]. The 
program works by searching the query structure for known toxicophores, stored in the “Toxic 
Fragments Knowledge Base” and including substructures that exert both positive and negative 
modulator effects. Once a toxicophore has been identified, this triggers estimates for a number 
of toxicity endpoints, including neurotoxicity. The default knowledge base of the system is 
based on a US EPA report [4] and scientific information collected by CompuDrug Limited. 
The rule-based system of the program has open architecture, allowing the user to understand, 
expand or modify the data on which the toxicity estimation relies. A further application of the 
program is prediction the toxicity of the parent compound and its metabolites by linking with 
the MetabolExpert system (another module of Pallas). Further development of the toxicity 
predictions is the HazardExpert Pro module. It relies on an ANN based approach using atomic 
descriptors to categorise compounds according to their in vitro human cytotoxicity. 
 
Conclusions 
In this review, a number of QSAR models for acute mammalian toxicity published in the last 
ten years have been summarised. The relatively small number of models identified for in vivo 
toxicity is related mainly to the nature of the endpoint. The mammalian toxicity 
measurements are usually related to whole body phenomena. They include processes of 
absorption, distribution, bioaccumulation, metabolism, and excretion [9]. The complexity and 
multiplicity of the mechanisms involved leads to inherent difficulties in the QSAR modelling 
process. In addition, difficulties arise from the lack of high quality data suitable for modelling 
purposes. 
 
Most of the QSAR studies are restricted to single classes of chemicals, such as alcohols, 
phenols, anilines. The models identify hydrophobicity as a parameter of high importance for 
the modelled toxicity. In addition, many of the models indicate the role of electronic and 
steric effects. Thus they give a deeper insight into the mechanisms involved in the toxicity of 
the investigated substances. The only models based on more heterogeneous data are those 
incorporated into commercially developed expert systems. 
 
In general, the QSAR models for acute mammalian toxicity identified in the review may be 
useful for investigating the mechanisms of toxicity of defined chemical classes. However, for 
predictive purposes in the regulatory assessment of chemicals, they are still far from meeting 
all the requirements of the OECD validation principles [36]. Therefore, more work is needed 
in this field to develop QSAR models useful for the assessment of chemicals under the future 
REACH legislation. 
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