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Abstract: The article presents a brief but comprehensive review of the large variety of 
mathematical models of drug controlled release from polymeric monoliths in the last 25 
years. The models are considered systematically, from the first simple empirical models up to 
the most comprehensive theoretical ones taking into account the main release mechanisms 
(diffusion, swelling, dissolution or erosion) simultaneously. Their advantages and limitations 
are briefly discussed and some applications are outlined. The present review shows the 
choice of appropriate mathematical model for a particular controlled system design mainly 
depends on the desired predictive ability and accuracy of the model. This aspect is connected 
with the necessity the main factors influencing the concrete release kinetics, especially the 
basic controlling mechanisms, to be identified in advance.  
 
Keywords: Controlled delivery, Drug release, Monolithic systems, Mathematical models, 
Diffusion, Swelling, Dissolution, Erosion. 

 
Introduction 
Controlled-release systems (CRS) are common in a number of product areas including food, 
medicine, cosmetics, pesticides and paper. Controlled Release (CR) is the field of scientific 
activity concerned with the control in time and space of the biological effects of therapeutic 
agents in human and animal health, and of other active agents in environmental, consumer 
and industrial applications. 
 
CRS for drug delivery first appears in the 1960’s and 1970’s [21]. Their variety has increased 
dramatically in the last three decades. The design of new CRS necessitates the creation of 
appropriate mathematical models to predict the desired drug release kinetics. 
  
Basic characteristics and mechanisms of monolithic drug delivery systems were recently 
presented in a review [3] from the point of view of mathematical modelling the controlled 
drug release (CDR). The present paper is a continuation of this review and aims to analyze 
and systemize the existing mathematical models of monolithic (matrix) CRS for drug 
delivery. 
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Mathematical modelling 
Empirical and semi-empirical approaches 
The first mathematical model describing drug release from monolithic systems was proposed 
by Higuchi [21]. Created for planar systems it was later extended to different geometries and 
porous systems [37]. This basic model assumes that: (1) initial active agent (drug) 
concentration in the monolith is much higher than drug solubility; (2) drug diffusion takes 
place only in one dimension (edge effects must be negligible); (3) drug particles are much 
smaller than system thickness; (4) monolith swelling and dissolution is negligible; (5) drug 
diffusivity is constant; (6) perfect sink conditions are always attained in the release 
environment. The Higuchi model equation is the following: 

tCCCDAM sst )2( 0 −=            sCC >0 ,  (1) 
 
where tM  is the amount of drug released until time t , A  is the release area, D  is the drug 
diffusion coefficient, 0C  is the initial drug concentration in the monolith, while sC  is drug 
solubility. This model shows a tM  square rate dependence on time corresponding to Fick’s 
solution when the amount released is less than 60% according to Crank [11]. The Higuchi 
model is still widely used due to its extreme simplicity [37], although its high degree of 
approximation. The researchers continue to apply the above equation to interpret their 
experimental drug release data even in the case of systems based on HPMC (hydroxypropyl 
methylcellulose) [44, 45] characterized  by high matrix swellability. 
  
Another simple and useful empirical model is the so-called power low [30, 31, 35, 36]: 

n
t KtMM =∞/ ,  (2) 

 
where ∞M is the amount of drug released after an infinite time, K  is a constant incorporating 
structural and geometric characteristics of the system and n  is the exponent characterizing the 
release process. Peppas and coworkers were the first to give an introduction to the use and the 
limitations of these equations [37]. It is clear that when the exponent n  takes the value of 1.0, 
the drug release rate is independent of time (the case of the so called zero-order release 
kinetics) [37]. For slabs, the mechanism that creates the zero-order release is known among 
polymer scientists as case-II transport. Equation (2) has two distinct realistic meanings in two 
special cases: diffusion controlled drug release ( 5.0=n ) and swelling controlled drug release 
( 0.1=n ). Values of n  between 0.5 and 1.0 can be regarded as superposition of both phenomena. 
The two extreme values for the exponent n  (0.5, 1.0) are only valid for slab geometry. For 
spheres and cylinders different values have been derive [35, 36], as listed in Table 1. 
 
 
 Table 1. Exponent n of the power law and drug release mechanism 
 from polymeric controlled delivery systems of different geometry 
 

Exponent n  slab Cylinder Sphere DR mechanism 

0.5 0.45 0.43 Fickian diffusion 
0.5 < n  < 1.0 0.45 < n  < 0.89 0.43 < n  < 0.85 Anomalous transport 
1.0 0.89 0.85 Case-II transport 
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The power low was applied to experimental drug release data obtained for different CRS 
including HPMC-based ones [9, 10, 34]. Different values for the exponent were obtained 
corresponding to the dominating drug release mechanism. 
 
Peppas and Sahlin [32] incorporate both the Fickian diffusional contribution and the non 
Fickian one (case-II relaxational contribution) as follows: 

nn
t tktkMM 2

21/ +=∞ , (3) 
 
where 1, km and 2k  are constants related to the Fickian and non Fickian diffusional 
contribution, respectively. 
 
Betini et al. [2] applied this equation to investigate the effect of molecular weight of the 
HPMC type used and the addition of partial impermeable coating to HPMC matrix tablets. 
The authors concluded that the importance of the relaxational contribution for drug release is 
more significant in the case of partially coated HPMC matrix tablets. 
 
Grassi et al. [17], studding drug release from partially and non coated HPMC tablets, 
developed mathematical model based on the assumption that a release resistance exists due to 
drug dissolution and diffusion through the developing gel layer surrounding the dry glassy 
core. Following the usual equation of solid drug dissolution [1] and supposing that the 
diffusion front moves inward under sink conditions, it results: 
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where rC  is drug concentration in the release environment, rV  is the release environment 
volume, 0M  is the total drug amount contained in the tablet, 0C  is the initial drug concentration 
in the tablet, R is the resistance contribution, B and b are two adjustable parameters, dx  is the 
drug mass fraction at the swelling front, dk  is drug dissolution constant and f  is a parameter 
accounting the gel presence. The ratio K  between the penetration depth in the axial and in the 
radial directions is assumed to be equal to that of the tablet height and radius. 
 
Theoretical approaches 
Let us suppose that: (1) drug dissolution is very fast compared to drug diffusion; (2) the 
swelling process does not occur or it takes place instantaneously; (3) no matrix erosion occurs 
and (4) drug diffusion takes place only in one dimension. Under these assumptions drug 
release is controlled only by diffusion with a constant drug diffusion coefficient in case of 
both uniform and non-uniform initial drug distribution in the matrix as described in Crank 
[11, 17]. Fu and co-workers [14] obtained an analytical solution of Fick’s law for cylindrical 
geometry considering mass transfer in three dimensions: 
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where tM  and ∞M  are the amount of drug released at time t and infinite time respectively; 
h denotes the half length and r the radius of the cylinder; D is the constant diffusivity; α and 
β  are defined by the above given equations, such that oJ  a zero order Bessel function and m 
and n are integers. This model is applicable to tablets that range from the shape of a flat disk 
(radius > thickness) to that of a cylindrical rod (radius < thickness). Especially for porous 
systems the effective drug diffusivity depending on matrix porosityε , tortuosity τ and drug 

diffusivity in the solvent (filling the pores) is used as follows ε
τ

= w
e

D
D . This model doesn’t 

consider the matrix volume swelling and also assumes constant diffusion coefficient. 
Nevertheless these disadvantages it can be applied successfully for some special CRS. For 
example Grassi et al. [18] consider paracetamol release from a poly dispersed stearic 
acid/lactose spheres and assume that upon contact with the release environment lactose 
instantaneously dissolves so that release kinetics is diffusion controlled. A good model 
prediction is obtained under the effective diffusivity calculated by model fitting on release 
experimental data referring to approximately mono disperse systems. 
 
Modelling the drug release from a swellable matrix implies introduction of the relevant mass 
balance and the flux constitutive equation of both the swelling fluid entering the matrix 
(penetrant or solvent) and the drug leaving it [17]. One of the first models aimed to describe 
CDR from a swellable matrix is this one of Peppas et al. [33] considering drug diffusion from 
a single surface for the case of countercurrent diffusion of a solvent which is compatible with 
the polymer. The considerable volume extension due to matrix swelling is accounted for by 
introducing a moving boundary diffusion problem. It is obtained a good agreement of the 
results for drug concentration profiles within the polymer with experimental data for the 
system of KCl distributed in HPMC matrix tablets. 
 
Singh and Fan [42] developed a comprehensive model for simultaneous diffusion of a drug 
and a solvent in a planar glassy polymer matrix. The matrix undergoes macromolecular chain 
relaxation and volume expansion due to solvent absorption into the matrix. The swelling 
behavior of the polymer is characterized by a stress-induced drift velocity term. The volume 
change due to the relaxation phenomena is assumed instantaneous. The model implies 
convective transport (induced by volume expansion and by stress gradient) of the two species. 
 
Cohen and Erneux [7] modeled swelling controlled release using free boundary problems. 
Drug release is achieved by countercurrent diffusion through a penetrating solvent. The drug 
release rate is determined by the rate of the solvent diffusion into the polymer. This model 
was developed also for thin films and not for cylindrical tablets. 
 
Korsmeyer et al. [25, 26] proposed a model, describing two-component diffusion in a polymer 
slab with moving diffusional front. A Fujita type exponential dependence of diffusion 
coefficients on penetrant concentration was chosen. Dimensional changes of the sample are 
predicted by allowing each spatial increment to expend according to the amount of 
penetrant sorbed. 
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Ju and co-workers [23, 24] developed a comprehensive model to describe the 
swelling/dissolution behaviors and drug release from HPMC matrices. An important feature 
of this model is defining the polymer disentanglement concentration disp,ρ  below which 
chains’ detach from swollen network occurs. The authors found the following relation 
between disp,ρ  and the polymer molecular weigh M: 

8.0
, )96000/(*05.0 −=ρ Mdisp  (7) 

 
The mathematical analysis is based on the following equation: 
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where VtrwD iii ,,,,,ρ  are the mass concentration, the diffusivity of the species i, the 
restrictive weight fraction, radial position, time and matrix volume, respectively. The first 
term on the right hand side in (8) is a convection term, arising from the moving boundary. 
The second term accounts for the Fickian diffusion of the species i, where tρ  is the local 
overall mass concentration. The presence of the second term corresponds to the assumption 
that the drug diffusion is the controlled mechanism. This assumption is only valid for water-
soluble drugs. In the case of poorly water-soluble drugs (the rate of dissolution is much 
slowly than diffusion one) a dissolution term needs to be included into the governing 
equation. The last term is the source one which considers concentration changes resulting 
from the matrix volume changes. Based on the measurements of Gao and Fagerness [15] 
reasonable concentration dependences of the diffusivities are proposed. A good agreement 
between the model predictions for drug release and experimental data was found 
(within 15% error). However, the application of the model is restricted to radial processes 
only, ignoring axial transport. 
 
Recently Siepman et al. [38-40] developed a new comprehensive mathematical model 
describing drug release from HPMC-based matrix tablets, taking into account the diffusion of 
water and drug, non-constant diffusivities, the swelling of the system, polymer drug 
dissolution and radial and axial mass transfer in cylindrical geometries. The model is valid for 
various kinds of HPMC types, freely and poorly water-soluble drugs and a wide range of drug 
loading. This model can be considered as an extension of Ju’s work which is valid for freely 
water-soluble drugs. One of the most important differences with Ju’s work consists in the fact 
that polymer dissolution is accounted for using the reptation theory [28]. When water 
concentration exceeds a critical threshold, critc1 , surface polymer chains start to disentangle 
and diffuse through unstirred layer into the bulk fluid. The loss of the polymer mass per unit 
area is expressed by the following equation: 

tAkMM tdisst −= ρρ 0   (9) 
 
where tA  is the surface area of the device at time t, dissk  is the dissolution rate constant while 

ptM  and 0pM  are the dry polymer mass at time t and 0=t , respectively. Water and drug 
diffusion are described using Fick’s second law of diffusion for cylindrical geometry, taking 
into account axial and radial mass transport and concentration-dependent diffusivities [11]: 
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where kc  and kD  represent concentration and diffusion coefficient of the diffusing species 
(k = 1, water; k = 2, drug), respectively, while r and z are respectively the radial and axial 
coordinate. The authors in the light of the Fudjita theory [38] choose the following equation 
for the diffusion coefficient dependence on the local water concentration: 
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where 1β  and 2β  are the dimensionless constants characterizing this concentration 
dependence. The constants critD1  and critD2  denote the water and drug diffusivity at the 
interface matrix/release medium, where the polymer chain disentanglement occurs [38-40]. If 
ideal mixing conditions are supposed (no volume variations occur upon drug, polymer and 
water mixing) the total matrix volume at any instant is given by the sum of each component 
volume. The equation (10) is numerically solved imposing that at 0=t  the matrix is 
completely dry and drug concentration is uniform. The critical concentration critc1  is 
calculated from the polymer disentanglement concentration and drug concentration is 
assumed to be zero in the release environment (perfect sink conditions). This model has been 
successfully tested on theophyline release from HPMC matrices [37]. 
 
Another comprehensive model for drug release from a swellable matrix is this one of 
Grassi et al. [20]. Among several approaches proposed to describe the swelling fluid 
(penetrant) in a glassy polymer matrix Grassi and Lapasin have choused the model of 
Camera-Roda and Sarti [6] for mass transport with relaxation which can account for the 
complex phenomena governing the penetrant flux and particularly the viscoelastic properties 
of the swellable matrix. This approach allows avoiding a great number of experimental 
information normally requested by other, more general models [17]. It is assumed that drug 
diffusivity is dependent on the penetrant concentration using Mackie and Meares equation. 
Anisotropic as well as isotropic matrix swelling is considered and formulas for local volume 
changes are derived in [20]. 
 
The corresponding problem of drug release from a polymeric matrix occupying the domain 
(matrix) , 1, 2, 3NR NΩ⊂ =  was posed by Blagoeva in [4] as follows: 
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where , , , , , , , ,m
d do p s d do r dc c c D D V V Mρ  are correspondingly: the drug concentration, the 

initial drug concentration, the penetrant concentration, the penetrant density, the drug 
diffusivity in the matrix and in the pure penetrant, the initial matrix volume, the release 
environment volume coinciding with the external penetrant volume and the amount of the 
drug in the matrix. The boundary of the domain is denoted by ∂Ω  and the time when the 
process is in equilibrium – by ft .The above equations are coupled with the model equations 
for the penetrant uptake [5, 20]: 

pc
t

∂
∂

= −∇j , rf jjj += , in (0 ]f,tΩ×  (16) 

f fD c= − ∇j , r
r r pD c

t
∂τ
∂

= − ∇ −
jj , (17) 

( )f p oD c D const= = , ( ) ( )r p eq p eq oD c D exp g c c D⎡ ⎤= − −⎣ ⎦ , (18) 

eq( ) ( )p eq pc exp r c cτ τ ⎡ ⎤= −⎣ ⎦  (19) 
 
under the initial and boundary conditions: 

0, 0, 0f r c= = =j j , for t =0 in Ω; (20) 

0 8p eqc . c= , for t = 0 on ∂Ω; (21) 

p
eq p

dc
c c

dt
τ = −  in (0, ]t ft∂Ω ×  (22) 

 
where j is the total penetrant diffusive flux; ,f rj j  are the classical (Fickian)  and  non-
classical (non-Fickian) part of the total diffusive flux; eqc  is the penetrant concentration at 
equilibrium; orf DDD ,,  are the diffusivities connected with ,f rj j , respectively and the 
penetrant diffusivity in the dry matrix; τ is the concentration dependent relaxation time for the 
polymer/penetrant system and tΩ∂  is the boundary of the domain at the moment t. 
 
This complex problem was numerically solved in the 2-D case for cylindrical tablets using 
finite element domain discretization and a time differencing scheme [4, 5]. 
 
The drug dissolution phenomena taking place inside the matrix may be accounted for by 
resorting to the following equation [17]: 

( ), Idd
s d

c K c c K K S
t

∂
= − − =

∂
,  (23) 

 
where K is the dissolution constant, IK  is the dissolution constant per unit area, S is the 
dissolution area, ddc  is the solid drug concentration, sc  is the drug solubility in the swelling 
fluid. A phase transition upon dissolution may be considered as it is done by Nogami et al. 
[17]. The dissolution can be taken into account adding a source term, based on (23), in the 
drug balance equation (12). 
 
Another possible factor for drug release behavior (as it was concluded in [3]) is 
physicochemical polymer-drug interactions. Singh and co-workers assumed a drug sorption-
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desorption phenomenon occurring on polymer chains during diffusion and proposed the 
following equation using a Langmuir isotherm [17, 43]: 

, ( ), ( ),maxb
p ads des ads a b b des d b p s

Mc r r r k c M M r k M c c c
t

∂
= − = − = −

∂
 (24) 

 
where bM  is the amount of drug bound per unit mass of polymer; 

b

maxM is its maximum 
value; c and sc  are the drug concentration and solubility in the swelling fluid, respectively; 

ak  and dk  are the adsorption and desorption constants, respectively. Thus, the mass balance 
equation describing (in one dimension) the drug concentration in the matrix is given as 
follows: 
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An additional process which can take place because of chemical or physical reasons is matrix 
erosion related to some extent with polymer-drug interactions and dissolution. It can develop 
according to two different mechanisms [17, 41]: surface or heterogeneous; bulk or 
homogeneous. There exist several models describing these erosion processes using: (1) direct 
Monte Carlo approach [16, 48]; (2) classical 1-D diffusion equation under moving boundaries 
for both diffusion and erosion (with constant rate) leading to a Stefan problem [8]; (3) 
diffusion equations including appropriate source terms and time, space or concentration 
dependent diffusivities [22, 27, 29]. 
 
A class of CRS for which the analysis becomes much more complicated is the polydisperesed 
swellable spherical matrices. The first attempt for drug release modelling accounting for 
particle polydispersity is that of Crassi and co-workes [19] based on the above Eqs. (12) - 
(23). The obtained predictions for Temazepan release from PVP under Weibull particles 
distribution variation show that when particles size increases, drug release becomes slower, 
and the desired observation effects tend to disappear [17]. This is due to the fact that diffusion 
becomes too slow in comparison with recrystallisation, because of particles dimensions. 
 
An important factor for dug release kinetics is the degree of anisotropy [3]. Zhou and co-
workers numerically solved problems for drug release for polymer matrix tablets taking into 
account the material anisotropy [46]. Recently they analyzed diffusional drug release from 2-
D matrix tablets with consideration of two separate diffusion coefficients in two directions 
[47]. The model was experimentally verified and various factors influencing release kinetics 
were analyzed including the ratio of initial solute loading to solubility, the matrix anisotropy 
and ratio of tablet radius to the half-thickness. 
 
Frenning and co-workers developed a more generalized model for anisotropic drug transport, 
which takes the effects of final dissolution rates into account [12]. It combines the following 
diffusion and Noyes-Whitney equations [13]: 
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may be seen as the integral of the Heaviside function. In these equations zr DD ,  are the 
diffusion coefficients in the radial and axial directions, respectively: 

totCCc /= , ,/ totCSs = totwdtotss CAkkCCc == ,/ , 
 
where C is the concentration of dissolved drug within the matrix, S is the concentration of 
solid drug, totC  is initial total concentration of the drug, sC  is drug solubility in the matrix, 

dk  is the dissolution rate constant, and wA the weight-specific surface area of the solid drug 
before dissolution. It is assumed that all drug is present in solid form in the initial state or that 
the matrix initially contains a saturated drug solution. The fraction of released drug may be 
expressed as 

∫
Ω

Ω+−= dsc
V

tQ )(11)( , (28) 

 
where V is the matrix volume. 
 
The numerical analysis performed by using finite element method shows that a finite 
dissolution rate may affect the release profile significantly, producing an initial delay. It is 
demonstrated the proposed model describes experimental drug (acetylsalicylic acid and ethyl 
cellulose) release data well. 
 
Conclusions 
A brief review of the current state of the art of mathematical modelling drug release from 
polymeric monoliths is performed. The most important models are presented with their 
advantages and limitations in two main groups: empirical and semi-empirical models and 
theoretical comprehensive ones. 
 
The first class of simple models can be adopted as an initial step of approximation of the real 
experimental data. It is mentioned that in many cases (even in the case of swellable matrices) 
they are fully sufficient. On the other hand their application gives limited insight into the 
exact release mechanisms. When more detailed information is required models from the 
second class must be applied. 
 
The present study can serve as a useful guide for the discussed models consumers. The best 
strategy for choosing an appropriate model consists of careful identification of the main 
controlling mechanisms (diffusion, swelling, erosion or dissolution, or a combination of some 
of them) and other important factors (as initial drug distribution, particles drug distribution, 
degree of matrix porosity and anisotropy, matrix geometry), followed by neglecting the other 
processes and dependences. In such a way the application of overly complex models can be 
avoided. 
 
Even though very profound theoretical models for CRS have been proposed, further 
development of some of them is desirable. This process is going on simultaneously with 
appearance of new experimental evidence for the existing drug delivery systems and with the 
design of new more contemporary ones. 
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