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Summary: In the paper is presented a control design for optimal control and 
stabilization of the specific growth rate of fed-batch biotechnological processes. The 
control design is based on a Wang-Yerusalimsky kinetic model and its equivalent 
Brunovsky normal form. The control is written based on information of the growth 
rate. 
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1. INTRODUCTION 
 
Complicated structure and non-linearity of the comportment 
characterize the cultivation processes. Many mathematical 
investigations and models have been proposed but few of these 
models are used sufficiently successfully in industrial plants. 
 
A possible way out of these difficulties is presented by the functional 
state modeling approach. Following the approach the cultivation 
process is decomposed into operation regimes. More simple 
mathematical models in these regimes dynamically describe the 
process performances [9, 10, 11, 12, 13, 15]. The control problems 
are decomposed into sub problems that could be described and 
solved separately in more constraint process state conditions. 
Considering an E. coli fed-batch cultivation process was found in 
CLBME, Bulgarian Academy of Sciences that good solutions are 
possible with Monod and Yerusalimsky models [10, 11]. 
 
The aim of this paper is an investigation of the Yerusalimsky model 
with a new mathematical approach based both on the differential 
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geometry and on the optimal control theory. This approach is 
developed in CLBME, Bulgarian Academy of Sciences in the 
previous decade. It permits new optimal control solutions for some 
difficult to solve optimal control problems in the field. 
 
2. FUNCTIONAL STATE MODELING APPROACH AND 
    WANG-YERUSALIMSKY KINETIC MODEL 
 
The concept of functional state modeling developed by Zhang could 
be applied for modelling of E. coli cultivation [10, 15]. According to 
[10, 11] the whole bacteria growth process (E. coli) can be divided 
into four functional states in fed-batch cultures: 
 
• First acetate production state (FS I); 
• Mixed oxidative state (FS II); 
• Complete sugar oxidative state (FS III); 
• Second acetate production state (FS V). 

 
Considering an E. coli fed-batch cultivation process the 
mathematical descriptions for the different functional states is based 
on Monod and Yerusalimsky kinetic models [10, 11]. That is why 
Wang-Monod and Wang-Yrusalimsky kinetic models could describe 
completely this fed-batch cultivation by a sequence of successive 
utilization of these models. The parameters of the models will 
change in the different functional sates. The Wang-Yrusalimsky 
kinetic model could be applied in the functional states with 
distinctive occurrence of an acetate inhibition effect. In the E-coli 
cultivation process the equation describing the ethanol production 
could be omitted [9, 10]. 
 
3. DESCRIPTION OF THE DYNAMICAL MODELS 
 
Unstructured models take cell mass as a uniform quality without 
internal dynamic. The reaction rates depend only upon the 
macroscopic conditions in the liquid phase of the bioreactor. 
Mathematical unstructured models of fed-batch process can be 
written based on mass balance equations [5, 12, 13, 14]. Below we 
shall investigate an enlarged form of the Yerusalimsky kinetic model 
(Wang-Yerusalimsky model): 
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where X is the concentration of biomass, [g/l]; S–the concentration of 
substrate (glucose), [g/l]; V-bioreactor volume, [l]; F–substrate feed 
rate, [h-1]; S0–substrate concentration in the feed, [g/l]; µmax-
maximum specific growth rate, [h-1]; KS–saturation constant, [g/l]; k, 
k2 , k3 and kE–constant, [g/g]; m–coefficient [-]; E–the concentration 
of ethanol, [g/l]; A–the concentration of acetate [g/l]. 
 
We preserve the notation U(.) for the criteria for optimization (, a 
unimodal polynomial utility function of degree 6). The system 
parameters are as follows: µm=0.59 [h-1], KS=0.045 [g/l], m=3 [–], 
S0=100 [g/l], k=2 [–], k2=3.79 [–], k3=1/71 [–], kE=50 [–], Fmax= 0.19 
[h-1], Vmax=1.5 [l]. The system parameters are taken from the next 
papers [9, 10, 11]. 
 
The dynamics of µ (equation 3, formulae 1) is modeled as a first 
order lag process with rate constant m, in response to the deviation in 
µ. The 5th equation describes the production of ethanol (E). The last 
equation describes the production of acetate (A). This equation is 
dynamically equivalent to the first one. We implement a simple 
transformation: X=(1/k3)A. After that the first and the last equations 
become dynamically equivalent. The new form of the non-linear 
kinetic model is: 
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The initial values of the state variables are: Xi(0)=0.99; Si(0)=0.01; 
µi(0)=0.1; EI(0)=0.1; Vi(0)=0.5. The mathematical results described 
in the paper have a common significance. That is why some of the 
parameters are taken from different sources.  
 
4. BRUNOVSKY NORMAL FORM OF 
   WANG-YERUSALIMSKY MODEL AND TIME 
   MINIMIZATION OPTIMAL CONTROL 
 
In the beginning we shall apply the mathematical approach and 
diffeomorfic transformations to a Wang-Yerusalimsky kinetic model 
which describes a continuous cultivation process. After that we shall 
show that the time minimization optimal control of the fed-batch 
process has the same form as that of the continuous process. The 
continuous process is described dynamically by the next model:  
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Here D denotes the dilution rate. We apply the next transformation to 
model (3): 
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The dynamical model (3) of the continuous process obtains the next 
equivalent form: 
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The next step is application of the GS algorithm for exact 
linearization to Brunovsky normal form, published by Gardner and 
Shadvwick in 1992 [3]. The new equivalent model of model (3) and 
model (5) has the form [1, 6, 7]: 
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The state vector of model (6) has the next explicit extended form:  
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The control input of the model (6) is W and it has the next huge 
analytical form: 
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The input D of the continuous model (3) takes part in the last 
mathematical expression of formula (8): 
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The last equation of model (6) can be solved by separation of 
variables: 
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Consecutively the variable Y4 depend only from Y1 and can be 
described analytically by Y1. The solution of equation (11) is: 
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That is why models (3), (5) and (6) are equivalent dynamically to the 
next Brunovsky normal form [1, 3]: 
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It is clear that if k2=0 or k2=1 (formula 12) then the variables X and E 
in model (1) are equivalent with precision up to an affine 
transformation and the model is over-regulated. 
 
We continue the investigation with a mathematical technique 
described in papers [6, 7, 8]. Let U(µ) be unimodal polynomial 
function, criteria for optimization and control. The next step is 
resolution of the optimal control problem [7, 8]: 
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The input D of model (3) takes part only in the last part of the 
function W. According to formula (9) the solution is the same as 
these in papers [7, 8]. The control law is based on the application of 
the Brunovsky normal form and on the Pontryagin’s maximum 
principle. The maximum principle is applied step by step for 
sufficiently small time periods T [4, 7]. The control law has the 
analytical form [8]:   
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The time interval T is chosen close to the step of discretization of the 
differential equation solver. The sum in formula (15) is the 
derivative of the polynomial function U(µ). It is clear that the “time-
minimization” control is determined from the sign of the derivative 
of the function U(µ). Thus, the control is D=Dmax or D=0. The 
solution is a “time-minimization” control (if the time period T is 
sufficiently small). The control brings the system back to the 
working point for minimal time in the case of growth rate deviations 
[7, 8]. 
 
The previous solution permits easy determination of the control law 
of the fed-batch process. The control law is based on the solution of 
the following optimization problem: 
 
Max(U(µ(Tint))), where the variable µ is the specific growth rate, 
(µ∈[0,µmax], F∈[0, Fmax]). Here U(µ) is a unimodal criteria 
function and F is the control input (the substrate feed rate): 
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The control law of the fed-batch process has the same form (15) 
because D(t) is replaced with F(t)/V(t) in model (1). Thus, the 
feeding rate F(t) takes F(t)=Fmax or F(t)=0. 
 
5. STABILIZATION OF THE FED-BATCH PROCESS IN 
    THE “BEST” GROWTH RATE  
 
We conclude that the control law (15) bring the system to the optimal 
specific growth rate with a” time minimization” optimal control, 
starting from any deviation from the set point of the optimal specific 
growth rate (fig. 1) [7]. 

 
Fig. 1 Chattering control and stabilization of the specific growth rate 
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Thus, we design the next control law for stabilization of the fed-
batch process in the “best” technological value of the specific growth 
rate [7]: 
 

1. Time interval - [0, t1]: the control is a “time-minimization” 
control (formula (15)), where µ(t1)=(x30-ε), ε>0, 
x30=max(U(µ)). The input D is replaced with F=γFmax, 
1≥γ>0, when D=Dmax. The choice of γ depends on the step 
of the equation solver and is not a part of the optimization 
(in this investigation); 

2. Time interval - [t1, t2]: the control is F=0 (µ(t1)=(x30-ε), 
µ(t2)=x30 and d/dt(µ(t2))=0 (to  avoid an over-regulation); 

3. After the moment t2 the control is the control (15) with 
F=γFmax, when D =Dmax (chattering control with 1≥γ>0).  

 
The performances of the fed-batch process with this control law are 
shown on figure (2). The sliding mode control in figure (2) is based 
on the Monod kinetic models (states III, IV and V [9, 10]) [2, 7].  
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Fig. 2 Optimal profile and stabilization of the fed-batch process 
 
The control solution without over-regulation of the growth rate is 
shown on figure 3 and has the same form as this in papers [7]: 
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Fig. 3 Optimal profile without over- regulation of µ 
 

The control law in time interval [0, 1] h (figures 2 and 3) is a control 
law based on Wang–Yerusalimsky kinetic models (model (1) and 
model (2)). The most difficult part of this investigation is the 
determination of approximations of the moments t1 and t2. 
 
6. DISCUSSIONS 
 
A manifold is determined and applied for approximation of the 
moments t1 and t2 when the fed-batch process is described by a 
Wang-Monod kinetic model [7, 14]. We denote with µe the growth 
rate and Xe- is the biomass concentration in steady state. The moment 
t1 is determined when the state vectors of the Monod model across 
this manifold [7]. The moment t2 is the moment of intersection of 
another manifold (µ=µe)∩(dµ/dt=0). The solution needs 
determination of the substrate concentration Se in steady states (the 
working point of the process): The substrate concentration Se of the 
Monod model is determined by the formula: 
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When the Wang-Yerusalimsky kinetic model is used the situation is 
different. The substrate concentration Se depends now both from the 
growth rate µe and from the biomass concentration Xe. 
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The growth rate µe and the biomass concentration Xe are dependent 
on the moment of interception with the manifold. A possible way out 
of this situation is replacement of the biomass concentration Xe with 
X(t1) and calculation of the manifold in each step of the equation 
solver. 
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In all cases this will lead to augmentation of the calculations. 
 
7. CONCLUSIONS 
 
The Yerusalimsky model is discussed as a good solution for 
modeling of cultivation processes [11]. In the paper is presented a 
control design for optimal control and stabilization of the specific 
growth rate. The control design is based both on the Brunovsky 
normal form of the Wang-Yerusalimsky kinetic model and on a 
chattering optimal control design. The Wang-Monod kinetic model 
is a restricted form of this model (kE → ∞). That is why the Wang-
Yerusalimsky kinetic model could be accepted as a common model 
in different functional state regimes for some investigations. 
 
The ethanol concentration and the acetate concentration are 
determined analytically as functions of the biomass concentration, 
substrate concentration and the specific growth rate, regarding 
Wang-Yerusalimsky model.  
 
The optimal profile and the control law for optimal control and 
stabilization of the specific growth rate of Wang-Yerusalimsky 
kinetic model remain the same as those of Wang-Monod kinetic 
model. 
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