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Summary: A generalized mathematical model of the tumor therapy process is 
considered as a nonlinear system of ordinary differential equations. Parameter 
identification of the model is carried out using experimental data of patients with viral 
hepatitis B. As a result of the identification procedure numerical values of the model 
coefficients are obtained. It is shown that the experimental clinical data are maximal 
near to the theoretical curves obtained by numerical simulations of the model. 
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1. INTRODUCTION 
 
Development of the clinical and experimental immunology has 
gradually led to understanding of the leader weed immune protective 
mechanisms in the pathogenesis of infectious diseases, and together 
with perfection of computer facilities to creation of mathematical 
models [1-4]. The part of models mentioned above have a enough 
simple and convenient form for analytical research that enables to 
study the general dynamical laws of s immune protection of an 
organism. Many year extensive efforts have been dedicated to 
mathematical modeling of cancer development. A variety of 
mathematical approaches contributes to modeling of cancer 
progression from different standpoints and takes stock of various 
factors affecting tumor growth [5-7]. In principle, the most  
traditional method of research of the nonlinear multiple-parameter 
problem is imitating modeling One of most often solved within the 
limits of this approach problems is restoration of parameters 
according to supervision (standard identification of parameters). 
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Data in a considered field of knowledge as a rule are characterized 
by incompleteness and discrepancy that complicates the analysis of 
models and interpretation of received results. Incompleteness of data 
creates a problem of validity estimations of mode parameters. Here 
we address a complex process that involves both virus-cell 
interaction and tumor growth, namely to  the interaction of the so-
called oncolytic viruses with tumors. Oncolytic viruses are viruses 
that specifically infect and kill cancer cells but not normal cells. 
Many types of oncolytic viruses have been studied as candidate 
therapeutic agents including adenoviruses, herpesviruses, reoviruses, 
paramyxoviruses, retroviruses, and [8, 9]. However, the simplest 
mathematical models describing a growing tumor infected with an 
oncolytic virus fail to incorporate all possible outcomes; in 
particular, these models do not allow tumor elimination [11-13]. 
Here, we present a conceptual model of tumor cells-virus interaction, 
which, depending on system parameter values, exhibits various 
behaviors including deterministic elimination of the cancer cells 
[10]. 
 
2. A GENERALIZED MATHEMATICAL MODEL OF THE 

TUMOR THERAPY PROCESS 
 
Several mathematical models that describe the evolution of tumors 
under viral injection were recently developed [14-17]. For instance, 
in [7, 10] a mathematical model describing the interaction between 
two types of tumor cells (the cells that are infected by the virus and 
the cells that are not infected, but are susceptible to the virus so far 
as they have a cancer phenotype) and the immune system is 
proposed. Next, in [21] the authors neglect the effects of the immune 
system and investigate only the direct killing of tumor cells by an 
oncolytic virus. In this way the model suggested in [21] has the 
following general form 
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where X(t) and Y(t) are the sizes of uninfected and infected cell 
populations, respectively; Fi(X, Y), i = 1, 2, are the per capita birth 
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rates of uninfected and infected cells; and G(X, Y) is a function that 
describes the force of infection, i.e., the number of cells newly 
infected by the virus released by an infected cell per time unit. Here 
we must note that there is not separate equation for the free virions, 
i.e. it is assumed that virion abundance is proportional to infected 
cell abundance. The last one can be justified if the free virus 
dynamics is faster than infected cell turnover [2]. In this way the 
model assumes that upon division of infected cells, the virus is 
passed on to both daughter cells. This circumstance is certain when 
the viruses integrate into the tumor cell genome, but it should also be 
appropriate for non-integrating viruses. It is in view of the fact that 
the active virion production should result in a very high probability if 
the virus is transmitted to both daughter cells. For the system (2.1-
2.2) the functions used in [21, 10] are 
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where R1, R2, D, A, B, K are positive parameters. The assumptions 
made in [10] could be express in the following manner: The tumor 
growh has a logistic fashion (i.e. there is possibility about different 
rates for growth of the uninfected and infected tumor cells); The 
incidence of the infection is proportional to the product XY. The 
second assumption is based on chemical kinetics, i.e on the mass 
action law. The main result by the analysis of model (2.1-2.2), 
presented in [21], could be expressed to determination of the 
conditions required for maximum reduction of the tumor load. It has 
been suggested that "because a deterministic model is used, the 
tumor can not completely extinct but can be reduced to very low 
levels"; Elimination of the tumor might occur through stochastic 
effects which are not involved in the models, presented in [7, 10]. In 
contrast, in [21] it is shown that a straightforward modification of the 
model (2.1-2.2) can lead to dynamical regimes that describe 
deterministic elimination of the tumor cells. This means that a 
plausible change at the system modeling by consideration of two 
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competing populations of cells (infected by a virus and no infected), 
can result in a remarkable change in the model dynamics. 

3. PARAMETER IDENTIFICATION OF THE TUMOR THERAPY 
PROCESS AT VIRAL HEPATITIS B 

In this section identification of the parameters of the model (2.1-2.2) 
will be done. The main task of the identification procedure has been 
formulated as it follows: Based on given experimental data about the 
real process, to find the coefficients (constants) of the system (2.1-
2.2) in a manner such, that in a certain optimum sense the 
mathematical model to become as close to the real process as 
possible. The mathematical model (2.1-2.2) describes the changes of 
the following kinetic variables: X(t) (the size of uninfected cell 
population) and Y(t) (the size of infected cell population) as a result  
of penetrating of the virus in a healthy organism. The size of 
uninfected cells is connected in direct proportion to the antibodies 
concentration, and the size of the infected cells is connected in direct 
proportion to the antigen concentration. For the identification 
procedure we use clinical data of patients with a cyclic form of viral 
hepatitis B presented in [18]. The experimental data for different 
patients are theoretically framed, as a result of that the smooth 
experimental curves are obtained for the each kinetic variables using 
the fuzzy sets apparatus [19]. For our convenience the data have 
been provided in non-dimensional form. Thus the non-dimensional 
smooth clinical values of each kinetic variable for 15 intervals of 
time (15 intervals of 2 day) are presented in Table 2 with index “Е”. 
Their theoretical analogues are derived by solving the system of 
ordinary differential equations (2.1)-(2.2) using the RKGS program 
of the SSP package (Table 2 with index “T”). The initial values of 
the parameters R1, R2, D, A, B, K are taken from [7, 10, 20] and are 
complied with the specifics of the disease (Table 1, column 1). The 
proximity of the model to the real process is established by using of 
the mean quadratic criterion, which in our case is expressed by the 
following functional: 
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where Fi

E = {Xi
E , Yi

E} are the non-dimensional clinical values of the 
kinetic variables of for i-moments of the time (i = 1÷15) 
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(Table 2, index “E”) and Fi

T = {Xi
T , Yi

T} are the respective 
theoretical values of the same kinetic variables received by solving 
of the system (2.1-2.2). 
 
Table 1. Numerical values of the parameters of the model (2.1-2.2) 

 
№ Initial value Final value 
R1 0,5 0.483 
R2 0.5 0.532 
D 0.3 0,365 
A 0.3 0.277 
B 0.1 0.092 
K 0.1 0.139 

 
In this aspect our purpose reduces to establishment of such values of 
the parameters of the model (2.1)-(2.2), for which the functional J 
would reach its minimum. The minimum is approached by applying 
of the ARSTI (Adaptive Method for Random Search with 
Translation of Intervals) method [20], which is designated for search 
of local and global extremities of parametric functions. The 
optimized values of the parameters R1, R2, D, A, B, K, received by 
using the method cited above, are demonstrated in Table 1 (column 
2). 
 

Table 2. Experimental and theoretical data for dynamics of 
uninfected and infected cell populations 

 
i[day] 2 4 6 8 10 12 14 16 

Yi
E 1.00 0.95 0.80 0.75 0.70 0.60 0.50 0.40 

Yi
T 1.00 0.96 0.82 0.74 0.68 0.57 0.49 0.38 

Xi
E 0.00 0.05 0.10 0.15 0.20 0.25 0.35 0.45 

Xi
T 0.00 0.04 0.12 0.16 0.22 0.27 0.37 0.48 

i[day] 18 20 22 24 26 28 30 
Yi

E 0.30 0.15 0.05 0.03 0.02 0.01 0.01 
Yi

T 0.29 0.13 0.04 0.02 0.01 0.00 0.00 
Xi

E 0.55 0.65 0.75 0.90 0.95 0.98 0.99 
Xi

T 0.57 0.67 0.76 0.92 0.96 0.99 1.00 
 
In Table 2 the numerical values of the kinetic variables obtained by 
solving of the system (2.1-2.2), for which the functional (3.1) has 
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minimum are presented by index “T” for period of 30 days. From 
consideration of the same table it is visible that the deviations 
between experimental data and the results obtained theoretically, are 
small enough to be negligible (less than 10%). This proves that the 
model applied is sufficiently adequate to the real process.  
 
4. CONCLUSION 
 
The main merit of this study reduces to parameter identification of a 
dynamical model of the tumor therapy process at a hepatitis B 
infection. For the purpose one of the most perfect optimization 
methods (ARSTI) is applied, for the first time. The use of the method 
allowed us to derive the numerical values of the parameters 
(constants) of the model (2.1)-(2.2), which render it as close to the 
real process as possible. Under the parameter values derived hereof, 
numerical simulations of the system (2.1)-(2.2) are made for period 
of 30 days. The comparison between theoretical and experimental 
curves shows that the difference between the results obtained 
theoretically, and the clinical data is very minimal (10%). 
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