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Abstract: Large-scale fed-batch fermentations are often subject to noise carried by the feed 
streams. This noise corrupts the process data and may destabilize the fermentation. So it is 
important to retrieve clear signals from noisy data. This is done by noise filters. The 
performances of some commonly used filters have been studied for poly-β-hydroxybutyrate 
production by Ralstonia eutropha. In simulated experiments, Gaussian noise was added to 
the flow rates of the carbon and nitrogen substrates. The filters were compared by means of 
the Lyapunov exponents of the outputs and their closeness to the noise-free performance. 
Negative exponents indicate a stable fermentation. An auto-associative neural filter 
performed the best, followed by a combination of a cusum filter and an extended Kalman 
filter. Butterworth filters were inferior and inadequate.  
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Introduction 
Microbial fermentations operated under production conditions are invariably subject to noise 
from the environment. Since optimal operation and control depend on the timely availability 
of clear and reliable measurements, it is important to filter out the noise from corrupted data 
and generate clearly identifiable signals. The presence and the effects of noise on bioreactor 
monitoring and performance have been documented by many authors [15, 19, 29]. These and 
other studies show that, in addition to complicating measurements, process noise may alter the 
nature of the fermentation itself, such as its stability [14] and monotonicity [26]. 
 
Continuous and fed-batch fermentations are more likely to be affected by noise than are batch 
fermentations because of fluid flow from the environment into the bioreactor. Noise is 
predominantly carried by feed streams of liquid substrates and gases (typically oxygen in 
aerobic cultures). Because kinetic and metabolic considerations, together with economic 
viability on a large scale, favor fed-batch and continuous fermentations [12], noise is of 
serious concern on an industrial scale. 
 
To generate clearly identifiable values of process variables from noisy measurements, the raw 
data are processed (preferably on-line) through noise filters. These are software devices that 
act on noisy inputs and generate reasonably noise-free outputs. The epithet ‘reasonably’ is 
significant because different types of filters generate outputs with different amounts of 
residual noise. It will be seen from the descriptions that follow that noise filters differ both 
structurally and algorithmically. For a particular type of filter, the extent of removal of noise 
depends also on the noise-affected variable and the initial intensity of the noise. 
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Previous studies [17, 20, 23] have identified some filter configurations that are effective for 
applications to bioreactors. These filters and two others were applied here to a fed-batch 
fermentation by Ralstonia eutropha to produce poly-β-hydroxybutyrate (PHB). The filters 
used and the kinetics of PHB formation are described below. PHB was chosen in view of its 
emergence as a biopolymer with good biodegradability, biocompatibility and properties that 
make it potentially competitive with synthetic polymers for many applications. 
 
Noise filters for bioreactors 
Controllers for bioreactors require clear data that represent the performance faithfully at all 
times. This involves removal of noise that clouds many practical measurements, especially in 
large bioreactors that interact with the environment. While complete removal of noise may be 
idealistic, most filters attenuate the noise to allow identification of the process signals. The 
filters are essentially electronic realizations of software methods that act on raw data and 
prune aberrations, outliers, fluctuations and other extraneous features. Both standard and 
customized filters are available, and the choice is guided by the application and the resources 
available. 
 
Previous applications [7, 17, 20, 23, 28] have identified five types of filters suitable for 
bioreactors. Since their detailed descriptions are available in the literature, the filters are 
briefly introduced here, with references for further information. 
 

(a) Low pass Butterworth filter (LPBF) [18] 
Given a noise-affected measurement vector kx at the k-th (current) sampling point, the LPBF 
generates filtered values kx~ according to the performance equation: 
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Tf is the filter time constant, Ts is the sampling interval, and 1kx~ −  are the estimated values at 
the previous point in time. 
 
Eq. (1) represents a first-order LPBF. Filters of second or higher orders are created by placing 
two or more first order filters in series. 
 
 (b) Extended Kalman filter (EKF) [5] 
The EKF determines the current (noise-free) estimates of a set of variables by linearizing 
through the partial derivatives of the process and measurement functions at the (known) 
previous instant of time. The linearized performance equation has the form: 

1k1k1kkk wW)xx~A(x̂x~ −−− +−+= , (2) 
 
where kx̂  are the outputs of a process (bioreactor) model, usually expressed as: 

)u,x̂(fx̂ k1kk −=  (3) 
 
In Eqs. (2) and (3), ku  are the forcing functions at the k-th (current) point in time, 1kw −  is the 
vector of process noise, A is the Jacobian matrix of f  with respect to 1kx̂ − , and W is the 
Jacobian with respect to 1kw − . 
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 (c) Cusum filter (CF) [28] 
In this filter, the mean of a set of noisy data is considered to change significantly due to 
changes in the process and not the noise when the cumulative sum (cusum) of the differences 
between the current measurements and the previous ones exceeds three standard deviations. 
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where kx  is the vector of measurements at the k-th (current) time, xσ  is the set of standard 
deviations, and N is the number of samples. 
 
Then, the filter acts if |cusum| > Nα . The value for α may be chosen according to the 
desired confidence level for the decision. Typically, α = 2 represents 95% confidence and  
α = 3 corresponds to 99.7% confidence. 
 
 (d) Combined CF-EKF [7] 
The working model of this filter is of the form: 

)x~x(Kx~x~ 1kkk1kk −− −+=  (5) 
 
Note the similarity to Eq. (2). As before, 1kx~ −  and kx~  are filtered data and kx  the noisy data. 
The Kalman gain Kk may be related to the Jacobian A, mentioned above with reference to  
Eq. (3), as: 
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where Re is the variance of the measurement noise. 
 
This essentially Kalman filtering algorithm is implemented through the cusum condition of 
Eq. (4). 
 
 (e) Auto-associative neural filter (ANF) [21, 24] 
All the filters described above require a model of the bioprocess. However, under noise-
affected industrial conditions it is often difficult to formulate mathematical models that are 
sufficiently simple, accurate and flexible. Then it is useful to have a filter that does not 
depend on a model. Artificial neural networks offer this possibility. 
 

 
 

Fig. 1 Architecture of the auto-associative neural filter.  
I1, I2 – input neurons; H1, H2 – hidden neurons;  
O1, O2 – output neurons; B1, B2 – bias neurons. 

 
Previous studies [18, 21, 22, 23] have shown that an auto-associative network performs 
effectively for different kinds of fermentations. This is understandable because, in a way, such 
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a neural network is germane to the filtering process, i.e. the outputs and inputs are the same, 
except for the reduction of noise. The ANF used here had the architecture shown in Fig. 1. 
There are two input and two output neurons, one each for the flow rates of the two substrates. 
The number of neurons in the hidden layer was varied to obtain the best performance; this 
number also turned out to be two. 
 
Description and modeling of the fermentation 
PHB is an energy storage polymer that is synthesized by certain microorganisms under 
conditions adverse to their growth. Such conditions are created in bioreactors by depriving the 
cells of essential nutrients such as nitrogen and phosphorus, with nitrogen starvation being 
preferred. 
 
While a shortage of nitrogen favors PHB synthesis, it is detrimental to cell growth. Sufficient 
amounts of carbon during the fermentation are also required for growth. Like nitrogen, excess 
of carbon also suppresses growth [9]. Thus, the C:N ratio is critical in determining both cell 
growth and polymer formation. The optimum ratio seems to depend on the substrates, the 
organism and the fermentation conditions, thus making it difficult to generalize. Nevertheless, 
we know that the optimum C:N ratio for Ralstonia eutropha is between 10 and 20 [8, 9]. 
However, the optimum ratio also varies with time. These features favor fed-batch 
fermentation for PHB production. 
 
There are two main feed streams. The carbon stream is glucose or fructose, and the nitrogen 
stream is ammonium chloride or ammonium sulfate. Recent studies [9, 30] have shown that 
maximization of PHB production requires nonlinear variations in both flow rates and in their 
ratio. These variations may become more pronounced for large nonideal bioreactors, such as 
the one analyzed here.  
 
Recognizing these difficulties early on, Yoo and Kim [33] proposed a cybernetic model for 
PHB synthesis. Their model is based on R. eutropha, which is the most widely employed 
organism for PHB. The preference for R. eutropha over other PHB-producing bacteria is 
based on its easy cultivation, its well-understood physiology and its ability to synthesize large 
amounts of PHB inside the cells. Yoo and Kim used the NCIB 11599 strain in batch 
fermentations with ammonium sulfate and glucose. 
 
A central premise in Yoo and Kim’s [33] model was that “the carbon source is optimally 
allocated to the key enzyme synthesis system so that the cells have a high degree of flexibility 
under nitrogen starvation”. Like other workers [9, 11, 16], they divided each cell into a PHB 
component and the residual biomass. The rate of growth of residual biomass was expressed 
as: 

11
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S1 the concentration of the nitrogen source and E1 is the key enzyme (or bottle-neck enzyme) 
that catalyses the growth. A similar equation was proposed for PHB synthesis. 
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In terms of the metabolic network [1], E1 may be RNA-polymerase or glutamate 
dehydrogenase, whereas E2 may be identified with β-ketothiolase or PHB polymerase. 
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A basic principle of cybernetic modeling is that the cells respond to their environment in a 
manner that is most favorable to their own survival [2]. Yoo and Kim [33] expressed this 
objective as the maximization of the cell mass at each instant of time. This involves dynamic 
allocations of carbon and nitrogen according to 

2or  1ji, ;
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= , (9) 

where νi is the fraction of the total substrate that is allocated to the i-th component. 
 
As explained above, the utilization of each substrate is triggered by a key enzyme Ei, whose 
activity varies as: 
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The iγ  are the cybernetic variables. 
 
The rate of change of enzyme concentration is the net result of induced synthesis, degradation 
and dilution due to cell growth. 
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Given the basis of Eqs. (9) and (10), the cybernetic equations for the rates of consumption of 
the key substrates may be written as: 
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Since PHB is accumulated intra-cellularly, the rate of growth of the total biomass is: 

P
R
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Following Kompala et al. [10], Yoo and Kim [33] expressed the specific growth rate on the 
i-th substrate as: 
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The batch kinetics may be inserted into the fed-batch model presented below. 
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In a recent communication [27], the feed rates Q1 and Q2 were determined in the absence of 
noise so as to maximize PHB production. The values of the parameters and initial conditions 
are shown in Table 1. To study the effect of noise and its filtering, previous studies of large 
bioreactors [4, 13, 20, 21, 26, 29] data from large bioreactors were used as the basis to each of 
the flow rates noise that follows a Gaussian distribution with a mean equal to the current 
value of the flow rate and different variances. Then Eqs. (16)-(22) were solved first without a 
noise filter and then with each of the filters described in Section 2. For each set of 
concentration profiles thus obtained, the Lyapunov exponents were calculated as described 
next. 
 
 Table 1. Values of the parameters and initial conditions [27, 33] 

Parameter Units Value Variable Units Initial Value 
K2 g l-1 0.254 XR g l-1 0.29 
m h-1 0.010 S1 g l-1 1.26 
Y1 g g-1 1.653 S2 g l-1 20.0 

'
1Y  g g-1 0.460 P g l-1 0.12 

Y2 g g-1 0.439 E1 g l-1 8.0.10-4 
αi h-1 0.001 E2 g l-1 1.7.10-3 
βi h-1 0.050 S1f g l-1 1.50 
µm1 h-1 0.176 S2f g l-1 20.0 
µm2 h-1 0.098 V l 30.0 

 
The Lyapunov exponents 
The Lyapunov exponent provides a convenient quantitative measure of system stability in 
terms of its time-dependent displacement after a disturbance. In other words, it measures the 
rate of divergence of two trajectories with increasing time. In the present context, one 
trajectory may be a noise-free concentration profile and the other a noise-affected profile. 
Both filtered and unfiltered profiles are considered (in the latter case) to assess the 
effectiveness of different filtering methods. Since the theory underlying Lyapunov exponents 
has been described adequately by others [3, 32], only a short introduction relevant to the 
present application is provided here. 
 
Let x0 be the value of a concentration just prior to the start (initial time t = 0) of a disturbance 
or noise signal, and let this value be displaced by ∆x(x0, t) as time progresses. The initial 
separation of the disturbance-free and disturbed trajectories is obviously ∆x(x0, 0). A dynamic 
system, such as the present one, is stable if the separation of the two trajectories does not 
increase with time. Mathematically this means: 
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The number λ is called the Lyapunov exponent, and it applies to both continuous and discrete 
processes. A system with many variables may have more than one Lyapunov exponent; then 
the largest exponent, λmax, is sufficient to characterize stability [3, 32]: 

0
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0 ∆
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If λmax < 0, the noise-affected trajectory is attracted eventually to a stable orbit. For PHB 
fermentation, this means the concentration profiles with noise eventually merge with the 
deterministic profiles. [How fast (or slowly) the disturbed system regains its original state 
depends on the value of λmax]. In the limit λmax→ −∞, the system is said to be superstable, i.e. 
no disturbance of any magnitude can permanently shift the fermentation to a different state. 
By contrast, λmax > 0 denotes an unstable trajectory; following a disturbance, such a trajectory 
will diverge increasingly from its original path and eventually either annihilate the microbial 
processes or generate chaotic behavior. 
 
For multi-variable complex processes, as many biological systems are, there is rarely a clear 
transition from λmax < 0 to λmax > 0. A disturbed (or noise-affected) system usually passes 
through a gray area around λmax = 0, within which the system is marginally stable. In a strict 
Lyapunov sense, λmax = 0 signifies neutral stability, where a disturbed path eventually stays at 
a constant distance from the original path until perturbed again. However, in real systems a 
strictly constant separation can rarely be maintained. Since noise is prevalent more in real 
applications than in ideal cases, marginal stability is a more useful concept than neutral 
stability. Further, in microbial processes a certain amount of fuzziness is unavoidable [31], 
due to noise as well as measurement uncertainties, thereby creating to a window of marginal 
or transitional stability between the unstable and stable regions. 
 
In view of its success in earlier applications [23, 25, 26], the Lyapunov exponent was 
employed here to study the effect of inflow of noise on fed-batch fermentation for PHB. 
 
Application and discussion 
In fed-batch and continuous fermentations the feed stream is the main source of noise. 
Observations have shown [15, 20, 26, 29] that the inflow of noise can seriously impair the 
performance, especially when more than one species of microorganism and/or substrate are 
involved. In PHB synthesis there are two main substrates, glucose and ammonium sulfate, and 
their ratio has a singular influence on the fermentation [8, 9, 11]. 
 
The noise carried by the feed stream(s) typically has a Gaussian distribution with a mean 
equal to the instantaneous deterministic value of the noisy variable [13, 20, 29]. In fed-batch 
fermentations this mean is obviously a function of time. So time-dependent Gaussian noise 
was added to the flow rates of glucose and ammonium sulfate determined earlier [27] for a 
noise-free fermentation, and the cybernetic model was solved for different values of the 
variance of the noise. A range of variances was explored because of observations from other 
fermentations [14, 21, 23] that large variances may destabilize the fermentation and cause 
chaotic behavior. 
 
Fig. 2 shows the variation in the Lyapunov exponent over a range of variances for four key 
concentrations characterizing the fermentation. Until a variance of about 8%, all four plots are 
negative and increase slowly. Beyond 8%, the exponents become positive and there is a 
pronounced increase in their rates of change. Owing to the presence of both process noise and 
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measurement noise, the transition from a negative to a positive Lyapunov exponent is neither 
abrupt nor exactly the same for all variables. Therefore, as seen in Fig. 2, a band of variances 
separates the stable region (negative exponents) from the unstable region. Within this band all 
the exponents cross the axis of neutral stability. 
 

 
 

Fig. 2 Variations of the largest Lyapunov exponents with the variance of the noise 
 
Fig. 2 also shows that the residual biomass has the largest Lyapunov exponent for all 
variances and ammonium sulfate the smallest. This suggests that the residual biomass is the 
most susceptible to noise-induced destabilization and ammonium sulfate the most robust. 
Time-domain plots of these variables for an optimally dispersed broth [9] show that the 
biomass concentration is more than an order of magnitude larger than that of ammonium. This 
implies that small concentrations are more stable than large concentrations. This has also been 
observed for an oscillating continuous fermentation by Saccharomyces cerevisiae [23], 
implying that the inference could be valid for different types of organisms and fermentations.  
 
Having identified the stable and unstable regions, one variance from each region was selected 
to study the effects of different filters. The corresponding Lyapunov exponents are plotted in 
Figs. 3-6. From left to right the order of the bars in each set is: 1 – no filter, 2 – 1-st order 
LPBF, 3 – 2-nd order LPBF, 4 – EKF, 5 – CF, 6 – CF-EKF and 7 – ANF. For zero variance, 
i.e. no noise, all the exponents are negative, indicating a stable fermentation. The exponents 
are also equal for each variable, which is expected since the filters become redundant in the 
absence of noise. However, the exponents are progressively more negative from the residual 
biomass through glucose, PHB and ammonium sulfate, implying increasing stability. 
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Fig. 3 Values of the largest Lyapunov 

exponents of the residual biomass without a 
filter and with different filters for noise 

variances of 0% (no noise), 5% (stable) and 
10% (unstable). Bars: 1 – no noise, 

2 – LPBF(1), 3 – LPBF(2), 4 – EKF,  
5 – CF, 6 – CF-EKF, 7 – ANF. 

Fig. 4 Values of the largest Lyapunov 
exponents of glucose without a filter and with 
different filters for noise variances of 0% (no 

noise), 5% (stable) and 10% (unstable). 
Bars: 1 – no noise, 2 – LPBF(1), 
3 – LPBF(2), 4 – EKF, 5 – CF,  

6 – CF-EKF, 7 – ANF. 
  

  
Fig. 5 Values of the largest Lyapunov 

exponents of PHB without a filter and with 
different filters for noise variances of 0%  

(no noise), 5% (stable) and 10% (unstable). 
Bars: 1 – no noise, 2 – LPBF(1),  
3 – LPBF(2), 4 – EKF, 5 – CF,  

6 – CF-EKF, 7 – ANF. 

Fig. 6 Values of the largest Lyapunov 
exponents of ammonium sulfate without a 

filter and with different filters for noise 
variances of 0% (no noise), 5% (stable) and 

10% (unstable). Bars: 1 – no noise,  
2 – LPBF(1), 3 – LPBF(2), 4 – EKF, 5 – CF, 

6 – CF-EKF, 7 – ANF. 
 
The order of stability is preserved even when noise flows in with the feed streams. At 5% 
variance all the filters are able to maintain stable fermentations even though the extents of 
stability differ. Again this may be expected since 5% variance of the noise inflow is unable to 
destabilize the process, as revealed by the negative Lyapunov exponents without a filter in all 
four figures. Nevertheless, within the increasing order of effectiveness, there are only 
marginal differences between the first and second order LPBF and between an EKF and a CF. 
The ANF is seen to be substantially better than other filters. 
 



 Bioautomation, 2008, 9, 1-14 ISSN 1312 – 451X 
 

 10

The differences between the noise filters become really significant and informative under 
conditions where noise destabilizes the fermentation. This happens above 8% variance 
(Fig. 2) and illustrative results for 10% variance are shown in Figs. 3-6. All Lyapunov 
exponents without a filter are strongly positive; while the use of filters reduces the exponents 
in the same order as for 5% variance, some filters are now unsuccessful in restoring stability. 
For the relatively less stable variables (Figs. 3-5), only the CF-EKF and the ANF are able to 
filter out the noise sufficiently, whereas for ammonium sulfate (Fig. 6), which is less affected, 
the EKF and CF are also effective. 
 
The superiority of an ANF over other kinds of filters arises from its flexibility, versatility, 
robustness, and the ability to learn from previous experience and make ‘intelligent’ decisions 
[6]. Static filters such as the LPBF and EKF are restricted in these features and therefore in 
their ability to act effectively when there are large deviations from stable performance. 
However, the EKF is better than the LPBF in its design methodology, connection with a plant 
model and its ability to restore stable performance even in the presence of limited chaos  
[5, 23, 26]. Figs. 3-6 also show that while the EKF and the CF are about equally good, their 
combination (the CF-EKF) improves filtering efficiency remarkably. While more studies are 
required to generalize and elucidate this observation, Jacobsson et al.’s [7] work suggests an 
explanation. For complex information networks, they surmised that efficient attenuation of 
noise had to be linked to reduction of bottlenecks in the network since noise tended to 
accumulate at such points. This requirement implies combining a filtering algorithm with 
another for change detection. An EKF provides the former requirement and a CF the latter. 
Therefore, as in Jacobsson et al.’s study, a CF-EKF filter has been efficient in the present 
application also since the metabolic network for PHB synthesis [1] also has complex 
information flow and key enzymes corresponding to the bottleneck points. 
 
The differences in the filtering efficiencies for different designs are quantitatively compared 
in Table 2. Each value depicts the extent of noise reduction, expressed as: 

f 0

0

λ λReduction(%) 100
λ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
, (25) 

where λ0 is the (largest) Lyapunov exponent without a filter and λf the corresponding 
exponent with a filter. Therefore, in the absence of noise all the values in Table 2 are zero. For 
5% variance, the reductions are positive since both λ0 and λf are negative in all cases 
(Figs. 3-6), whereas for 10% variance they are negative because λ0 > 0 and λf < λ0 for all 
variables. 
 
Table 2 indicates that the six filters may be paired into three groups according to the closeness 
of their performances. Group 1 has the two LPBFs, group 2 contains the EKF and the CF, and 
group 3 comprises the CF-EKF combination and the ANF. The differences between the 
members in each group are much smaller than between the groups. There is a 3- to 4- fold 
improvement from group 1 to group 2, and group 3 filters are twice as good as those in 
group 2. It is also seen that the extent of stabilization increases down the table, in the same 
order as the plots in Fig. 2. The theoretical limit of −∞ in Table 2 denotes infinite stability, a 
notion that is consistent with the superstability signified by a Lyapunov exponent λ → −∞  
[3, 32]. 
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                      Table 2. Comparison of the noise reduction performances of different filters 

Percentage reduction in Lyapunov exponent 
Concentration 

Variance 

of noise(%) LPBF(1) LPBF(2) EKF CF CF-EKF ANF 
0 0.0 0.0 0.0 0.0 0.0 0.0 
5 3.51 7.02 12.28 14.03 22.81 29.82 Biomass 
10 -9.57 -13.83 -35.64 -42.02 -107.45 -112.23
0 0.0 0.0 0.0 0.0 0.0 0.0 
5 3.23 5.38 10.75 12.90 20.43 25.81 Glucose 
10 -8.86 -16.46 -60.13 -67.72 -115.19 -122.15
0 0.0 0.0 0.0 0.0 0.0 0.0 
5 7.69 9.79 24.48 25.87 32.17 44.06 PHB 
10 -21.32 -33.09 -80.88 -88.24 -125.74 -136.03
0 0.0 0.0 0.0 0.0 0.0 0.0 
5 1.61 2.15 4.84 6.45 11.83 29.57 Ammonium 
10 -22.42 -30.17 -121.55 -132.76 -144.83 -157.76

 
Concluding observations 
Noise is a ubiquitous feature of large-scale fermentations. Inflow streams are the main carriers 
of noise, thus making continuous and fed-batch fermentations more likely to be affected than 
batch operations. Previous studies have shown that noise in the flow rates of feed streams may 
be modeled by a Gaussian distribution. 
 
For PHB production in fed-batch fermentation by R. eutropha, an experimentally validated 
cybernetic model was used to study the effect of noise in the flow rates of the main carbon 
source (glucose) and the main nitrogen source (ammonium sulfate). The focus was on 
stability of the fermentation, quantitatively described by the Lyapunov exponent. Up to about 
8% in the variance of the noise, the Lyapunov exponents were negative, indicating stability. 
Larger variances caused instability. So, variances of 5% and 10% were selected to study the 
effect of filtering the noise. 
 
At 5% variance, the fermentation was inherently stable, so filtering the noise was of marginal 
benefit. Nevertheless, filtering did reduce the already negative exponents, thus increasing the 
stability. The effectiveness of noise filters is, however, properly tested for a noisy unstable 
fermentation. A variance of 10% allowed this evaluation. Lyapunov exponents of the noise-
affected unfiltered fermentation had revealed that residual biomass was most severely affected 
and ammonium the least, while glucose and PHB were intermediate. While low pass 
Butterworth filters could not restore stability, an EKF and a CF could stabilize only the 
ammonium sulfate concentration. On the contrary, the CF-EKF combination and ANF were 
effective for all concentrations. 
 
Despite their superior performances, the CF-EKF and the ANF need not always be the most 
suitable choice. At least two considerations moderate the selection. One is the requirement of 
the application. Efficient filters also tend to be complex and slow, so an application that 
requires fast but not very accurate data acquisition and control may served better by an EKF 
or a CF. Even for these filters, a realistic application often involves a balance between speed 
and accuracy [26, 28]. Secondly, more than one criterion may be applied to evaluate the 
performance of a filter, and the choice depends on the relative importance assigned to 
different criteria [23, 24]. 
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Nomenclature 
E1  concentration of key enzyme for nitrogen assimilation (g l-1) 
E2  concentration of key enzyme for glucose assimilation (g l-1) 
K1  Monod constant for biomass growth (g l-1) 
K2  Monod constant for PHB synthesis (g l-1) 
m  maintenance coefficient (g g-1 h-1) 
P  concentration of PHB (g l-1) 
Q  total feed rate (l h-1) 
Q1  feed rate of ammonium sulfate (l h-1) 
Q2  feed rate of glucose (l h-1) 

e
ir   rate of synthesis of Ei (g l-1 h-1) 
S

1r   rate of consumption of ammonium sulfate (g l-1 h-1) 
S
2r   rate of consumption of glucose (g l-1 h-1) 

rP  rate of PHB synthesis (g l-1 h-1) 
Ri  1  ifor  rR

X =  and rP for i = 2 (g l-1 h-1) 
R
Xr   rate of growth of residual biomass (g l-1 h-1) 

S1  concentration of ammonium sulfate (g l-1) 
f1S   feed concentration of ammonium sulfate (g l-1) 

S2  concentration of glucose (g l-1) 
f2S   feed concentration of glucose (g l-1) 

t  time (h) 
V  volume of broth in the reactor (l) 
X  total biomass concentration (g l-1) 
XR  concentration of residual biomass (g l-1) 
Y1  residual biomass yield from ammonium sulfate (g g-1) 

'
1Y   residual biomass yield from glucose (g g-1) 

Y2  PHB yield from glucose (g g-1) 
iα   synthesis rate constant for Ei (h-1) 

βi  decay constant for Ei (h-1) 
γi  cybernetic variable controlling the activity of Ei 
µ1  specific rate of growth of biomass on ammonium sulfate (h-1) 
µ2  specific rate of growth of biomass on glucose (h-1) 

miµ   maximum value of µi (h-1) 
νi  fractional allocation of i-th resource 
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