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Abstract: This paper utilises meta-analysis and odds ratios to examine the relationship between 
hypertension and kidney disease in patients with diabetes (Type 1 or Type 2). Significant evidence 
is found to establish that our quantitative results (overall odds ratios) agree with the qualitative 
results of the literature, namely that hypertension has a close association with nephropathy and is 
a major risk factor for this renal disease. The results show that with hypertension diabetic patients 
have almost 3.5 times the risk of developing nephropathy than those diabetic patients without 
hypertension. 
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Introduction 
Meta-analysis is the process of combining research results in order to strengthen conclusions about 
therapeutic effectiveness or to plan new studies. Meta-analysis attempts to compare and combine 
the results of previously published research. Glass [9] was the first to refer to this type of research 
as “Meta-analysis”. As he said “the term is a bit grand, but it is precise, and apt, and in the spirit of 
“meta-mathematics”, “meta-psychology”, and “meta-evaluation”. Meta-analysis refers to the 
analysis of analyses. 
 
There are three other methods of research synthesis, namely, the traditional narrative reviews, the 
vote counting methods, and the combined significance test methods. Meta-analysis is distinguished 
from these in the way it uses statistics as we show, and from primary studies (the original analysis 
of data) and secondary analysis (reanalysis of another's data) by the fact that meta-analyses do not 
require access to the raw data, but only to summary statistics. Thus the data points for 
meta-analyses are summary statistics, and a sample of studies in meta-analysis is analogous to a 
sample of subjects in primary analysis.  
 
l'Abbé et al. [1] discussed the needs of meta-analysis in clinical research. They pointed out that: 

 meta-analysis is a systematic reviewing strategy for addressing research questions that is 
especially useful when results from several studies disagree with regard to magnitude or 
direction of effect; 
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 sample sizes may be individually too small to detect an effect and label it statistically 
significant; 

 large trials may be too costly and time-consuming to perform; 
 in evaluating medical treatment and planning new studies, a better understanding is 

needed of the findings of previous clinical studies. Investigators rely heavily on 
literature reviews to define the present state of knowledge. Meta-analysis takes a more 
structured approach to literature review than does traditional narrative review, and this 
way may be more helpful in evaluating the accumulation of evidence. 

 
In this paper we utilise meta-analysis to combine odds ratios to investigate the connection between 
hypertension and renal disease in diabetes. This is a major and controversial issue with nondiabetic 
kidney disease too [9], but we shall not venture there in this paper. Hypertension is defined as high 
blood pressure, that is, elevation of the arterial blood pressure above the normal range expected in 
a particular age group. In general, the normal range of blood pressure (sBP/dBP) is around 
140/90 mm Hg (the range will change with age) and hypertension may result from kidney disease. 
 
The steps taken in the methodology for the meta-analysis were the standard procedures:  

 identification of studies; 
 definition of the criteria for the inclusion/exclusion of studies; 
 reading, classification, coding, evaluating, and choosing of papers; 
 combination of results of the data; 
 analysis, interpretation and reporting of results. 

 
We do not go through these standard steps in this paper: the details are available from the authors. 
What we do, however, is to discuss the statistical context since this is sometimes taken for granted. 
 
Odds ratio 
If the probability of an event is p, then the odds of the event are given by  

.
1 p

p
−

=Ω    (1) 

 
In other words, odds express the probability that a particular event will occur against the 
probability that it will not occur. The logarithm of Ω  is usually called the log odds or logit:  
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In clinical research, especially in case-control studies, the odds ratio is commonly used to compare 
the odds of an event in the treated group with the odds in the control group. In order to illustrate the 
essence of odds ratio more clearly, let us formulate a 2×2 table which represents the notation for the 
statistics used to describe unmatched case-control studies. 
 
In Table 1, we notice that the odds in favour of the risk factor's being present in cases is ca /  
whereas odds in favour of the risk factor's being present in controls is db / . So the odds ratio is 
estimated by 
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Table 1. Contingency table 

 Cases Controls 
 (with disease) (without disease) 
Exposed to risk factor a  b  
Not exposed c  d  
Total ca +  db +  

 
In a case-control study, we cannot estimate the risks in each group as we can in a prospective study, 
since the number of cases and control studies is under the control of the investigator and does not 
reflect the incidence of the disease in the population. To illustrate this fact let us double both c and 
d in Table 1, and so the relative risk would now appear to be ( ) ( )bacdca 2/2 ++ , which in most 

cases would be different from the previous estimate (that is, /( )
/( )
a a bRR
c c d

+=
+

). Obviously, one 

would not expect to change the relative risk simply by increasing the number of controls and so the 
estimate must be erroneous. Actually, by simply changing the number of controls and/or cases, the 
relative risk, as described before, could be made to take any value at all! Whereas if the odds ratio 
is used as a measure of association in case-control studies, there would be no change in the estimate 
even if we double the number of controls, since we have doubled both the numerator and the 
denominator of the expression.  
 
Fortunately, if the disease is rare (i.e., a b, c d<< << ), then the relative risk estimated by  
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)/(ˆ
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which can be rewritten as  

dc
baRR

/
/ˆ = . 

 
In other words, the relative risks, though they cannot be computed exactly in case-control studies, 
can be estimated approximately, under special conditions, by the odds ratio.  
 
Estimator of the odds ratio  
By referring to Table 1, a consistent estimator of odds ratio (OR) in a single study, when all the 
frequencies in the cells are large, is given by  

ˆ .adOR
bc

ψ= =   (4) 

 

Woolf [15] suggested that if we take the logarithm of OR, such that  
ˆln( ) ln ln( / ),OR ad bcψ= =   (5) 
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then in general the sampling distribution of ψ̂ln  is approximately normally distributed about the 
mean ψln  with sampling variance equals to  

2 1 1 1 1ˆ(ln( ) .SE
a b c d

ψ = + + +   (6) 

 
Hence we can find the ( )%1100 α−  confidence interval for ψln  by calculating the confidence 
limits  

( )[ ]ψψ α ˆlnˆln 2/ SEz ×± .  (7) 
 
The confidence limits for the population of OR is then obtained by exponentiating Eq. (7) to give  

( )[ ]( )ψψ α ˆlnlnexp 2/ SEz ×± .  (8) 
 
The limitation of Woolf's method (also known as the logit method) is that any of the numbers a, b, 
c or d should not be too small. The variance may even be non-defined if any one of them is equal to 
zero.  
 
Combined estimate of the log odds ratios across studies  
Suppose there are k studies to be meta-analyzed. Let ni1 and ni2 be the sample sizes in the i-th 
studies, and let pi1 and pi2 be the proportion having the characteristic under study. Thus for instance 
in a randomized controlled trial the two groups would be the treated and placebo samples and the 
characteristic under study may be relapse or some other kind of failure. In an epidemiological 
case-control study the two groups would be cases and controls and the characteristic under study 
would be exposure to the hypothesized risk factor.  
 
Breslow and Day [4] suggested that a full analysis of such a series of 2×2 tables (like Table 1) 
should comprise 

• a test of full hypothesis that 1ψ = in all tables (that is, 1ψ =  for all the k studies 
involved); 

• point and interval estimation of ψ assumed to be common to all tables; and 
• a test of the homogeneity thatψ is constant across tables; 

 
There are at least two kinds of estimators which we are going to discuss. 
 
Logit estimate of the common odds ratio  
The logarithm of the estimate of odds ratio in studies i, denoted by iψ̂ln  is equal to  
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and the standard error of iψ̂ln  is given by  
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In fact it can be easily shown that the expressions in Eq. (5) and Eq. (9) are equal, as are those in 
Eqs. (6) and (10) for general i. The weights wi assigned to the particular iψ̂ln  are given by  

1  .ˆ(ln( )i
i

w
var ψ

=   (11) 

 
In doing this Woolf [12] stated that the overall wψ̂ln  is given by  
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The variance of the overall estimate wψ̂ln  is given by the reciprocal of the sum of the weights, 
namely  

( ) ( ) 1ˆlnvar −∑= iw wψ . 
 
Having defined the overall estimate wψ̂ln , we can then construct the 95% confidence interval for 
the parameter lnψ  as follows:  

∑∑ +≤≤− iwiw ww 96.1ˆlnln96.1ˆln ψψψ . 
 
The limitation of the logit combined estimate is that if any of the entries in a given table is zero, the 
log odds ratio and weight for that table will be non-defined. The usual remedy for this problem is to 
add 1/2 to each entry before calculating the individual odds ratios and weights. However, the 
estimate calculated in this way is subject to unacceptable bias when combining information from 
large numbers of strata, each containing only a few cases or controls. It is not recommended for 
general use [4]. A more acceptable estimate is the famous Mantel-Haenszel estimate [10]. 
 
Mantel-Haenszel estimate  
Mantel and Haenszel proposed as a summary relative risk estimate the statistic  
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where  
iiiii dcbaN +++= . 

 
This estimate can be recognized as a weighted average of the individual odds ratios  

ii

ii
i cb

da
=ψ̂  

with weights i i iw b c / N=  which approximate the inverse variances of the individual estimates 
when ψ  is near 1. The advantage of using the Mantel-Haenszel formula as described by Eq. (12) is 
that the formula is not be affected by zero cell entries and gives a consistent estimate of the 
common odds ratio even with large numbers of small strata. When the data in each stratum are 
more extensive it yields results which are in good agreement with the maximum likelihood 
estimators [7].  
 
Mantel and Haenszel also gave a significance test of the hypothesis that 1=ψ . For instance, if 
there were no association between the risk factor and the disease, the expected value and the 
variance of ai in the 2×2 tables will be given by  
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The test is calculated by adding the differences between the observed and expected values of ai 
over the subsets. Since these subsets are independent, the variance of the sum of the differences is 
equal to the sum of the separate variances. This gives as a test statistic  

( )[ ]
( )∑

∑ ∑−=
i

ii
MH a

aEa
X
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2
2  

which is approximately ( )
2
1Χ . 

 
In order to construct the confidence interval, Miettinen [9] suggested that if the variance of MHψ̂  
were known, then, under normal theory, a test statistic of the hypothesis 1 (ln 0)ψ ψ= =  would be  

( ) ( )MHMH SEz ψψ ˆ/ˆln= .  (13) 
 
taken as an approximate standardized normal deviate. The test statistic XMH

2  is approximately ( )
2
1Χ  

and taking the square root gives an approximate standardized normal deviate. Hence we can let 
MHz Χ= , and upon substituting into Eq. (13) we get  

( ) ( )ln lnMH MH MHˆ ˆSE /ψ ψ Χ= . 
 
Hence the 95% confidence limits for ψln  can be constructed as follows:  
ln 1 96lnMH MH MHˆ ˆ. /ψ ψ Χ±  
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from the anti-logarithm, the 95% confidence limit or ψ  will be given by  

( )[ ]( ) [ ]1 1 96ln 1 1 96 MH. /
MH MH MHˆ ˆexp . / Χψ Χ ψ ±± = . 

 
Homogeneity of odds ratios across studies  
In order to test for homogeneity, we can use the logit approach, that is, take the weighted sum of the 
square deviations between the separate estimates of log odds ratio in each 2×2 table and the overall 
log estimate wψ̂ln  obtained by the logit method. Thus let  

( )∑ −= 2
2 ˆlnˆln wiiwQ ψψ , 

where  

∑
∑=
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ii
w w

w ψ
ψ

ˆln
ˆln . 

 
If all the k  studies have the same population odds ratio, then the test statistic Q2  has an asymptotic 
chi-square distribution given by  

2
12 −Χ≈ kQ . 

 
If the null hypothesis is not rejected, then we can combine the ( ) si 'ˆlnψ  together across the k 
studies and obtain the overall estimate wψ̂ln . 
 
Nevertheless, much of the literature was not amenable to combination of quantitative results even 
when the conclusions could be compared qualitatively because they lacked adequate controls or 
they were a mixture of longitudinal and cross-sectional designs or they were isolated studies with 
small sample sizes. The data which are appropriate for comparison quantitatively by meta-analysis 
are shown in Table 2. Five studies were used for comparison from Table 3 where we found that 
study 1, study 5 showed a “significant” association between nephropathy and hypertension  
(Fig. 1). 
 

Table 2. Studies in hypertension as a risk factor for diabetic nephropathy 

Nephropathy Without nephropathy Study 
No 

Study 
name 

Year of 
study With 

hypertension 
Without 

hypertension 
With 

hypertension 
Without 

hypertension
1 Barzilay 1992 28 18 17 61 
2 Earle 1992 13 48 9 52 
3 Gall 1997 22 19 51 84 
4 Nelson 1996 12 72 1 19 
5 Rossing 1996 107 58 108 485 

 
The overall odds ratio is 3.5617 which implies that the diabetic patients with hypertension are 
approximately 3.5 times as likely to progress diabetic nephropathy as those without hypertension. 
The 95% confidence interval for the overall odds ratio indicates that, in patients similar to the ones 
studied, the true odds ratio is somewhere between 1.6159 and 7.8508. There is a strong evidence 
that hypertension is highly associated with the development of nephropathy because there is a large 
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overall combined chi-square and a small corresponding p-value ( )000001.0,1292.1362 <=Χ p . 
 
This shows a statistically significant result of a close relation between hypertension and 
nephropathy. 

.0 5.0 10.0 15.0 20.0 25.0

Odds Ratio

Barzilay 92

Earle 92

Gall 97

Nelson 96

Rossing 96

Overall

 
Fig. 1 Hypertension as a risk factor for diabetes 

 
 

  Table 3. Odds ratio and 95% CI for nephropathy among hypertension study groups 

Study No. Study name Odds ratio 95% confidence interval 
1 Barzilay [3] 5.5817 2.3366 13.5137 
2 Earle [5] 1.5648 0.5610  4.4154 
3 Gall [6] 1.9071 0.8896  4.0998 
4 Nelson [12] 3.1667 0.3818 25.9034 
5 Rossing [14] 8.2846 5.5592 12.3650 

Overall 3.5617 1.6159  7.8508 
Overall combined Chi-square = 136.1292, df = 1, p < 0.000001 

 
 

Conclusion  
There is compelling evidence that the quantitative results (overall odds ratios) in this paper agree 
with the qualitative results of the literature, namely that hypertension has a close association with 
nephropathy and is a major risk factor for this disease. This conclusion is in accord with other 
recent research on diabetic patients [2] and more generally [13]. The results further show that with 
hypertension diabetic patients have almost 3.5 times the risk of developing nephropathy than those 
diabetic patients without hypertension. 
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