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Abstract: The principle of extremum seeking control has been applied on a cascade of two 
anaerobic bioreactors using the dilution rate as control action and the biogas flow rates as 
measured outputs to be maximized. In all cases maximum biogas flow rate with sensible 
decrease of the general output depollution parameter (compared to the case of one single 
bioreactor) has been obtained, starting from different initial conditions. With the same 
algorithm, good performances have been obtained in the presence of variations of the inlet 
organics. Its implication for biotechnology may result in substantial economic benefits. 
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Introduction 
In the anaerobic digestion (AD) of organic wastes, the organic matter is decomposed by 
microorganisms into biogas and compost in the absence of oxygen. Generally these processes 
are carried out in continuously stirred tank bioreactors (BR) [3].  
 
AD is an effective biotechnological process for treatment of different agricultural, municipal 
and industrial wastes. It combines environmental depollution (ecological aspect) with 
production of renewable energy – biogas, the main component of which is methane 
(energetical aspect) [3]. 
 
Recently, AD in interconnected (cascade) bioreactors has manifested some advantages 
concerning wastes degradation and biogas productivity [5, 11]. 
 
A lot of AD models are known. All of them present extreme (maximal) characteristic 
concerning the biogas flow rate via the dilution rate [9, 10]. 
 
Recently, two methods for optimal control of bioprocesses have been demonstrated in some 
applications – self-optimizing control and extremum seeking (ES) control [4]. The task of ES 
control is to find the operating set-points that maximize or minimize an objective function [1]. 
Its implication for biotechnology may result in substantial economic benefits. 
 
In the last two decades some new results concerning the ES control of nonlinear systems have 
been obtained [2, 6-8, 12]. Two approaches of ES control for bioreactors are known – model-
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based approach and nonmodel-based approach. However, these algorithms for optimal control 
have not yet been applied for cascades of BR. 
 
The aim of this paper is to investigate an algorithm for ES control of a cascade of two 
anaerobic bioreactors (Fig. 1) using the dilution rate of the first bioreactor as control action 
and the biogas flow rate of the first bioreactor as measured output to be maximized. The 
control algorithm has been tested on a nonlinear model with Monod type of kinetics for both 
bioreactors. 

 
Fig. 1 Principle scheme of a cascade of two anaerobic bioreactors 

 
Process modeling 
Experimental studies 
Laboratory experiments of AD of mixture of activated sludge (70%) and milk whey (30%) 
with COD = 10.2 gO/dm3 are carried out in a cascade of two anaerobic bioreactors (with 
working volumes of 2 and 14 dm3, respectively) at a mesophilic temperature of 34oC.  
As an example, some results concerning the production of biogas and depollution effect 
(COD) in steady-states are shown in Table 1 [11]. 

 
 Table 1. Some experimental results 

D1 
(day-1) 

Q1 
(dm3.day-1) 

COD1
(gO.dm-3) 

D2 
(day-1) 

Q2 
(dm3.day-1)

COD2
(gO.L-1) 

0.025 0.46 2.20 0.0036 0.20 0.80 
0.050 1.00 2.76 0.0072 0.25 0.92 

 
From the experimental data shown in Table 1 one may conclude that the total yield of biogas 
is about 25% more and the depollution effect is about three times better than in  
a single BR [9]. 
 
Mathematical modelling 
The model of a cascade of two anaerobic bioreactors, used in this paper, has been developed 
on the basis of flux balance [11]. 
 
For BR1 the model is based on a three-stage reaction scheme and includes equations for the 
hydrolysis (1) of the soluble organic matter with concentration S0 in BR1 for influent waste 
with concentration S0i and dilution rate D1, the growth of acidogenic bacteria (2) with 
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concentration X11 and methanogenic bacteria (4) with concentration X21, the dynamics of the 
substrate (with concentration S11) for acidogenic bacteria (3) and of acetate (with 
concentration S21) production (5), the formation of biogas with flow rate Q1 (6) and the 
equation for COD1 of the outlet of BR1 (7): 

0
1 0 11 0 1 0 0,p i

dS D S X S D Y S S
dt

β= − − + > 0  (1) 

11
11 1 11 11,dX ( D )X X

dt
µ= − > 0  (2) 

11 11
1 11 11 0 11 11

11

,dS XD S X S S
dt Y

β µ= − + − > 0  (3) 

21
21 1 21 21,dX ( D )X X

dt
µ= − > 0  (4) 

21 21
1 21 1 11 11 21 21

21

,B
dS XD S Y X S
dt Y

µ µ= − + − > 0  (5) 

1 1 21 21gQ Y Xµ=  (6) 

1 11 0 21 11 31 21 1,COD c S c S c S COD= + + > 0  (7) 
 
In Eq. (7) ci1 (i = 1, 2, 3) are conversion factors from g.dm-3 to gO.dm-3 for BR1. 
 
For the specific growth rates of bacteria in BR1, Monod type (including decay coefficients k1 
and k2) nonlinear functions have been adopted: 

11 11
11 1 11

11 11

,max

S

S k
K S

0µµ = −
+

µ >  (8) 

21 21
21 2 21

21 21

,max

S

S k
K S

0µµ = −
+

µ >  (9) 

 
The dilution rate for BR1 is: 

1
1

0FD
V

= >  (10) 

 
For BR2 the model is based on a two-stage reaction scheme (the hydrolysis equation is not 
included because supposed to have taken place only in BR1) and includes equations for the 
growth of acidogenic (11) and methanogenic (13) bacteria (with concentrations X12 and X22 
respectively), the degradation of the not completely digested in BR1 soluble organic matter 
(12) and of the acetate (14), production of biogas with flow rate Q2 (15) and the equation for 
the depollution parameter COD2 of the effluent of BR2 (16): 

12
12 12 2 11 12 12( ),dX X D X X X

dt
µ= + − 0>  (11) 

12 12
2 11 12 12 12

12

( ) ,dS XD S S S
dt Y

µ= − − 0>  (12) 

22
22 22 2 21 22 22( ),dX X D X X X

dt
µ= + − 0>  (13) 

22 22
2 21 22 2 22 12 22 22

22

( ) ,B
dS XD S S Y X S
dt Y

µ µ= − + − 0>

22

 (14) 

2 2 22gQ Y Xµ=  (15) 
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2 22 12 32 22 42 11 52 21 2, 0COD c S c S c S c S COD= + + + >  (16) 
 
In (16) ci2 (i = 2, 3, 4, 5) are conversion factors from g.dm-3 to gO.dm-3 for BR2. 
 
For the specific growth rates of bacteria in BR2, Monod type nonlinear functions have been 
adopted as well: 

12 12
12 12

12 12

,max

S

S
K S

0µµ =
+

µ >  (17) 

22 22
22 22

22 22

,max

S

S
K S

0µµ =
+

µ >  (18) 

 
The dilution rate for BR2 is: 

2
2

0FD
V

= >  (19) 

 
Taking into account that the volume of BR2 is N times bigger (in our case N = 7) than that of 
BR1, the following ratio between dilution rates has been obtained: 

1
2

1

DFD
NV N

= = , (N > 1) (20) 

 
For a single anaerobic bioreactor, the input-output static characteristics Q = f(D) and  
COD = f(D) have been obtained, using Symbolic toolbox of Matlab and the model (1) to (9). 
They are shown on Fig. 2 [9]. The static characteristic Q = f(D) is a family of nonlinear 
curves (with parameter S0i). presenting a maximum. It is possible to obtain analytically values 
for Dmax (corresponding to the maximal value of Q – Qmax) and for the technological bound 
Dsup (related with wash-out of bacteria). The static characteristic COD = f(D) is a unique 
(non-depending of S0i) nonlinear curve. 

Q1 [dm3/day] 
COD [gO/dm3] 

 
Fig. 2 Input-output characteristics 

 
From Fig. 2 one may conclude that for small values of D (D << Dmax) the depollution effect is 
much better and the input-output static characteristics are closer to linear. In BR1 the aim is to 
maximize the biogas flow rate (D1 close to Dmax) and the depollution effect will be neglected. 
BR2 will operate with small values of D2 (D2 << Dmax) – in our case 7 times lower and the 
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depollution effect is much better than in BR1. However, the biogas flow rate of BR2 is 
significant as well due to the greater volume of this bioreactor. 
 
The measurable outputs are Q1 and Q2. However, only D1 is the control input.  
 
It is very difficult to obtain the exact coefficients values [11]. That is why for this study the 
following arbitrary coefficients have been adopted: 

-1
11 12 0 22 daymax max .µ µ= = , , -1

21 22 0 25 daymax max .µ µ= =
-3

11 12 1 6 g.dmS SK K .= = , ,  -3
21 22 1 6 g.dmS SK K .= =

-1
1 2 0 02 dayk k .= = , 3 0.β = , 

11 12 0 15Y Y .= = , ,  21 22 0 24Y Y .= =
0 144pY .= , 1 2 5 0B BY Y .= = , 1 2 4 35g gY Y .= = . 

 
Extremum seeking control 
Problem statement 
Let us assume that the goal of the AD process in BR1 is the production of biogas.  
As an optimization objective, it is then natural to consider the maximization of the biogas 
flow rate Q1 [dm3.day-1]: 

1Q Ma⇒ x  (21) 
 
In the next paragraph we show that the steady states of the AD process in BR1 are 
characterized by a non-monotonic map relating the biogas flow rate Q1 (controlled output) to 
the dilution rate D1, which is our control input. The purpose of the extremum seeking method 
is then to iteratively adjust the dilution rate in order to steer the process to the maximum of 
this map. 
 
Steady-state analysis of the open-loop system 
In ideal stationary conditions, all the derivatives in the model (1)-(9) are equal to zero. Thus 
the following static model is obtained: 

1 0 11 0 1 0 0p iD S X S D Y Sβ− − + =  (22) 

( )11 1 11 0D Xµ − =  (23) 

11
1 11 11 0 11

11

0XD S X S
Y

β µ− + − =  (24) 

( )21 1 21 0D Xµ − =  (25) 

21
1 21 1 21 11 21

21

0B
XD S Y X
Y

µ µ− + − =  (26) 

1 1 21 21gQ Y Xµ=  (27) 
 
From (22) to (28) and taking into account (8) and (9) we obtain: 

1 0
0

1 11

p in* D Y S
S

D Xβ
=

+
 (28) 

11 1
11

11 1m

S* k D
S

Dµ
=

−
 (29) 
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21 1
21

21 1m

S* k D
S

Dµ
=

−
 (30) 

11 1
11 11 0

11 1

* S
i

max

k DX Y S
Dµ

⎛ ⎞
= −⎜ −⎝ ⎠

⎟  (31) 

11 1
21 21 1 11 11

21 1

* S
B

max

k DX Y Y
Dµ

⎛ ⎞
= +⎜ ⎟−⎝ ⎠

Y X

21

*

 (32) 

1 1 1
*

gQ Y D X=  (33) 

1 11 0 21 11 31 21
* *COD c S c S c S= + +  (34) 

 
From (31), (32) and (33) we obtain (by Symbolic toolbox of Matlab) algebraic expressions for 

1supD , 2supD and Q1. The equilibrium for this model is defined only for 1
* *

supD D<  [8] and it is 

stable for all values of  for which it is defined. For the above model we obtain: 1
*D

for  g.dm0 65iS = -3 ⇒ ; 1 10.47, 0 10, 0 15*
max max supQ D . D= = = .

.for  g.dm0 75iS = -3 ⇒ . 1 10.59, 0 108, 0 17*
max max supQ D . D= = =

 
A peak seeking control via the dilution rate 
The peak seeking feedback scheme is shown on Fig. 3. Its basic idea is to employ periodic 
excitation signal asin(ωt), which is added to the signal . If this excitation signal is slow, 
then the AD process appears as a static map Q = Q(D) and its dynamics does not interfere 
with the peak-seeking scheme. If  is on either side of D

D̂

D̂ max, the excitation signal asin(ωt) 
creates a periodic response of Q, which is either in phase or out of phase with asin(ωt). The 
high-pass filter s/(s+ωh) eliminates the “DC component” of Q [6]. Thus, asin(ωt) and 
{s/(s+ωh)}Q will be (approximately) two sinusoids, which are: in phase for  < DD̂ max  or out 
of phase for  > DD̂ max. In either case, the product of two sinusoids will have a “DC 
component” ξ, that can be argued to be approximately the sensitivity function 

. Then the integrator 2( 2)[ ( )]( )ˆa / Q D D ( )D̂ k / s ξ=  is approximately the gradient update 
law:  

2( 2) [ ( )]( )d dD̂ k a / Q D D
dt dt

= ˆ

a k

 (35) 

 
driven by the sensitivity function which tunes  to DD̂ max . 
 
The tuning parameters in this scheme ωh, ω, a and k must be chosen as follows [6, 12]: 

(1) , ,hO ω ω>> >>  (36) 
 
where  is speed of nonlinear dynamics, ω and a are frequency and amplitude of the 
excitation signal, respectively, ω

(1)O
h and k are parameters of the high-pass filter and the 

integrator in the peak seeking scheme. 
 
Thus, the overall feedback system has three time scales: 

1. Fastest – the process (with the stabilizing controller); 
2. Medium – the periodic excitation signal; 
3. Slow – the filter in the peak-seeking scheme. 
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As a result, this peak seeking control is model-free and able to automatically tune the dilution 
rate in the right direction. The scheme shown on Fig. 3 guarantees the stability result outlined 
in the following theorem: 

Xi(t)
Si(t)

hs
s
ω+ s

k D̂ Dopt(t)

So(t)
(perturbation)

+

Q(t)

x

ta ωsin

Filter

 
Fig. 3 The peak seeking feedback scheme 

 
Theorem: Consider the feedback system on Fig. 3 and assume that the AD dynamic model 
has the following properties: 

1. For D in an interval [ ,  there is an isolated one-dimensional manifold of 
     equilibrium 

]D D′ ′′
( )E D  which depends smoothly on D. 

2. Each equilibrium in [ , ]E D D′ ′′  is exponentially stable with a  rate of decay. (1)O
3. The equilibrium value of the output Q on [ , ]E D D′ ′′  is a smooth function of D with 
     a maximum at . maxD D=

 
Then there exists a ball of initial conditions around the equilibrium corresponding to 

 and a positive constant maxD D= 1ω <<  such that for all (0, )ω ω∈  and all , , ha k ω ω<< , 
the solution converges to a ( )O ω  neighborhood of that equilibrium. 
 
This theorem is an interpretation for AD process of the more general result for continuous 
type of biotechnological processes [12] with detailed proof in [6]. 
 
Simulation results 
Our purpose is to tune D1 to D1max. We implement the peak seeking scheme with the 
following choice of parameters (obtained heuristically): ωh = 0.009; ω = 0.08; a = 0.01;  
k = 0.018. As we don’t know the real initial conditions, we will investigate both possibilities – 
starts from left and right of the maxima. First, we start from an initial dilution rate  
D(0) = 0.034 day-1 lower than the optimal rate Dmax. The time responses of the output Q1 and 
of the resulting total amount of biogas Q, defined as a sum of the biogas flow rates of BR1 and 
BR2 (Q = Q1 + Q2) are shown on Fig. 4. The time responses of the control parameter D1 and 
the resulting D2 are shown on Fig. 5. Time responses of COD1 and the resulting COD2 are 
shown on Fig. 6. The maximum seeking process in the phase plane Q1 – D1 is shown on  
Fig. 7. In the second simulation study we start from an initial dilution rate D(0) = 0.11 day-1 
larger than the optimum value Dmax. Time responses as for the previous case are shown on 

 19



 INT. J. BIOAUTOMATION, 2011, 15(1), 13-24 
 
Fig. 8 to Fig. 11, respectively. In all cases for t = 400 days, a step variation of S0i occurs (from 
65 g/dm3 at 75 g/dm3, e.g. increase with about 15%). 
 
In both cases the peak seeking approaches the appropriate peak (for S0i = 65 g.dm-3 and  
S0i = 75 g.dm-3, respectively). From all figures it is clear that the settling time is about  
300 days (in real conditions) and the improvement in performance to the maximum output is 
about 200%. This means the performance is improved with a rate of about 0.7% per day. This 
rate of improvement is satisfactory but it is certainly not impressive. The convergence to the 
peak can be made faster by tuning the parameters of the scheme and by introducing an 
appropriate phase shift in the perturbation sinusoid. However, if we choose parameters, which 
make the convergence from the left side of the peak faster, they are too aggressive for the 
right side of the peak and may lead to instability. As we do not assume to know the location 
of the peak, the adaptation must proceed cautiously. The oscillations of the output Q1 in Fig.4 
are about ±3% of the peak equilibrium value of Q1max, while the oscillations of D1 on Fig. 5 
are about 10% from D1max. These results are completely satisfying, regarding the real 
experimental data [11]. 
 
It is evident from Fig. 4 and Fig. 8 that the total biogas flow rate Q is higher than that for one 
single bioreactor (Q1) with sensible decreasing of the general output depollution parameter 
COD2 (Fig. 6 and Fig. 10). 
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Fig. 4 Time response of Q1 and Q = Q1 + Q2  

with initial condition D1(0) = 0.034 day-1
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Fig. 5 Time response of D1 and D2  

with initial condition D1(0) = 0.034 day-1
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Fig. 6 Time response of COD1 and COD2 during the extremum seeking process for BR1  

with initial condition D1(0) = 0.034 day-1
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Fig. 7 The maximum seeking process in the phase plane Q1 – D1  

with initial condition D1(0) = 0.034 day-1
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Fig. 8 Time response of Q1 and Q = Q1 + Q2  

with initial condition D1(0) = 0.11 day-1
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Fig. 9 Time response of D1 and D2  

with initial condition D1(0) = 0.11 day-1
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Fig. 10 Time response of COD1 and COD2 during the extremum seeking process for BR1  
with initial condition D1(0) = 0.11 day-1
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Fig. 11 The maximum seeking process in the phase plane Q1 – D1  
with initial condition D1(0)=0.11 day-1
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Conclusion 
In this paper an algorithm for ES control of a cascade of two anaerobic bioreactors has been 
investigated, using the dilution rate of the first bioreactor D1 as control action and the biogas 
flow rate of the first bioreactor Q1 as measured output to be maximized. The control algorithm 
has been tested on a nonlinear model with Monod type of kinetics for both bioreactors. This 
algorithm is model free and is much easier to be realised practically than the model-based 
algorithms as in [2, 4]. 
 
In conclusion, our theoretical analysis and simulation studies show that it is possible to 
optimize the steady-state operation of a cascade of two anaerobic bioreactors with the ES 
control law (35) applied on the first BR in presence of variations of the influent waste 
concentration S0i, maximizing the total biogas production and with sensible decrease of the 
general output depollution parameter COD2. Obviously, the results obtained are only 
gidelines for practitioners of ES controller and they should adjust the values of the tuning 
parameters ωh, ω, a and k. 
 
Notations 
AD – anaerobic digestion 
BRj – bioreactor “j” (j = 1,2) 
ES – extremum seeking 
CODj – chemical oxygen demand (integral parameter for pollution/depollution) in BRj  
  (j = 1, 2), gO.dm-3

Dj – dilution rate for BRj (j = 1,2), day-1

Xij – concentration of microorganisms for population “i” in bioreactor “j”,  
  (i, j = 1, 2), g.dm-3

ijµ  – specific growth rate of population “i” in bioreactor “j”, day-1

Sij – concentration of substrate “i”, in bioreactor “j”, (i = 0, 1, 2, j = 1, 2), g.dm-3

Qj – biogas flow rate from bioreactor “j”, dm3.day-1

t – time, day 
d/dt – first time derivative 
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