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Abstract: The main goal of this work is presents an alternative design of a class of nonlinear 

controller for tracking trajectories in a class of continuous bioreactor. It is assumed that the 

reaction rate of the controlled variable is unknown, therefore an uncertainty estimator is 

proposed to infer this important term, and the observer is coupled with a class of nonlinear 

feedback. The considered controller contains a class of continuous sigmoid feedback in 

order to provide smooth closed-loop response of the considered bioreactor. A kinetic model 

of a sulfate-reducing system is experimentally corroborated and is employed as a benchmark 

for further modeling and simulation of the continuous operation. A linear PI controller,  

a class of sliding-mode controller and the proposed one are compared and it is show that the 

proposed controller yields the best performance. The closed-loop behavior of the process is 

analyzed via numerical experiments.  

 

Keywords: Nonlinear feedback, Tracking trajectories, Continuous bioreactor, Sulfate-

reducing system. 

 

Introduction 
The processing of biological materials and employing biological agents such as cells, 

enzymes, or antibodies have been recognized since thousands of years. Bioprocess is 

currently involved in producing some chemical compound synthesized by a microorganism; 

cultivate a biomass for its utilization, extraction of its metabolites, and to degrade a pollutant. 

As it is known, over the past several decades, biotechnological processes have been 

increasingly used industrially, which is attributed to several reasons as improvement of 

profitability and quality in production industries, new legislative standards in processing 

industries, etc. Several problems arising from this industrialization are generally the same as 

those encountered in any processing industry, in the field of bioprocessing, almost all of the 

problems that are being tackled in automatic control. Thus, system requirements for 

supervision, control and monitoring of the processes in order to optimize operation or detect 

malfunctions are on the increase [1, 6]. However, in reality, few installations are provided 

with such systems. The bioprocess advancement is determined by the living cells capabilities 

and characteristics, the bioreactor performance as well as by the cultivation media 
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composition and the main parameters evolution. The high metabolic network complexity 

inside the cells often determine very sophisticated, non-linear growth and product formation 

kinetics, with further consequences on the bioprocess behavior, but at the same time on the 

product quality and yield; on the one hand, lack of reproducibility of experiments and 

inaccuracy of measurements result not only in one or several difficulties related to selection of 

model structure but also in difficulties related to the concepts of structural and practical 

identifiability at the time of identification of a set of given parameters for estimation and 

control purposes. 

 

Other difficulties also occur at the time of the validation phase of these models whose sets of 

parameters could have precisely evolved over course of time. These variations can be the 

consequence of metabolic changes of biomass or even genetic modifications that could not be 

foreseen and observed from a macroscopic point of view. Other important issue is the almost 

systematic absence of sensors providing access to measurements necessary to know the 

internal functioning of biological processes [8].  

 

The majority of the key variables associated with these systems (concentration of biomass, 

substrates and products) can be measured only using off-line analyzers on a laboratory scale, 

where they exist, which are generally very expensive and often require heavy and expensive 

maintenance. Thus, the majority of the control strategies used in industries is very often 

limited to indirect control of fermentation processes by control loops of the environmental 

variables such as dissolved oxygen concentration, temperature, pH, etc. 

 

The early successful application control strategy in process control is in evolution of the 

Proportional Integral Derivative (PID) controller and Ziegler-Nichols tuning method [21].  

Till nowadays, a high percent of the controllers implemented in the process industries are 

PID-type [4]. However, as (i) the industrial demands, (ii) the computational capabilities of 

controllers and (iii) complexity of systems under control increase, so the challenge is to 

implement advanced control algorithms [18]. 

 

Since achievable controller performance in a model-based control scheme is dependent on the 

quality of the process model [11], a controller based on a model that captures events occurring 

at both the general considerations for control of bioreactors. 

 

On other hand, the difficulty of implementing a feedback control is twofold. First, response of 

sensors tends to be slower than many of the processes they monitor. Second, the sensors are 

generally not available for measurement of substrate with rapid dynamics for feedback 

application [19]. Given the above objectives there are, broadly speaking, and two ways to 

design an appropriate control system. The most frequently used method is to pre-select a 

controller structure and then to tune the parameters of this controller so that the desired 

closed-loop response is obtained. This is referred to as a parameter optimized control system, 

the most well known example of which is probably the PID controller [2]. The other approach 

is the use of structure optimal control systems, where both the structure and parameters of the 

controller are adapted to those of the process model [3]. In practice, however, the use of the 

latter method is severely restricted because exact dynamic term cancellation is required in 

order to produce the optimal controller structure. This is usually not possible for various 

reasons, e.g. of the lack of an appropriate process model, non-linearities and physical 

constraints on the process variables. From the above, in this work is considered a class of 

uncertainty estimation in order to infer the unknown reaction rate of the controlled variable, 

this estimator is coupled with a smooth controller which is close to sliding-mode frame, 
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where a smooth reaching law is proposed to lead to the bioreactor to stable surface, where the 

process is robust against some disturbances and model uncertainties (as classical sliding-mode 

controllers) avoiding the named chattering problem improving the closed-loop performance of 

the system. 

 

Materials and methods 

Conditions of culture 
The bacterium Desulfovibrio alaskensis 6SR as model spices of sulfate-reducing process was 

described firstly by Feio [7]. The strain 6SR was isolated from a developed biofilm inside 

face of oil pipeline, Desulfovibrio alaskensis 6SR is maintained routinely in Hungate tubes 

with 5 mL of Postgate’s medium B [9, 16]. The strain was transferred a serum bottle with  

45 mL sterile Postgate’s C medium in anaerobic conditions [9], and subsequently a 

subcultures were made. The medium of culture was prepared under anaerobic conditions and 

formulation previously reported [5]. The inoculum for kinetic study was cultured in 45 mL of 

Postgate’s C medium at 37°C for 30 h until culture reached at the beginning of stationary 

phase. A 5 mL aliquot was taken from Postgate’s C medium to inoculate 95 mL of fresh 

medium at 37°C. The experiment was done using two series of triplicate independent cultures; 

each set of triplicate cultures were inoculated with 12 hours separated each other,  

the experimental run time was 72 hours. One set of independent cultures were used to 

measure Extracellular Polymeric Substances (EPS) production. A culture was taken for day 

and the EPS was extracted. 

 

Analytic methods 
The bacterial growing, consuming of sulfate, and sulfide production were monitored 3 or  

4 hours each, the samples were taken carefully, avoiding contact with oxygen. The bacterial 

growing was followed through Optical Density (OD) methodology, the OD data were 

transformed into dry mass (mg/mL) through a dry mass versus OD standard curve.  

The consuming of sulfate in the medium was measured by the turbid metric method based on 

barium precipitation [13]. Also the production of sulfide was measured by a colorimetric 

method [20]. Each measuring was done using a Thermo SCIENTIFIC GENESYS 10 uv 

Scaning Spectrophotometer.  

 

The EPS was extracted by heat treatment and filtration. The bacterial culture bottles were 

opened and placed in water bath at 50°C for 15 minutes, each sample was vortexed once or 

twice, then the cellar suspension was passed through of a nylon membrane 0.45 µm,  

the filtrate was collected in 250 mL centrifuge bottle and EPS was then precipitated from it, 

adding an equal volume of cold ethanol overnight at -20°C, followed by centrifugation at 

2500 × g for 10 min at 4°C (Hettich Zentrifugen UNIVERSAL 320R). The pelleted EPS was 

transferred at micro-centrifuge tube and washed in 70% (v/v) ice-cold ethanol. EPS was dried 

in oven (ECOSHEL DOV23A) at 70°C for 24 h and before dry weight was recorded. 

 

Data analysis and mathematical kinetic model 
The response variables data (biomass, sulfate, EPS and sulfide) of the two series of sulfate-

reducing culture were analyzed and average value of each measurement point was calculated. 

In graphic of the average experimental data for each response variable, the hydrogen sulfide 

produced by bacteria showed a negative effect on growth of strain. Thereby, the specific 

growth rate follows an inhibition product model.  

 

In biological system, the unstructured models are a tool to simplify the representation of 

bioprocess, which are essentially kinetic equation that describes the variation of substrate or 
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product concentrations and the cell concentration as the unique biological state variable.  

In this work, the growing kinetic was described with a product inhibition model as following:  
 

max

2( / )

P

S i P

S K

K S S K K P




   
    

    
. (1) 

 

This equation represents an unstructured kinetic model as Haldane-Boulton, where: µmax 

represents the maximum growing rate; KS represents the affinity substrate; KP corresponds to 

inhibition concentration product, and Ki is a kinetic constant; while S and P are substrate and 

product concentration, respectively. Fig. 1 is related with the model validation with 

experimental data, where is observed a satisfactory agreement between the predicted and 

experimental data. 

 

 
Fig. 1 Model validation, simulation data and experimental data  

● – Sulfide, ■ – Biomass, ▲ – Sulfate, + – EPS 

 
Estimation of the kinetic parameters 
The growth kinetic parameters corresponding to Haldane-Boulton model were estimated by 

the rate of change of biomass production, using central finite differences according to the 

following equation: 

 

1

1

i i

i i

x x x
x

t t t





 
 
 

  (2) 

 

and a nonlinear multivariable regression for the rates of change of biomass production and 

experimental data (X, S, P and EPS) was done. POLYMATH 6.0 Professional software was 

used, the program allow applying effective numerical analysis techniques, and Liebenberg-

Marquardt algorithm was using for this case. Table 1 contains the parameter’s set obtained 

from the above methodology and Table 2 contains the structure of the kinetic rates and 

coefficient yield. 
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Table 1. Kinetic parameters for Desulfovibrio alaskensis 6SR 

Model 
µmax, 

(h
-1

) 

KS, 

(mg/L) 

KP, 

(mg/L) 
Ki 

KEPS, 

(mg/L) 
nEPS 

Haldane-Boulton 39.84 86070 7.24 9850.24 ---- ---- 

Second order model for EPS ---- ---- ---- ---- 9.783E-07 2 

 

 

Table 2. Kinetic rates and coefficient yields 

Balance Equation 

Growth rate Xr X   

Dead rate d dr X   

Substrate coefficient yield 
0

/

0

i
S X

i

S S
Y

X X





  

Product coefficient yield 
0

/

0

i
P X

i

P P
Y

X X





  

 

The mathematical model was simulated using the same software. A linear regression between 

the experimental data and the predicted data were obtained and overall correlation coefficient 

was calculated (see Table 3), as is showed in the Figs. 2 to 5: 

 
Table 3. Correlation coefficients 

Correlation coefficients r
2
 

r
2
 global 

Biomass Sulfate Sulfide EPS 

0.9241 0.9479 0.9758 0.9737 0.9601 

 

 
Fig. 2 Linear regression for biomass concentration data 
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Process modelling 
The process models, as relationships of the input, output and inner variables, though 

incomplete and simplified, can be effective to describe the phenomena and the influences of 

great importance for control, optimization and better theoretical knowledge. The dynamic 

model concept plays a central role in automatic control. It is in fact on the basis of the time 

required for the development of the knowledge process that the total design, analysis and 

implementation of monitoring and control methods are carried out. Within the framework of 

bioprocesses, the most natural way to determine the models that will enable the 

characterization of the process dynamics is to consider the material balance (and possibly 

energy) of major components of the process. 

 

 
Fig. 3 Linear regression for sulfate concentration data 

 

 
Fig. 4 Linear regression for sulfide concentration data 
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Fig. 5 Linear regression for EPS concentration data 

 

One of the important aspects of the balance models is that they consist of two types of terms 

representing, respectively, conversion (i.e. kinetics substrates in terms of biomass and 

products) and the dynamics of transport (which regroups transit of matter within the process 

in solid, liquid or gaseous form and the transfer phenomena between phases). These models 

have various properties, which can prove to be interesting for the design of monitoring and 

control algorithms for bioprocesses [14]. 

 

From the above a classic mass balance equations considering non-structured kinetic model are 

considered to modeling the continuous sulfate-reducing bioreactor as follows: 

 

Biomass (X) mass balance: 
 

X d

dX
DX r r

dt
      (3) 

 

Sulfate (S) mass balance: 
 

    /in S X X

dS
D S S Y r

dt
      (4) 

 

Sulfide (P) mass balance: 
 

  /P X X

dP
DP Y r

dt
     (5) 

 

Extracellular Polymeric Substances (EPS) mass balance: 
 

EPSn

EPS d

dEPS
DEPS K X X

dt
     (6) 

 

Dead biomass (Xd) mass balance: 
 

d
d d

dX
DX X

dt
     (7) 
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The following Figs. 6 and 7 correspond to the open-loop behavior of the bioreactor’s 

concentration, note that the sulfate concentration reach a high level of 3115 mg/L at the 

corresponding steady-state and the EPS and dead biomass concentrations show an unstable 

behavior in continuous operation (see Fig. 7). 

 

Proposed controller  
The dynamic nonlinear model for a chemical reactor can be expressed as system (8), and the 

output measured for control purposes as (9): 
 

   x f x g x u   (8) 

 

  Cxxhy    (9) 

 

where  
T 5, , , , Dx S X P EPS X    is the corresponding state vector.  

 

 
Fig. 6 Open-loop behavior of the control output for continuous bioreactor 

 

 
Fig. 7 Open-loop behavior of the uncontrolled state variables for continuous bioreactor 

 

Now consider the set 5  as the corresponding physically realizable domain, such that:  
 

  5

max; max

max max

, , , , | 0 ; 0 ; 0 ;

0 ; 0

D in

D D

S X P EPS X S S X X P P

EPS EPS X X


        

   
     

 

   xCxf  ;   00 f  and   5 , wheref x x       . 
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Now, consider the following assumptions: 

A1. For the realized control input vector ))(( txu ,  max( ( ))u x t u . 

A2. The matrix field )(xg  is bounded, i.e. for any ,  ( )nx g x g   . 

 

Now, in accordance to geometric-differential theoretical frame, the Lie derivative of  

the function )(xh  with respect to the vector field f , is denoted as )(xhL f
, where hLr

f  is  

the r-order Lie derivatives and hdLr

f  are the differentials of the r
th

-order Lie derivatives 

defined recursively as follows: 
 

hhL f :0
, 




















n

f
x

h

x

h
dhhdL ,,:

1

0   

i

n

i i

f f
x

h
fdhhL 

 




1

1 ,: , 


















































 



i

n

i in

i

n

i i

f f
x

h

x
f

x

h

x
hdL

111

1 ,,:   (10) 

  2,,: 11   rhLLfhdLhL r

ff

r

f

r

f
 

 

Definition (10) implies that there exists an invertible diffeomorphism, if the system is 

feedback linearizable, such that    x,  [10]. Therefore, the system (8) can be expressed 

as: 
 

   

 

1

1

; 1, 2, ..., 1

,

i i

r

i r

u

y

 

    

   



  

 





 (11) 

 

Here:    1;r r

f g fL h x L L h x    . 

 

The sub-index r is defined as the relative degree of the system and it defines how many time 

derivatives of the measured output should be computed in order to obtain explicitly the 

control input. 

 

Considering the following stable surface, with spej    

 

0
1

)0(  


i

r

i

irrj    (12) 

 

where e is the corresponding control error. 

 

Note that the above surface provides stability to the system (11). Now, from (11) and (12), 

therefore it is possible to obtain (13): 
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 

1

1

1

; 1, 2, ..., 1

,

i i

r

r i i

i

i r

y

 

 

   







  

 





   (13) 

 

In order to compress notation, system (13) can be represented as (14): 
 

 

1

,

A

y

 

   









  (14) 

 

Here  
 

1 2

0 1 ... ... 0

0 0 1 ... 0

... ... ... ... ...

... ... r

A

  

 
 
 
 
 
   

  

 

can be considered as a Hurwitz matrix with an adequate choosing of the design parameters
i . 

The rn system is the called inner or zero dynamics, which must be stable in order to 

provide detectability and stability for the system (14). 

 

Ideal controller design 
Now, proposing the following reaching dynamic as a desired trajectory: 
 

 
2

1 0
1 exp

c
j c j

j
   

 
  (15) 

 

For controller design, let us to consider the sliding-mode surface and the proposed reaching 

law, from Eqs. (12) and (15), therefore the following control law is obtained: 
 

 
 

 
















 




r

i

ii
j

c
jcu

1

2
1

1

exp1
   (16) 

 

Substituting the above expression onto Eq. (11), produce the following closed-loop system: 
 

 

 

1

1
2

1

1

1

; 1, 2, ..., 1

1 exp

,

i i

r

r i

i

i r

c
c j

j

y

 

 

   









  

   
 






  (17) 
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Now, analyzing the closed-loop stability of the sliding surface, let us to propose the following 

positive quadratic function: 
 

2

2j
V    (18) 

 

Considering its time derivative and substituting Eq. (15): 
 

V j j   (19) 

 

Applying the Lyapunov stability criteria to Eq. (19): 
 

 
0

exp1

2
1 


















j

c
jcj  

 

Therefore, the equivalent algebraic forms: 

 
0

exp1

2
1 




j

c
jc  (20) 

 

which is negative if: c1 > 0 and c2 > 0      ♦ 
 

Note that for our case, the relative degree is r = 1 and the state vector is defined as: 
 

 
T

, , , , dx X S P EPS X   

 

The nonlinear vectors are defined by: 
 

 

  

  
/

/

EPS

X d

S X X

P X X

n

EPS d

d

r r

Y r

f x Y r

K X X

X

 
 


 
 
 
 
  

,  

 in

d

X

S S

g x P

EPS

X

 
 


 
  
 
 

  

, u= D 

 

While, the transformed space employing Lie derivatives is: 
 

   /in S X xj D S S Y r        (21) 

 

The inner dynamics is: 
 

  /

EPS

X d

P X X

n

EPS d

d d

DX r r

DP Y r

DEPS K X X

DX X





   
 

 
 
  
 

  

  

 

The proposed control input in the original space state representation is: 
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   
 2

1 /

1

1 exp
S X x

in

c
u D c j S Y r

S S j

 
      

    

 (23) 

 

The measured system output is: 
 

y = S  (24) 

 

No ideal controller 
Because the difficulty to obtain accurate kinetic modeling the ideal controller given by  

Eq. (23), could not be realizable, therefore an estimation of this important term must be 

provided, therefore the named non ideal controller is expressed as: 

   
 2

1 /

1 ˆ ˆ
ˆ 1 exp

S X x

in

c
u D c j S Y r

jS S

 
      

    

 

 

where  /
ˆ

S X xY r  is an estimation of  /S X xY r  and Ŝ  is the estimate sulfate concentration. 

 

Now, from the system (17), let us to considerd the controlable subspace, where now it is 

assumed that the term ν is uncertain and it is considered as an extended state variable with 

unknown dynamics, from the above the following state observer is considered: 
 

   

 

 

1

2

1/

ˆ ˆˆ ˆ

ˆ ˆ

ˆ
m

u k y y

v k y y

K abs y y

   



   

 

  

  (25) 

 

By defining 













ˆ

ˆ
ˆ , 

 







 


0

ˆˆ
ˆ u

 and  21 kkK  , Eq. (15) can be rewritten as: 

 

 
1/

ˆ ˆ ˆ

ˆ
m

K y y

K abs y y

  

  
  (26) 

 

Here the dynamic equation for K is an adaptation algorithm that updates the time-varing 

control gain and β is a parameter design. 

 

In order to prove the convergence of the proposed observer, lets consider the dynamic 

equation of the estimation errors,  ˆ , as follows: 
 

1/

ˆ

m

K

K

 

 

 

 
  (27) 

 

Because the error is a finite quantity, there should be a constant L  that: 
 

A3.  ˆˆ L  
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Taking norms to both sides of Eq. (27) and applying A3 it is obtained: 
  

L K      (28) 

 

Now, to solve the system given by Eq. (27), consider the function   as a positive continuous 

function on the integration interval  ,  ; if Λ is the maximum of the function for the 

observer’s gain dynamic on the domain  ,  , then  abs  is bounded,  

i.e.     , tabs , hence: 

 

  





 nnnn
n /1/1/1/1

0   (29) 

 

Here, n  is restricted to be an odd number, i.e.  Zppn ,12 . Therefore, for p large 

enough, the following limit is obtained: 
 

      




 


12/112/1

suplimsuplim pp
 (30) 

 

Applying the equality   sign  to Eq. (28), another quota can be found: 

 

      sign L b a sign         (31) 

 

By solving Eq. (31) it is possible to note that the error is bounded by: 
 

       1

0 exp sign sign L t      


     (32) 

 

Therefore the estimation error will be asymptotically and exponentially stable if: 
 

  L
1

    (33) 

 

The form of the considered observer in the original state space is given by: 
 

      / 1

ˆ
ˆ ˆˆ

in S X X

dS
D S S Y r k S S

dt
       (34) 

 

 2
ˆ

X̂r k S S   (35) 

 

where 
 

   
1/ T

1 2
ˆ with

m

K abs S S K k k      (36) 

 

From the above, can be concluded that given the asymptotically and exponentially 

convergence properties of the uncertainty estimator, the non ideal controller recovers the 

properties of the named ideal controller. 

 



 INT. J. BIOAUTOMATION, 2015, 19(1), 43-60 
 

56 

 

Results and discussion 
In this section a set of numerical simulations was done in order to provide the adequate 

performance of the proposed control methodology. It is considered the following initial values 

for the bioreactor concentration which was taken in account on the corresponding simulations: 

X0 = 134.73 mg/L; S0 = 5057.47 mg/L; P0 = 35 mg/L, EPS0 = 0.0 mg/L and finally  

Xd0 = 0.0 mg/L. The considered control input is the dilution rate (properly, the input flow) and 

the controlled and measured variable is the sulfate concentration (control output), it is 

considered that the kinetic term related with the sulfate consumption is assumed unknown. 

The controller’s parameter are c1 = 1 h
-1

 and c2 = 1. To simulate the closed-loop operation the 

proposed controller is turned up at 50 hours, where the considered set point is  

Ssp = 2000 mg/L of sulfate concentration, after that, at 100 hours a step change on the 

reference concentration is considered as Ssp = 1500 mg/L of sulfate concentration.  

For comparison purposes a standard PI controller, tuned under the IMC tuning guidelines 

[17], which are widely employed in industrial practice, with a proportional gain of  

KP = 0.00272 h
-1

 and integral time of τ = 40 hours and a well tuned SM Controller (SM) [12] 

with gain of KSM = –0.1 h
-1

 is implemented too. The proposed observer (Eqs. (34-36)) is tuned 

with the following set of parameters; k1 = 25 h
-1

, k2 = 10 h
-1

, β = 1 and m = 0.3. The initial 

conditions for the observer are 
0Ŝ  = 5250 mg/L and K0 = 1 h

-1
.  

 

Fig. 8 is related with the closed-loop behavior of the sulfate concentration, when the 

controllers are turned  the SM and the proposed controllers act and lead the corresponding 

concentration to the required set point (2000 mg/L) in a smooth form, the SM controller has  

an approximate settling time of  two hours and the proposed one acts almost immediately, 

without overshoots, the linear PI controller has an important overshoot of around 2500 mg/L 

and a very slow response, moreover it is not able to reach the required sulfate concentration 

(2000 mg/L); after that when the set point is changed to the new reference (1500 mg/L)  

the standard PI controller shows again a poor performance  reaching the proposed closed-loop 

steady-state with a large settling time of 140 hours approximately, with an overshoot  

of 500 mg/L in the sulfate concentration; on other hand the SM controller acts satisfactorily, 

however an small off-set is generated too, finally the proposed methodology reach the 

corresponding set point without off-set, settling time an overshoot. Now, the closed-loop 

behavior of the uncontrolled states (inner or zero dynamics) is showed in Fig. 9, can be 

observed an unstable behavior of the Sulfide, EPS and dead biomass concentrations, predicted 

by the bioreactor´s model, the only stable concentration correspond to the biomass 

concentration, from this situation, this system can considered as a minimum phase, which is 

an important issue from the process operation and control. Fig. 10 shows the performance 

index of the process under the action of the three considered controllers, it is proposed  

he ITSE (integral time square error) [15] as performance index, as mentioned above, when the 

controller is turned at 50 hours with a set point of 2000 mg/L of sulfate concentrations for the 

SM and the proposed controllers show similar performance index, however, the proposed 

methodology has the better performance; the linear PI controller, for the above mentioned 

produce the largest ITSE. Further simulations where realized, considering noisy 

measurements in the sulfate concentration, the noise effect was modeled as a sinoidal function 

(45 Sin(10t)); under this framework the Fig. 11 shows the closed-loop performance of the 

proposed observer for the sulfate concentration, can be noticed that the observer is able to 

filter the noisy measured signal adequately. Fig. 12 shows the performance of the control 

effort, related with the input flow (dilution rate), under noisy measurements, the nominal 

value of the dilution rate in 0.025 h
-1

, at 50 hours of the process start, the controller is turned-

on; the dilution rate is diminished to around 0.01 h
-1

 in order to lead to the sulfate 

concentration to the required set point of 2000 mg/L at 100 hours the set point is changed to 
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1500 mg/L of the sulfate concentration and the controller’ response decrease the dilution rate 

to 0.005 h
-1

 as can be observed, the controller is on a reachable operation flow range  

(from 0 h
-1

 to 0.01 h
-1

) which is under the nominal dilution rate value (0.025 h
-1

),  

the controller close the flow to zero in order to increase the residence time in order to allow 

that the sulfate concentration can be diminish; note that the noisy measurements affect the 

control input induce oscillations, however these oscillations are on a rank of 0.0025 h
-1

, and 

can be considered small enough to not affect the controller’ performance. Finally, Fig. 13 

contains the dynamic performance of the uncertainty observer, where is observed a 

satisfactory behavior due the satisfactory convergence (around 40 hours) of the estimate 

uncertain term to the named real uncertainty, despite of the noisy measurements of the sulfate 

concentration, considering that the bioreactor is in closed-loop operation at 50 hours,  

the global performance of the uncertainty observer based controller is considered adequate. 

 

 
Fig. 8 Closed-loop behavior of the control output 

 

 
Fig. 9 Closed-loop behavior of the uncontrolled state variables 

 

 
Fig. 10 Dynamic behavior of the performance index (ITSE) 
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Fig. 11 Closed-loop behavior of the sulfate concentration under noisy measurements 

 

 
Fig. 12 Control effort, under noisy measurements 

 

 
Fig. 13 Dynamic performance of the uncertainty observer, under noisy measurements 

 

Conclusion 
In this paper is presented a kinetic model for the cell growth of a sulfate-reducing bacterium 

Desulfovibrio alaskensis which has good agreement with experimental data, in accordance 

with the corresponding correlation coefficient. This kinetic model is extended to continuous 

stirred bioreactor model. A class of smooth controller to regulated the sulfate concentration 

via the dilution rate as control input is proposed, in order to show better performance in 

comparison with other controllers, the proposed methodology avoids the named chattering 

behavior, which is an undesired phenomena present on typical sliding-mode controllers. 

Numerical simulations allow concluding an unstable behavior of the inner dynamic of the 

bioreactor. 
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