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Abstract: Heart diagnosis by phonocardiography and auscultation is highly dependent on 

experience and there is a considerable inter-observer variation. The complex structure of the 

Phonocardiogram (PCG) and the variations due to cardiac contractility can generate 

additional difficulties for auscultation. This review paper focuses on such critical problem 

solving issues with a variant of analysis. However, different methods and techniques are also 

described for detection and analysis of PCG signal and it will certainly aid findings in novel 

computational tools in biosignal processing. 
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Introduction 
Heart sounds and murmurs arise as a consequence of turbulent blood flow and vibrating 

cardiovascular structures. Some decades ago, the Phonocardiography (PCG) has been largely 

used together with the Electrocardiography as providing important information about the 

cardiac diseases. Later, the ultrasound techniques took its place offering a lot of additional 

quantitative indices related to the cardiovascular system. Recently the interest to the PCG and 

other more sophisticated heart sounds investigations reappears in the field of medicine [88]. 

The reason is that they are non-invasive, economical and accurate methods for assessing 

different heart valve pathologies. Hult et al. [88] suggested that the detection of a third sound 

in adults is shown as simple method for systolic heart failure discovery.  

 

The PCG signal discloses information about cardiac function through vibrations caused by the 

working heart. In the early days of PCG signal analysis, manual interpretation of waveform 

patterns was performed in the time domain. Heart sounds were identified as composite 

oscillations related to valve closure and heart murmurs seemed to derive from malfunctioning 

valves or from abnormal holes in the septal wall [1]. Heart auscultation, the technique of 

listening to heart sounds, is a convenient and economical method for diagnosing 

cardiovascular diseases (CVD). Though clinical diagnosis of cardiovascular disease mainly 
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refers to other methods such as electrocardiography (ECG), angiocardiography and so on, the 

considerable role of PCG in diagnosis of CVD cannot be underestimated, especially in 

computer-aided CVD diagnosis of fusing other vital signals (e.g. ECG) to improve the 

diagnostic accuracy [66]. The physiological variability of the mechanical function of the heart 

is reflected in the produced acoustic vibrations – the heart sounds. Heart sounds have been 

widely used in clinical practice since the introduction of the first stethoscope by Laennec in 

1816, and the invention of phonocardiography, the graphic recording of heart sounds, by 

Einthoven in 1894. Heart sounds and their clinical utilization in cardiovascular and 

cardiopulmonary diseases have been extensively studied for many years [36]. Relations 

between morphological features of heart sounds and hemodynamic parameters have been 

quantitatively described in both animal models and humans [37, 38]. 
 

Heart sounds and murmurs are of relatively low intensity and are band-limited to about  

10-1000 Hz, (Fig. 1). 

 

 
Fig. 1 Relationship between the acoustic range of cardiac sounds and the threshold  

of audibility of sound pressure for human ear  

(figure redrawn from Leatham [2]) 

 
The traditional areas of auscultation (Fig. 2), where the radiated sound intensity from each of 

the four heart valves is maximized, are defined as [5]: 

 Mitral area: The cardiac apex. 

 Tricuspid area: The fourth and fifth intercostal space along the left sterna border. 

 Aortic area: The second intercostal space along the right sternal border. 

 Pulmonic area: The second intercostal space along the left sternal border. 

 

 
Fig. 2 The traditional auscultatory areas on the chest: 

M (refers to the mitral area), T (refers to the tricuspid area),  

P (refers to the pulmonic area), and A (refers to the aortic area). 
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Fig. 3 Wiggers diagram, showing pressures and flows in the left side of the heart  

over one heart cycle and their relation to electrical (ECG) and mechanical (PCG) activity 

 

The first heart sound (S1) and second heart sound (S2) in Wiggers diagram (Fig. 3) are easily 

audible in nature, and the time duration is around 150 ms and 120 ms. It ranges from  

20 to 150 Hz. Heart sound (S1) is associated with the closure of the mitral-tricuspid valve, it 

occurs during the isovolumetric contraction of the ventricles. Heart sound (S2) is related to 

the aorticpulmonary valve at the time of the isovolumetric relaxation of the ventricles.  

The third heart sound (S3) and fourth heart sound (S4) are very light sound, i.e., almost 

inaudible in nature. S3 and S4 are very low frequency sound. S3 is not originated from the 

valve although it happens at the beginning of the diastole and hence, it is known as Proto-

diastolic sound. Bulk of blood flow into the left ventricles causes vibrations in the valve. 

Heart sound (S4) is mainly found in the healthy children and not, usually found in adults. It is 

called pre-systolic gallop in pathological term when found in adult. The Healthy signals are 

the signals which have a clear sound of S1 (‘lup’) and S2 (‘dup’) and almost negligible sound 

of S3 and S4. Healthy heart sound contains heart sound segment S1 and S2, which gives 

information of functionality of heart sound [3, 4]. The intensity of the first heart sound (S1) 

varies with certain conditions. Those who suffer from emphysema, obesity, pericardial 

effusion, myocardial disease or mitral regurgitation may have decreased first heart sound 

(S1). Increase in intensity of the first sound depends upon the vigour of the ventricular 

systole. Thus results in loud sounds in exercise, emotional states and in hyperthyroidism, 

anemia, mitral stenosis and hypertension. The conditions giving rise to change in intensity of 

the first heart sound (S1) has been discussed by various authors [89-92]. 

 

The relationship between ECG and PCG can be figured out from Wingger diagram (Fig. 3) 

where, S1 occurs with low frequency vibrations approximately 0.05 second after the onset of 

QRS-complex of ECG signal. S2 starts approximately 0.03-0.05 second after the end on  

T wave of the ECG. S3 starts at 0.12-0.18 second after the onset of second heart sound (S2) 



 INT. J. BIOAUTOMATION, 2015, 19(3), 351-376 
 

354 

and the fourth heart sound (S4) starts approximately 0.12-0.18 s after the onset of P wave of 

ECG signal. S1 and S2 have two major components, M1 and T1, A2 and P2, respectively.  

M1 is caused by mitral closure and blood flowing interruption in left atrial and systolic 

ventricular and T1 is caused by tricuspid closure. A2 starts before aortic valve closed, and  

P2 starts after pulmonary value closure, both are caused by intraventricular pressure dropping 

and blood returning in diastole. The delay time between M1 and T1, A2 and P2 are called the 

first split and the second split, respectively. The measurement of the first and second split, 

lower or higher than 30 ms, will easily make it possible to make discrimination between the 

normal or pathological type [68]. It is often followed by echocardiography during the 

abnormal auscultatory findings. However, the lack of reliability of ordinary auscultation its 

expense and awkwardness of echocardiography make it desirable to develop a more practical, 

inexpensive, reliable and non-invasive approach to auscultation, one that could also be 

adapted for continuous monitoring [71-75]. Akbari et al. [76] performed Digital Subtraction 

Analysis of the heart murmurs signal using a custom computer program called Murmurgram 

for the detection and characterization. In essence, this program subtracts the recorded sound 

from two adjacent cardiac cycles to produce a difference signal, herein called a 

“murmurgram” [76].  

 

Feature extraction is typically a preceding step for a classification or regression task.  

Heart sound classification, based on morphological spectral and time–frequency features, has 

been previously used for assessing the condition of bioprosthetic heart valves [40-42]. 

Auscultation, the noninvasive cardiac testing, is used as a primary detection tool for diagnosis 

of heart valve disorders since invention of stethoscope in 1816 by Lannec [47]. In Bender,  

it is reported that few heart valve diseases are best detected only by means of auscultation 

process [48]. Auscultation is the most common and cost-effective technique, continues to 

provide an important source of clinical information related to heart valves and also, cannot be 

totally replaced by alternative technical methods like echocardiography [49]. In case of 

abnormal heart sounds, there could be several other sounds in the PCG signal besides primary 

heart sounds. Murmurs are abnormal heart sounds and refer to different pathological 

conditions as per location, shape, duration and other associated features [52]. Murmurs are 

generally high-frequency, noise like sounds that are produced as a result of turbulent blood 

flow. Different features of PCG signals like intensity, frequency content, split information, 

time relations etc. are helpful in detecting heart valve diseases, if any and the state of the heart 

function [53]. Ian Cather has presented Artificial Neural Network (ANN) as a discriminative 

model for classification of five different heart sounds taken from 48 recordings of nine 

different subjects using wavelet based feature extraction technique [54]. Ölmez et al. [55] 

have given a classification technique that utilizes Daubechies-2 wavelet detail coefficients at 

the second decomposition level for classification of seven different heart sounds collected 

from 28 subjects using ANN. Reed et al. [56] have described a computer-aided diagnosis 

mechanism for five different pathological cases using seven level wavelet decomposition, 

based on a Coifman fourth order wavelet kernel and Ari et al. [57] proposed, a binary decision 

on heart sound, whether pathological or not, in a Digital Signal Processor based system. Choi 

[58] proposed a technique for detection of valvular heart sounds as normal or pathological 

using wavelet packet decomposition and support vector machine with fifth order polynomial 

kernel function. Information, such as the temporal localization of the heart sounds, the 

number of their internal components, their frequency content, and the significance of diastolic 

and systolic murmurs, could all be studied directly on the PCG signal. In order to recognize 

and classify cardiovascular pathologies, advanced methods and techniques of signal 

processing and artificial intelligence need to be used. The advancement of technology has 

paved the way for signal processing methods to be implemented and applied in many simple 
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tools useful in everyday life. This is most notable in the medical technology field where 

contributions involving the intelligent applications have boosted the quality of diagnosis. 

Proposing an objective signal processing method capable to extract relevant information from 

biosignals is a great challenge in telemedicine and auto-diagnosis fields [86].  

Sa-Ngasoongsong et al. [87] presented the design and testing of a wireless sensor system 

developed using a Microchip PICDEM developer kit to acquire and monitor human heart 

sounds for phonocardiography applications. This system can serve as a cost-effective option 

to the recent developments in wireless phonocardiography sensors that have primarily focused 

on Bluetooth technology. This wireless sensor system has been designed and developed in-

house using off-the-shelf components and open source software for remote and mobile 

applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data 

streaming rate) and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor 

system make it particularly attractive for phonocardiography and other sensing applications. 

The experimental results of sensor signal analysis using several signal characterization 

techniques suggest that this wireless sensor system can capture both fundamental heart sounds 

(S1 and S2) and is, also, capable of capturing abnormal heart sounds (S3 and S4) and heart 

murmurs without aliasing. The results of a denoising application using Wavelet Transform 

show that the undesirable noises of sensor signals in the surrounding environment can be 

reduced dramatically. The exercising experiment results also show that this proposed wireless 

PCG system can capture heart sounds over different heart conditions simulated by varying 

heart rates of six subjects over a range of 60-180 Hz through exercise testing [87]. Shub [50] 

compared the cardiac physical examination with echocardiography for evaluating systolic 

murmurs and concluded that echocardiography is not required for all patients with systolic 

murmurs and should not replace cardiac physical examination; Chizner [51] reviewed the 

fundamental principles of the art of cardiac auscultation and emphasized on the proper use of 

the stethoscope and the diagnostic and prognostic significance of the myriad heart sounds and 

murmurs present in patients with and without symptomatic heart disease, and Debbal et al. 

[67] proposed computerized analysis of heart sounds which is concerned with a synthesis 

study of the Fast Fourier Transform (FFT), the Short-time Fourier Transform (STFT), the 

Wigner distribution (WD) and the Wavelet Transform (WT) in analyzing the 

Phonocardiogram signal (PCG). It is shown that these transforms provide enough features of 

the PCG signals that will help clinicians to obtain qualitative and quantitative measurements 

of the Time-frequency (TF) PCG signal characteristics and consequently aid diagnosis. 

 

Physiological importance of heart sounds 

Fetal maturity 
As during pregnancy all the frequency determining parameters undergo physiological change. 

The growing dimensions and increasing contractile strength of the myocardium characteristic 

changes of the PCG spectrum are to be expected as a function of the stage of fetal maturity.  

In order to verify this assumption, extensive experimental studies have been done. The power 

spectra were integrated in order to compare different spectra using only one single parameter. 

The determining measure was the frequency within which 80% of the total PCG power is 

contained, i.e., where the power spectrum integral reaches 80% of its maximum. Mean values 

of the 80% marks for the first and second heart sound are shown in Fig. 4. Each point was 

computed from 30-50 fetuses of the same gestational age. Of course, mean values have been 

computed only from spectra of fetuses that were known to be developing normally. 
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Fig. 4 Relationship between fetal PCG spectrum and gestational age.  

The traces show the mean 80% power marks of the integrated power spectra  

for the first and second heart sound dependent on the week of pregnancy.  

The standard deviation of the single measuring points typically corresponds to 1.4 weeks. 

(figure redrawn from Nagel [16]) 

 

The first heart sound reveals a steady shift towards higher frequencies up to about the 34th 

week of gestation. Thereafter, the shift reverses its direction. The spectrum of the second heart 

sound steadily shifts to lower frequencies. The decrease in frequencies can be explained by 

the growth of the heart from physical models, whereas the ascending slope of the first heart 

sound's spectrum is primarily caused by the predominance of the increasing contractile 

strength of the myocardium during that stage of pregnancy. On the basis of these findings, 

spectral analysis of the PCG can be considered a real alternative to better known 

measurements such as ultrasonic imaging in the determination of fetal maturity.  

When investigating the reliability of this measurement, possible disturbing influences such as 

changing cardiovascular conditions (e.g. the heart rate) have to be considered. So far, 

however, no negative effects have been found. Indeed, measurements were always done at the 

basal heart rate with no labor activity, and in the absence of accelerations and decelerations. 

In several cases the spectra did not fit any stage of maturity, showing distinct deviations from 

normal values. Further investigations (done partially after birth), confirmed the existence of 

heart diseases, predominantly valve malfunctions. This diagnostic capability is the direct 

consequence of the fact that each pathological variation of either cardiac function or anatomy 

results in a change in the PCG spectrum. 

 

Cardiac contractility variability 
Variation in the amplitude of the first heart sound is seen in almost every sample of the 

Phonocardiogram (PCG). During heart-sound signal processing, Xiao et al. [29] found that 

this phenomenon had its own regularity. There are many factors causing this variation, such 

as respiration, exercise, psychological activity, drugs, temperature, smoking, disease, etc. 

These factors can affect the heart's state of inotropism, chronotropism, and dromotropism, 

which will be reflected in the PCG. It has been reported that changes in the amplitude of the 

first heart sound are closely correlated with the maximum rate of rise of left ventricular 

pressure (a standard measure of cardiac contractility) [23-28]. 

 

Descriptive analysis have already being done based on the relationship between the amplitude 

of the first heart sound (S1) and the cardiac contractility [23-28], Xiao et al. [29] proposed a 

concept of Cardiac Contractility Variability (CCV) and a method of analysis. This study was 

carried out to examine the regularity of the amplitude variability of the first heart sound and to 

evaluate the practical significance of the CCV. Cardiac contractility variability can easily be 
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studied by means of heart-sound analysis, a safe, non-invasive, and inexpensive technique. 

Analyzing the regularity of S1 variability and evaluating CCV may have practical utility and 

is worth further study. A study of CCV may be of help in gaining insight into the neurogenic 

cardiovascular state of patients in different clinical conditions.  

A change in the pattern of CCV may be an indicator of systolic function. Also, it might be an 

indicator of lung ventilation function e.g., in a patient with emphysema, the compliance of 

lungs and thorax decreases. In turn, the respiratory variation of venous return to the heart is 

reduced, and therefore the variation of S1 amplitude in a respiratory cycle becomes less 

obvious. 

 

Spectral analysis of prosthetic heart valve sounds 
Analog techniques for processing prosthetic valve Phonocardiograms (PCG) have met with 

limited success in extracting this information, because of their poor spectral resolution and 

lack of versatility. Numerical methods of signal processing overcome most of these 

limitations, but the need for a computer to implement numerical methods raises the question 

of cost-effectiveness in many applications. Numerical analysis of prosthetic valve signals has, 

therefore, received very little attention outside the academic and laboratory context.  

Cost reductions in computer hardware arising from the use of micro-processors; make it 

possible to envisage dedicated clinical instruments for processing prosthetic valve sounds in 

view of assessing overall valve performance and detecting component degradation at an early 

stage. Basic spectral considerations for the design of such instruments are discussed [15]. 

 

From the very beginning of phonocardiography, it has been known that sound-producing 

events which give rise to the PCG include oscillations of blood masses, movements of the 

heart wall and valves and turbulence in blood flow. Signals recorded from the body surface 

are further conditioned by the transmission characteristics of intervening tissues and the 

transducer used. Because these structure (both the active sound producing sources and passive 

components) differ morphologically. Their vibrational modes of resonance are also different. 

Fortunately, most prosthetic valve sounds are much louder and contain higher frequency 

components than the other structures of the heart so that extracting them from the PCG is 

relatively easy. 

 

In the past, two techniques of spectral analysis (spectroanalysis) have been used for detecting 

such changes. One technique, called “octave-band analysis” uses a bank of band-pass filters 

and an electronic system that evaluates the relative energy of the signal output by each filter 

[6]. The term “octave-band analysis” arises from the fact that the central frequencies of two 

successive filters are in a ratio of 1:2. An average curve is then obtained by plotting the 

relative amplitude of prosthetic sounds versus frequency over many cardiac cycles. The other 

technique named “sound spectrography” was developped by Bell Laboratories for speech 

analysis; it was first used in phonocardiography by Geckeler et al. [7] and McKusic et al. [8] 

in 1954. Instruments based on this technique provide a three dimensional display of 

frequency, amplitude and time for a short segment of PCG recorded on a loop of magnetic 

tape to reproduce the PCG with the periodicity required for the analysis. The principle of 

analysis is to use a single fixed band-pass filter and to translate the spectrum of the signal in 

successive steps. This is achieved through amplitude modulation of the PCG by a sine wave 

whose frequency is increased step-wise. The spectrum of the PCG is thus progressively 

swept; the amplitude of each frequency band is evaluated and recorded on photographic paper 

as dots of variable intensity. A drawback of this instrument was that only a qualitative 

evaluation of spectral energy was possible from the gray-scale graph. This was overcome by a 

later instrument introduced by Winer (1965) which presents the signal information as 
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frequency-time contours of equal spectral energy. It is this later technique that has been 

mostly used in the non-invasive evaluation of prosthetic ball-valve variance, as reported by 

Hylen et al. [9] (1969), Aigner et al. [10, 11] (1973-1977), and Kagawa et al. [12] (1977).  

An example of the spectrum of an aortic valve sound obtained by this technique is presented 

in Fig. 5.  

 

 
Fig. 5 Contour spectrogram of the PCG of a Harken aortic ball valve: 

Aortic opening sounds (AOS), Aortic closing sound (ACS). 

(figure redrawn from Durand et al. [15]) 

 

Despite the fact that such a representation contains a lot of information on the prosthetic valve 

being evaluated; the extraction of quantitative parameters is quite difficult. The spectral 

analysis of prosthetic valve sounds done by octave-band analysis and contour spectrography 

is mostly qualitative and generates quantitatively the same parameter: the highest harmonic 

component of opening (OS) or closing valve sounds (CS). Therefore, the information 

contained in the Phonocardiogram of cardiac valve prostheses. In addition, being essentially 

analog techniques and the difficulty of implementing filters with near ideal band-pass 

frequency response, it suffers from limited frequency resolution. While these techniques were 

finding some limited clinical acceptance whereas, the increasing availability of digital 

computers in the early '60s promoted the development of numerical methods of signal 

analysis. One of the most important events of this decade was the introduction of the FFT 

algorithm by Cooley and Tukey [13] in 1965, which, by drastically reducing the computing 

time required for spectral evaluation, practically revolutionized signal analysis. 

 

An efficient FFT implementation of the Discrete Fourier Transform (DFT) is crucially 

important since the DFT is the basis for most spectrum analysis techniques: a speed 

improvement of roughly 100 in the computation of a 1024 sample sequence can result from 

the evaluation of the FFT versus the evaluation of spectral components by a straightforward 

numerical integration. The Discrete Fourier Transform pair can be represented by: 
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where the amplitude and phase information of the harmonic term 
2 /j N

nW e   is contained in 

the complex coefficient X(k). 

 



 INT. J. BIOAUTOMATION, 2015, 19(3), 351-376 
 

359 

In order to retain some temporal information of the PCG signal, the concept of the short-time 

Fourier representation of a signal is quite useful [14]. Mathematically, it can be defined as: 
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  
  (3) 

 

where W(m) is a real window sequence of duration N centered on the time index n in order to 

determine the portion of the input signal that receives emphasis at a particular value of n.  

The procedure is illustrated in Fig. 6. 

 

 
Fig. 6 Schematic illustration of the spectrogram construction of a signal x(n) 

(figure redrawn from Durand et al. [15]) 

 

The short-time DFT is clearly a function of two variables: for each value of the time index n, 

the obtained Fourier representation (index k) of its neighboring values emphasized by the 

window sequence used. Thus, by taking successive short-time DFT at each or multiple values 

of time index n, it is possible to construct a digital time-dependent frequency representation of 

the input signal. 

 

PCG spectral composition 
The heart represents a rather complex oscillatory system, whose spectral power distribution is 

determined by numerous factors, such as the dimensions of the vibrating tissues (muscle and 

valves), their properties with respect to elasticity and density, and the physical conditions of 

vibrational excitation, especially the spectrum of the excitational function and the tension of 

the tissues that is caused by external forces as well as by their own contraction. Additionally, 

the spectrum is influenced by the surrounding media, primarily the blood contained in heart 

and vessels. Last but not least, the intracardial blood volume itself represents a vibrational 

system, whose contribution to the heart sounds appears particularly distinct in the case of 

eddy flows caused by cardiac malfunctions, such as valvular stenosis or insufficiency. Due to 

the complexity of the heart it is not possible to formulate an analytical description of the 
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vibrations or their spectra. The well-known Laplace model describes the ventricles as  

a thin-walled hollow sphere. The tension (s) of the wall depends on the trans-mural filling 

pressure (p), the radius (r) of the sphere, and the thickness (h) of the wall, that is the 

myocardium: 

 

2

pr
s

h
  (4) 

 

For thick-walled structures, the relationship is 
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where ri and ra represent inner and outer radii of the wall, and r lies between these limits.  

The tension decreases from the inside towards the outside. In the course of the heart cycle, 

both wall tension and intracardial pressure and also the radius of the ventricles are subject to 

change. According to the stage of heart action, these three variables exchange the function of 

dependent and independent parameters. During diastole there is a passive increase of wall 

tension (the preload) caused by the filling pressure, whereas during the systole the contraction 

of the myocardium actively increases the wall tension (the after load) and thus produces an 

interventricular rise of pressure. During the ejection time, the tension of the myocardial wall 

is influenced essentially by the decrease in ventricular radius and the increase in its thickness. 

Besides pathologic variations of the PCG power spectrum, characteristic shifts are also to be 

expected according to physiological changes of the characteristic parameters that occur 

depending on gestational age and fetal maturity [16]. 

 

Representation of heart sound signal in time-frequency domains 
Several signal models can be found in literature for the decomposition of heart sound signal, 

such as the chirp models [60, 61], the damped sinusoidal models [62, 63], the modified Prony 

models [64], and Leung et al. [65] employed the Gaussian modulation model to decompose 

the second heart sound for the diagnosis of pediatric heart diseases. For each patient, the splits 

of 20 successive cardiac cycles are measured; their mean and standard deviation are then 

calculated and used to characterize the two splitting patterns. It is found that the two simple 

statistical quantities can be used to identify the splitting patterns and hence, offer important 

diagnostic information. 
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where hm(t) is the heart sound signal of the m
th

 cycle. Namely, Eq. (6) means that hm(t) is the 

sum of Lm atoms. Every atom is characterized by five parameters: tmi is the time delay of the 

i
th

 atom with respect to the start of the m
th

 cycle; ami is the amplitude; ωmi is the frequency;  

σmi is the time width that the atom needs support; βmi is the phase. Therefore, the heart sound 

signal of this cycle is represented by the set of atoms {tmi, ami, ωmi, σmi, βmi, 1 ≤ i ≤ Lm}.  

The number of atoms, Lm, and the five parameters for each atom can be obtained using short-

time Fourier transform (STFT) analysis, as described in [65]. 
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The STFT of the heart sound signal hm(t) is 

 

      2,     mH t f h t t e d      (7) 

 

Biometric identification  
The performance of traditional biometric identification systems is, as yet, unsatisfactory in 

certain applications. For this reason, other physiological or behavioral characteristics have 

recently been considered, using new electrical or physical signals linked to a person’s vital 

signs. Francesco Beritelli examines the biometric characteristics of PCG signals from cardiac 

auscultation. The idea is that PCG signals have specific individual characteristics that can be 

taken into consideration as a physiological sign used in a biometric system [31]. The database 

used for the biometric identification by Francesco Beritelli, contains heart sounds from people 

suffering from various types of cardiac pathology. In order to study the spectral characteristics 

of heart sounds and, therefore, their biometric properties, the recordings which are used 

contains heart sounds relating to the following pathologies:  

1) innocent systolic murmur; 2) mitral regurgitation variations; 3) mitral regurgitation;  

4) mitral stenosis; and 5) third heart sound. 

 

Biometric technologies are based on the use of individual characteristics for the recognition or 

identification of an individual [30]. They are divided into two areas: 

1) Physiological characteristics (unique and unvarying), which include the geometry  

of the hand and the palm print, fingerprints, retina, or iris image, and the (geometrical) 

features of the face; 

2) Behavioral characteristics (unique but varying), which include signature, way  

of walking, voice (the latter also belongs to the previous group), and keyboard typing style.  

A feature common to all biometric technologies is the capability of human recognition from 

biometric data. This consists of a series of basic processes: 

i. Acquisition and storage of reference biometric data acquired by means of sensors 

(optical, ultrasonic, thermal, etc.); 

ii. Acquisition of new biometric data at the start of a recognition process, for 

comparison with the reference data; 

iii. Determination of the correspondence of the newly acquired data to the stored 

reference to determine whether they both could have been generated by the same 

person. 

 

In the first phase (enrollment), a sample is acquired, which might be converted to a template, 

a model, or left unprocessed. This is accomplished in a controlled environment so as to 

guarantee the security of the original and the properties of the biometric print. The second 

phase (matching) is activated whenever it is necessary to verify or identify a print. 

Authentication or verification is performed by comparing the acquired print with a reference. 

Identification is performed by searching in an archive for a compatible template.  

They therefore serve to identify a person whose identity is not necessarily known a priori.  

The implementation of a biometric solution requires recognition threshold values to be 

assigned. Due to various physical and environmental factors, in fact, the result of a biometric 

identification process is never completely certain. The definition of the recognition threshold 

establishes the boundary between acceptance and rejection of a request. In this way, it is 

possible to set the security level on which the False Reject Rate (FRR) depends on (i.e., the 

number of times the system does not recognize a sample as coming from the same individual 

who produced the reference) and the False Accept Rate (FAR) (i.e., the number of times the 
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system incorrectly matches a sample from one person to a reference from another).  

The FRR and FAR are generally considered as indices of the biometric system’s performance. 

 

The segmentation algorithm, which is essential for the subsequent matching phase, generally 

segments the sequences analyzed correctly and so is very robust to the degradation typically 

occurring in PCG sequences recorded in a real application context. As far as the matching 

phase is concerned, first conducted a preliminary study to identify the heart auscultation 

region (i.e., one of the four auscultation positions for the stethoscope), which gives the best 

degree of separability between classes for intra and interperson distances.  

 

Matching algorithm 

The metric used to measure the distance between the two signal spectra was Euclidean. 

Considering the spectra as N-dimensional vectors 
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where X and Y are the vectors containing samples of the signal spectrum whose distance is to 

be measured, and is the number of samples calculated for each frame. When S1 and S2 

signals are extracted from a cardiac sound recorded from the same individual, the distances 

with respect to the spectra are expected to yield lower values than those obtained when S1 and 

S2 spectra extracted from sounds recorded from different individuals are used. Following a 

series of recordings, the distributions of the distance variable with S1 recordings made from 

both the same person and different individuals is determined. 
 

Quantitative methods for PCG signal analysis 

Matching pursuit method 

Zhang et al. [18] developed a time-frequency scaling transformation based on the Matching 

Pursuit (MP) method for the Phonocardiogram (PCG). The MP method decomposes a signal 

into a series of time-frequency atoms by using an iterative process [18]. 

 

A. Time-scaling of PCG signals 

The MP method represents a signal as a combination of an infinite number of time-frequency 

atoms [17]. It can be written as 
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where ai are the expansion coefficients. The parameters (si) (the scale factors) are used to 

control the width of the waveform envelope, and (pi) are used to specify their temporal 

location. The parameters βi are normalizing factors to keep the norm of hi(t) equal to one.  

 

The purpose of time scaling the PCG is to change the rate of presentation while keeping the 

perceptual quality of the original signal. For a uniform change in the time scale, the time t of 

the original PCG is mapped into the transformed time scale t  through the mapping 

 

  t t    (12) 

 

Zhang et al. [18] found that the time scale expansion is more useful than time scale 

compression. Thus, γ is always larger than one. In the MP method, the temporal properties of 

a time-frequency atom are related with the time-position (pi) and the scale (si) which are 

modified for time-scaling of the PCG. For an input signal x(t), the reconstructed signal x′(t) by 

the MP method for m time-frequency atoms is given by 
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For time scaling, the time-position and scale factors are modified to give 

 

 ,  i i i ip p s s      (14) 

 
The module, frequency and phase are not changed, so that the time-scaled version is 
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B.  Frequency-scaling of PCG signals 

Frequency-scaling by the MP method is performed by scaling the frequency (f) of each  

time-frequency atom of the signal by using 

 

f f    (16) 

 

where  is a scaling constant.  

 

Thus, the frequency-scaled signal can be expressed as 
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C.  Joint time-frequency scaling of PCG signals 

Sometimes a joint time-frequency scaling is desired for changing both the time and the 

frequency properties of a signal. The transformation is the combination of the time scaling 

and the frequency-scaling described above. Thus, 
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Array phonocardiography 

The feasibility of applying passive listening array technology to the detection and localization 

of audible acoustic signals in the human body is discussed. A primary clinical objective is the 

low cost, non-invasive early diagnosis of Coronary Artery Disease (CAD). Referred to as 

array Phonocardiography, the technique uses an array of vibration sensors placed non-

invasively on the external chest wall. A wave speed dispersion curve permits focusing of a 

scanning beam to an array near field focal point that is scanned over a desired volume to form 

an intensity image. A model for blood flow induced vibrations of a diseased coronary artery is 

used to compare with experimental, in vitro, results using a urethane phantom. A turbulence 

source can be located within 1 cm imaging using both a time delay-and-sum Conventional 

Beam Former (CBF) and a reduced rank Adaptive Beam Former (rrABF). The performance 

of the rrABF is sensitive to the spatial extent of the radiating near field source; however, the 

imposition of a spatial gain constraint mitigates the problem [19]. Irregularities using near 

field focused beam forming techniques has been suggested as a procedure that would enhance 

listening performance and serve as a non-invasive, diagnostic screening device [20-22]. 

 
Neural network classification 

A novel method for segmentation of Heart Sounds (HSs) into single cardiac cycle  

(S1-Systole-S2-Diastole) using homomorphic filtering and K-means clustering is presented 

by Gupta et al. [32]. Homomorphic filtering technique resulted in smooth envelope enabling 

easy peak detection. Peak conditioning was performed to remove peaks, which do not 

correspond to S1 and S2. K-means clustering of the time intervals between peaks was used to 

indicate the occurrence of single cardiac cycles and also to point to missed cycles. 

Appreciable S1 and S2 amplitudes as compared to murmurs enhanced the performance of this 

algorithm. Feature vectors were formed after segmentation by using Daubechies-2 wavelet 

detail coefficients at the second decomposition level. These feature vectors were then used as 

input to the neural networks. Grow and Learn (GAL) and Multilayer Perceptron-

Backpropagation (MLP-BP) neural networks were used for classification of three different 

HSs (Normal, Systolic murmur and Diastolic murmur). It was observed that the classification 

performance of GAL was similar to MLP-BP. However, the training and testing times of 

GAL were lower as compared to MLPBP. The proposed framework could be a potential 

solution for automatic analysis of HSs that may be implemented in real time for classification 

of HSs [32]. 

 

Segmentation using nonlinear dynamic analysis and high-frequency decomposition 

An effective methodology for segmenting the temporal trace of PCG signals (shown in Fig. 7) 

is presented by Quiceno et al. [35]. Initially, inter-beat segmentation is carried out using the 

standard bipolar Lead-II of the ECG recording for locating the occurrence of S1. Next, the 

intra-beat segmentation is achieved by using Recurrence Time Statistics (RTS), which is 

sensitive to changes of the reconstructed attractor in a state space derived from non-linear 

dynamic analysis. If the segmentation using RTS fails, an alternative segmentation is 

proposed using thresholding over the Shannon envelogram extracted from the high-frequency 

decomposition. The database of PCG records, which was used, belongs to the National 

University of Colombia. Inter-beat segmentation accuracy was 100% over all PCG 

recordings. Taking into account 360 PCG beats, where a set of 180 beats were strongly 
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disturbed by different types of cardiac murmurs, intra-beat segmentation yielded an accuracy 

result of 97.7% [35]. 
 

 

 
Fig. 7 Correctly segmented PCG signal with systolic murmur 

(figure redrawn from Quiceno et al. [35]) 

 

Recurrence time statistics (RTS) 

RTS are used in order to detect abrupt changes in the signal dynamics, corresponding to S1 

and S2. An arbitrary state aref is chosen on the trajectory whereupon all recurrences within a 

hyper sphere of radius (r) are selected, i.e., Br(aref) = a: ||a − aref || ≤ r. Ψ is then defined as 

the total amount of states in the set Br, and related to the information dimension via a power 

law, which motivates its ability to detect weak signal transitions based on the amplitude, 

period, dimension and complexity of the signal. A sliding window is used to partition the 

recorded PCG signal into overlapping segments, and Ψ is calculated for each segment.  

The r value is a very important parameter in the detection algorithm. If it is chosen too low, 

the hyper sphere would be low on data, and if r is chosen too high, the hyper sphere will 

contain misleading information from erroneous parts of the reconstructed state space.  

In this work, r is adaptive, and it becomes lower if there is not lobe detection corresponding to 

S1 and S2 in Ψ(r) [34]. 

 
Wavelet decomposition and Shannon energy 

These methods are used in the detection of S2 when it is considered that RTS did not give a 

good estimation of the boundaries. Basically, three steps are implemented: high pass filtering, 

wavelet decomposition and Shannon energy operator applied to the detail coefficients.  

From the knowledge of cardiac functionality and genesis of S1 and S2 sounds, it is known 

that aortic valves close with relatively large pressure difference across the valve, which 

originates the high frequency content in S2 sound [2]. This is the motivation to use the 

approximation coefficients to perform the detection of S2. To extract the signal envelope from 

the detail coefficients, the Shannon energy operator is applied [33]. 
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where dj are the j
th

 level detail coefficients of the wavelet transformed heart sound signal, and 

N is the number of samples in the selected window. This technique emphasizes the medium 

intensity signal components and attenuates the effect of low intensity components [34].  

Using the signal envelopes provided by the Shannon energy, sound lobe boundaries are 

identified applying decision rules based on thresholds. 
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Cluster analysis and classification 

Amit et al. [39] describe a computational analysis framework for identifying distinct 

morphologies of heart sounds and classifying them into physiological states. The analysis 

framework is based on hierarchical clustering, compact data representation in the feature 

space of cluster distances and a classification algorithm. Amit et al. [39] applied the proposed 

framework on two heart sound datasets, acquired during controlled alternations of the 

physiological conditions, and analyzed the morphological changes induced to S1, and the 

ability to predict physiological variables from the morphology of S1. On the first dataset of  

12 subjects, acquired while modulating the respiratory pressure, the algorithm achieved an 

average accuracy of 827% in classifying the level of breathing resistance, and was able to 

estimate the instantaneous breathing pressure with an average error of 196%. A strong 

correlation of 0.92 was obtained between the estimated and the actual breathing efforts.  

On the second dataset of 11 subjects, acquired during pharmacological stress tests, the 

average accuracy in classifying the stress stage was 867%. The effects of the chosen raw 

signal representation, distance metrics and classification algorithm on the performance were 

studied on both real and simulated data. The results suggest that quantitative heart sound 

analysis may provide a new non-invasive technique for continuous cardiac monitoring and 

improved detection of mechanical dysfunctions caused by cardiovascular and 

cardiopulmonary diseases. 

 

The S1 can be represented in three different forms, i.e., 

1. Time-domain representation: Direct characterization of the signal as a time series of 

sampled amplitude values. 

2. Frequency-domain representation: Spectral characterization of the signal obtained by 

applying fast Fourier transforms (FFT). 

3. Time-frequency representation: Joint time-frequency characterization of the signal 

obtained by applying one of the following transforms: 
 

 Short-time Fourier transform (STFT), defined by: 
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 S-transform (ST), defined by [43]: 
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 Wigner-Ville Distribution (WVD), defined by [44]; 
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 Choi-Williams Distribution (CWD), defined by [44]; 
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Hierarchical clustering was applied to S1 signals, using each of the signal representations 

described above. The purpose of clustering is to partition a dataset into disjoint subsets 

(clusters), such that data elements within the same cluster share some sort of similarity. 

Similarity between data elements is measured using a distance metric that is suitable for the 

nature of the analyzed data. Two distance metrics were considered in this study: 

 

1. Euclidean distance:  
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where st and rt are signals of length n. 

 

2. Cross-correlation: 
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Clustering was done using an agglomerative hierarchical clustering procedure that initially 

partitions a set of n data elements into n clusters, each containing one data element, and then 

iteratively merges the two most similar clusters, until the entire dataset forms a single cluster 

[45]. The bottom of the created hierarchical tree can next be pruned so that the required 

number of clusters N is obtained. Each cut of the data elements are assigned to a single 

cluster, creating the output data partitioning to clusters {C1, …, CN}. The algorithm requires a 

cluster similarity criterion for choosing the next two clusters to be merged. Authors in [46] 

have used Ward’s step-wise optimal criterion, which chooses the clusters such that the 

increase in the overall sum-of-squared error after the merge is minimal. The distance between 

clusters Ci and Cj is defined by:  , /  w i j i j i j i jD C C n n n n m m   , where ni, and nj are 

the sizes of clusters, and mi, and mj are their means. 

 

LMS based least square SVM classifier 

Here, a technique to improve the performance of the Least Square Support Vector Machine 

(LSSVM) is proposed for classification of normal and abnormal heart sounds using wavelet 

based feature set. In the proposed technique, the Lagrange multiplier is modified based on 

Least Mean Square (LMS) algorithm, which in turn modifies the weight vector to reduce the 

classification error. The basic idea is to enlarge the separating boundary surface, such that the 

separability between the clusters is increased. The updated weight vector is used at the time of 

testing. The performance of the proposed systems is evaluated on 64 different recordings of 

heart sounds comprising of normal and five different pathological cases. It is found that the 

proposed technique classifies the heart sounds with higher recognition accuracy than 

competing techniques [59]. 
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Hilbert transfer 

The key features of PCG are extracted based on the slopes of envelop of Hilbert Transfer after 

relocating boundaries with energy envelope segmentation [69].  
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where H(x(t)) is the Hilbert transferred signal. The mode of Z(x) is the original envelope. 

 

The overall accuracy of features extraction is found to be 91.95%. 25 significant clinical 

features are introduced, and chosen to make two-kind classification by SVM. In the results of 

two-kind classification, the overall accuracy is 91.3%, which is better than 85.23% accuracy 

in 100 features of Shannon Energy Envelope. The result shows that features including clinical 

signification is of signification for enhancing the accurate rate of PCG classification [70]. 

 
Wavelet packet entropy  

Wavelet transform is a powerful technique in analyzing nonstationary signals such as PCG 

signals [77]. The main advantage of wavelet transform is its varying window size that is 

narrow for high frequencies and wide for low frequencies. Therefore, wavelet transform is 

much more powerful than the other time frequency analysis techniques such as Discrete 

Fourier Transform (DFT) and Short-Term Fourier Transform (STFT), not only for providing 

useful time and frequency information, but also for its adaptive time and frequency resolution 

[78]. 
 

A. Wavelet packet transform (WPT) 

WPT is an extension of Discrete Wavelet Transform (DWT) whereby all nodes in the tree 

structure are allowed to split further at each level of decomposition. With WPT, both the 

approximation and detail coefficients are decomposed into approximation and detail 

components. In comparison to DWT, WPT decomposes only the approximation coefficients 

of the signal (as shown in Fig. 8). Therefore, features can be generated based on 

approximation and detail coefficients at different levels to obtain more information.  

The WPT of a signal x(t) is defined as follows: 
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where n is the channel number, j is the number of decomposition level, or scale parameter,  

p is the position parameter, ψn(t) is the mother wavelet, and S is the maximum decomposition 

level. After decomposing signal x(t) by WPT, 2
S
 sequences can be produced in the S

th
 level. 

The fast decomposition equation for this kind of WPT is 
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where h(i) and g(i) are wavelet quadrature mirror filter coefficients. 

 

 
Fig. 8 Wavelet packet tree with corresponding high-pass and low-pass filters 

(a = approximation coefficients, d = detail coefficients). 

The shaded nodes indicate the node not to be produced by DWT. 

 

Three levels of the wavelet packet decomposition with the high-pass and low-pass filters were 

illustrated in Fig. 8. This structure can be continued further to decompose the following 

approximations and details to reach to a proper level for representing PCG signals of desired 

murmurs. From the literature, it can be concluded that levels 6 to 8 were generally chosen for 

analyzing PCG signals of different pathological heart sounds [79-83]. 
 

B. Entropy 

Different types of entropy such as log, norm, Shannon, sure, and threshold can be used to 

characterize the heart sounds. However, for this study the entropy introduced by Vitulano and 

Casanova [84] for analyzing 1D signals was utilized. They have transformed the  

2D mammographic signal into 1D signal through linear transformation and then applied the 

entropy on the 1D signal to generate features for differentiating mammograms with different 

pathologies. They did not utilize any signal processing technique to analyze the signal prior to 

extract entropy features from the signal. In the current study, the PCG signals were first 

analyzed with WPT and then entropy features were generated from the wavelet packet 

coefficients. Vitulano and Casanova [84] defined the signal “crest” as the part embraced 

between lines parallel to the abscissas axis, in which the ordinates are m and M, m is the 

absolute minimum and M is the absolute maximum of the signal. Therefore, the signal crest 

included all the points x(t)  X(t), so that 
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and crest energy is defined as 
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Signal entropy can be defined based on Ec as 
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where E is signal energy, Ec is crest energy, and S is signal entropy. Signal entropy S is 

defined based on one-dimensional signals and it has a potential to be applied on the other 

dimensional signals such as PCG signals.  

 

Safara et al. [85] employed wavelet packet transform for heart sound analysis, and the entropy 

was calculated for deriving feature vectors. Five types of classification were performed to 

evaluate the discriminatory power of the generated features. The best results were achieved by 

BayesNet with 96.94% accuracy. 

 

Conclusion 
The PCG signal confirms, and mostly, refines the auscultation data and provides further 

information about the acoustic activity concerning the chronology of the pathological signs in 

the cardiac cycle, by locating them with respect to the normal heart sounds. Heart murmurs 

are the first signs of cardiac valve disorders. Several studies have been conducted in recent 

years to automatically differentiate normal heart sounds from heart sounds with murmurs 

using various types of audio features. The heart sound categories would be expanded to 

include different murmurs. Few methods are discussed for feasible way to enhance the 

accurate rate of Phonocardiogram classification. This review also suggests quantitative heart 

sound analysis may provide a new non-invasive technique for continuous cardiac monitoring 

and improved detection of mechanical dysfunctions caused by cardiovascular and 

cardiopulmonary diseases. The first part of this review represents the significance of PCG 

signal and the second part demonstrates the different methodology involved for detection, 

classification and analysis of PCG signal.  
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