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Abstract: This study presents a mathematical model of a batch fermentation of lactose 
oxidation from a natural substratum in a cultivation by the strain Kluyweromyces marxianus 
var. lactis MC 5. In the model of the process, the mass transfer in the bioreactor for oxygen 
concentration in the gas phase (GP) and in the liquid phase (LP) is based on the dispersion 
model of the GP. In addition, perfect mixing in LP is included. Nine models were 
investigated for specific growth rate and specific oxygen consumptions rate: Monod, Mink, 
Tessier, Aiba, Andrews, Haldane, Luong, Edward and Han-Levenspiel. In regard to the 
parameter estimation, the worst observed error was used for all experiments as an objective 
function. This approach is a special case of multi objective parameter estimation problems 
allowing the parameter estimation problem to become a min-max problem. The results 
obtained (values of criteria, relative error and statistics λ) for the specific growth rate 
showed that the best fit to experimental data is achieved when applying the Mink model.  
In a combination a Mink, and Monod, Mink, Luong, Haldane, and Han-Levenspiel are used 
for specific oxygen consumptions rate. Based on the investigation, it was discovered that the 
best fit belonged to the models of Mink & Haldane, Mink & Luong and Mink & Han-
Levenspiel. Therefore, these particular models are used for modeling the batch processes. 
 
Keywords: Whey fermentation, Specific growth rate, Specific oxygen consumption rate, 
Kinetic models, Strain Kluyveromyces marxianus var. lactis. 

 
Introduction 
The modelling of bioprocesses is a very important issue, which is determining for the 
discovery of radical principles for microbial synthesis. The dynamics of the biotechnological 
process is described by a mass balance equation because of the application of radical process 
parameters such as cell density, substrate concentration, profitable product, oxygen 
concentrations, temperature, pH and all once [20]. 
 
The cultivation of lactose oxidation from natural substratum in fermentation of 
Kluyweromyces marxianus var. lactis MC 5, using non-conventional ways for receiving 
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unicellular proteins, is not well studied. Therefore, a general mathematical model of the 
microbial synthesis does not exist because of the extreme complexity and great variety of 
living activity of microorganisms, although various models of the biotechnological process as 
well as of different parts of whey fermentation [1, 2] exist. 
 
The bioreactors, where the energy is transferred simultaneously in the gas and liquid phase, 
appeared universal because of the availability of definite intensity of the mass-transfer and the 
mixing. The largest dispersion of the gas in the liquid is reached through mechanical mixing 
of the environment because of the well-built turbulence. When there is enough large gas hold-
up, it creates a big relative surface of the phase contact and allows cultivation of cultural 
environment with components that have a large difference in density. This advantage of the 
apparatuses with mechanical mixing is the reason for their wide use. They are used mostly in 
the production of enzymes, amino acids, antibiotics, etc. Mass transfer processes in 
bioreactors exert immediate and essential influence on the growth and the development of cell 
population. The modelling of these processes is based on the equation of convective diffusion 
[4, 5, 14-16]. 
 
In this study, batch cultivations in the stirred tank of lactose oxidation from natural 
substratum in fermentation of the strain Kluyweromyces Marxianus var. lactis MC 5 are 
investigated. 
 
Materials and methods 
Experimental investigations 
Six fermentations have been carried out in aerobic batch and fed-batch cultivation of 
Kluyweromyces marxianus var. lactis MC5 strain. A laboratory bioreactor ABR 02M with a 
capacity of 2 L has been used. The strain has been cultivated under the following conditions 
[1, 2, 7-12]: 
 

1. A nutrient medium with a whey ultra-filtrate with lactose concentration of 44 g⋅l-1 as a 
basic component is used. The ultra-filtrate is obtained from whey which was derived 
in the process of white cheese production and deproteinized by ultrafiltration on LAB 
38 DDS with a membrane of the GR 61 PP type, under the following conditions: 

 temperature T1    = 40-43 °C 
 input pressure Pin   = 0.65 MPa 
 output pressure Pout  = 0.60 MPa 

2. The ultra-filtrate is used in its native condition with lactose concentration of 44 g⋅l-1. 
The nutrient medium consists of: 

 (NH)HPO 0.6% 
 yeast autolisate 5.0% 
 yeast extract 1.0% 
 pH = 5.0-5.2 

3. The velocity of the air flow is 60.0 1⋅1-1⋅h-1 up to the 4th hour and 120.0 1⋅1-1⋅h-1 up to 
the end of the process under continuous mixing N = 800 rpm. 

4. Temperature is T2 = 29 °C. 
5. Duration of the cultivation is tf  = 10 hours. 

 
The following changes of the microbiological process (lactose conversion in yeasts cells to 
protein) have been studied during the strain growth: 
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a) the lactose concentration in the fermentation medium in oxidation and assimilation of 
lactose by Kluyweromyces marxianus var. lactis MC5 is determined by enzyme 
methods through UV tests (Boehringer Manheim, Germany, 1983); 

b) the concentration of the cell mass and the protein contents is determined on the basis 
of the nitrogenous contents (Kjeltek system 1028); 

c) the concentration of the dissolved oxygen in the fermentation medium in the process 
of oxidation and assimilation of lactose is determined by an oxygen sensor. 

 
Kinetic models 
The batch model of the processes includes the dependence on concentrations of the basic 
energetic substrates: oxygen concentration in the gas and liquid phase, cell mass concentration 
and lactose. The model of the mass transfer in the bioreactor considering oxygen 
concentration in the gas phase (GP) and the liquid phase (LP) is based on the dispersion 
model of the GP and perfect mixing in the LP. The change of the concentration in the gas 
phase (CG) is described by a diffusion model at steady-state condition. The change of gas 
concentration in the liquid phase (CL) is described by a perfectly mixed model. The dissolved 
oxygen concentration equilibrium (C*) is determined as an average value of dissolved oxygen 
concentration in bioreactor liquid level. With these assumptions, the model of mass transfer is 
as follows [8, 10, 14-16]: 
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The models of cell and substrate are described assuming that they are perfectly mixed in the 
bioreactor: 
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where: CG is the dissolved oxygen concentration in the gas phase, [kg⋅m-3]; CL – the dissolved 
oxygen concentration in the liquid phase, [kg⋅m-3]; X – the biomass concentration, [kg⋅m-3]; 
C* – the dissolved oxygen concentration equilibrium, [kg⋅m-3]; S – the substrate 
concentration, [kg⋅m-3]; t – the process time, [h]; μ – the specific growth rate, [h-1]; YX/S and 
YX/C – the yield coefficients, [kg⋅kg-1]; kla – the volumetric oxygen mass transfer coefficient, 
[h-1]; εG  – the gas phase hold-up, [%]; mL – the Henry’s law constant. 
 
The initial and boundary conditions are given as follows: 
 
X(0) = 0.2 kg⋅m-3, S(0) = 44 kg⋅m-3, CL(0) = 6.70⋅10-3 kg⋅m-3, and CG(0) = 0.21 kg⋅m-3. 
 



 INT. J. BIOAUTOMATION, 2015, 19(1), Suppl. 1, S81-S92 
 

 S84

00

0

G
G G G G L

G

dCz W C W C D
dz

dCz L
dz

= → = −

= → =
. 

 
Including of dimensionless coordinate χ = z/L, Eq. (1) and boundary conditions look like: 
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The model (1)-(4) can be vastly simplified if Eq. (1) is determined separately and its 
determination is included in the model (3), (4). The determination is considered in the type  
[15, 16]: 
 

02010 )exp()exp(),( CrBrAtCG ++= χχχ , (7) 
 
where: 0 2

0 2 0 0 3 0 1 2 10 5Pe 0 25Pe PeG ,A a B ;C C a B , r . . a= = − = ± + , 
 

( ) ( )2 2 1 2 1 3 2 2 1 21 ( ) Pea r / r exp r r , a a a r r /= − − = + − + . 
 
The dissolved oxygen concentration equilibrium is determined by the equation: 
 

0220110
* /]1)[exp(/]1)[exp( CrrBrrAC +−+−= . (8) 

 
The constant B0 is determined from (8) by t = 0: 
 

( )0 0
0 4 4 3 2 1 1 2 2/ , [1 exp( )] / [1 exp( )] /G L LB C m C a a a a r r r r= − = + − + − . 

 
The power input for the dispersion systems during the gas-liquid and the liquid phase 
following relations is determined by [8-10]: 
 

( ) 0.13 0.80.21 /G G LP Q N d P
−

= , 4.053 Re9.60 −= dNPL ρ . (9) 
 
Parameters Gε  and kla can be determined by: 
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( ) 0.01430.53 /G GQ N dε
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where D is the bioreactor diameter, [m]; d – impeller diameter, [m]; DL – the dispersion 
coefficient, [m2⋅s-1]; N – the agitation speed, [s-1]; PG – the power input in the gas phase, [W]; 
PL – the power input in the liquid phase, [W]; QG – the gas flow rate, [m3⋅s-1]; Re – the 
Reynold’s number, ηρ /Re 2dN= ; S – the substrate concentration, [kg⋅m-3]; V – the working 
volume, LDV 225.0 π= , [m3]; ρ – the liquid density, [kg⋅m-3]; η – the liquid dynamic 
viscosity, [Pa⋅s]; ρG – the aeration gas density, [kg⋅m-3]. 
 
The model structures for the specific rates are unknown, so nine models are tested in the study 
[4, 6, 13, 18, 19, 21]. Both classical specific rates and modified ones with regard to dissolved 
oxygen concentration are summarized in Table 1. 
 

Table 1. Tested model structures 
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In the Table 1 )/1( mS SSR −= ; (1 / )C L mR C C= − ; μm is the maximum specific growth rate,  
[h-1]; KS, KC – the saturation constants, [kg⋅m-3]; KSI, KCI – the inhibition constants in different 
models, [kg⋅m-3]; K – the constant in the Edward model; Sm, Cm – the critical inhibitor 
concentration, above which the reactions stop, [kg⋅m-3]; m – the constant in the Han-
Levenspiel model; n – the constant in the Luong and the Han-Levenspiel models. 
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Evaluation of the model parameters 
The mathematical estimation of the model parameters is based on the minimization of some 
quantities that can be calculated and the estimation of a function of parameters. If the model 
under consideration is linear, the estimation is generally an easy task. However, there is no 
general theory for nonlinear parameter estimations. The least-squares error is commonly 
employed as a criterion to inspect how close the computed profiles of the state variables come 
to the experimental observations. In this study, we have considered the time weighted least-
squares error as a criterion for each experiment. The criterion is expressed in the form [21]: 
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where Nexp is the number of experiments, and tj – time partitions. 
 
The least-squares regression sums up every observed error in (11) to the yield of an objective 
function. For the parameters estimation, we have considered the worst observed error for all 
experiments as an objective function. This approach is a special case of multiobjective 
parameter estimation problems so that the parameter estimation problem becomes a min-max 
problem [21]: 
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where u is a vector of the estimated parameters. 
 
Now, the min-max problem can be solved by the subroutine BCPOL from the IMSL library of 
CОMPAQ Visual FORTRAN 90 [3]. The routine BCPOL uses the complex method to find a 
minimum point of a function of n variables. The method is based on function comparison; no 
smoothness is assumed. All computations have been performed on Dual Core AMD Athlon II 
2900 MHz computer using Microsoft Windows XP Pro Edition operating system. 
 
Models validation 
The best dependences are defined by the statistical criteria: experimental correlation 
coefficient ( 2

ER ), experimental Fisher function (FE), relative error (SL) and statistics λ for the 
different mixing systems and the models of the specific growth rate. 
 
In that statistics λ has ),( exp MNMF −  distribution. Statistics λ is defined with [4]: 
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S , M – number of kinetics variables. 

 
The relative error SL is determined with the help of the following equation [4]: 
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Results and discussion 
Identification procedures of differential equations system (3)-(4) start with application of 
classical model structures of nine specific rates ( )Sμ , as presented in the second column of 
Table 1. Further the same investigation is repeated using the modified specific rates ( )LCμ , 
listed in the third column of Table 1.  
 
Considering system (3)-(4) the basic indexes of mass transfer and mixing of the process have 
the following values: 

(PG/V) = 0.49 W⋅m-3; mL = 36.14; for 
QG =   60 m3⋅m-3⋅h-1 → εG = 23.05%,  kla = 173.2 h-1, and 
QG = 120 m3⋅m-3⋅h-1 → εG = 26.34%, kla = 202.7 h-1. 

 
The obtained statistical results (criterion value Q, statistics λ and relative errors SL) are shown 
in Table 2, respectively for classical and modified specific rate structures. 
 

Table 2. Statistical results for all investigated model structures 

in case of ( )Sμ  in case of ( )LCμ  
Model 

Q·10-3 λ SL(X) SL(S) SL(CL) Q·10-3 λ SL(X) SL(S) SL(CL)
Monod 201.4 0.230 0.431 0.570 8.369 9.7 536.649 0.220 0.273 0.276
Mink 55.0 19.785 0.244 0.565 3.466 9.6 130.203 0.255 0.375 0.280

Teisser 319.3 0.128 0.853 0.889 8.451 11.2 94.428 0.263 1.102 0.285
Aiba 148.7 0.350 0.410 0.560 7.071 14.8 61.457 0.216 0.657 0.317

Andrews 75.8 1.950 0.320 0.409 5.672 11.0 74.998 0.223 0.720 0.267
Haldane 78.5 1.106 0.289 0.659 2.482 15.0 60.659 0.212 0.655 0.347
Luong 89.4 0.777 0.305 0.666 3.212 9.8 278.221 0.214 0.267 0.266

Edward 94.1 0.738 0.303 0.662 3.543 15.0 64.284 0.211 0.655 0.343
Han-Levenspiеl 83.0 0.945 0.293 0.660 2.909 10.9 208.868 0.220 0.330 0.297

 
The tabular coefficient of Fisher is 42.3)3,8( =TF  and for statistics λ − 13.4)8,3(' =TF .  
The tabular correlation coefficient is 632.0)8(2 =TR  [17]. The experimental values of the 
correlation coefficients are not presented in the table because all coefficients have values 

90.02 >ER , and the experimental Fisher coefficient (FE) has an order of one. This shows that 
all models are adequate according to mentioned above criteria, except the statistics λ. 
 
The statistical indexes in Table 2 show that only the model of Mink has the best fit in case of 

( )Sμ . For the rest of the models the statistics λ is smaller from the theoretical value 
13.4)8,3(' =TF , which means that they do not result in a good fit with the experimental data. 

 
The models of Monod, Mink, Luong and Han-Levenspiel have the best fit in case of ( )LCμ  
(Table 2). In spite of higher indexes, the Haldane model is also included in the group of the 
structures with the best fit, because it was successfully used for the modelling of the same 
process in previous authors’ investigations [7, 9, 17]. Thus the following five combinations 
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between the model structures showed best fit in case of ( )Sμ  and ( )LCμ  are proposed for 
further identification procedures: 
 
1) Model of Mink as ( )Sμ  and Haldane as ( )LCμ  
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4) Model of Mink as ( )Sμ  and Luong as ( )LCμ  
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5) Model of Mink as ( )Sμ  and Han-Levenspiel as ( )LCμ  
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The statistical indexes of the investigated model combinations (models (15)-(19)) are shown 
in Table 3. 

 
Table 3. Statistical results for models (15)-(19) 

Models for ( , )Lμ S C  Q·10-3 λ SL(X) SL(S) SL(CL) 
Mink & Haldane 9.158 825.030 0.212 0.281 0.272 

Mink & Monod 8.971 205.722 0.228 0.267 0.223 
Mink & Mink 9.387 413.005 0.222 0.276 0.335 

Mink & Luong 9.099 563.251 0.217 0.280 0.198 
Mink & Han-Levenspiel 8.977 531.835 0.222 0.259 0.256 

 
Table 3 shows that all investigated combinations of the models have a very good fit. The 
models Mink & Haldane (Eq. (15)), Mink & Luong (Eq. (18)), and Mink & Han-Levenspiel 
(Eq. (19)), have the best fit. 
 
The estimated parameters of the investigated models are shown in Table 4.  
 
The results after simulations for the concentrations of biomass (X), substrate (S) and oxygen 
(CL) for the batch cultivation of Kluyweromyces Marxianus var. lactis MC5 with all models 
(15)-(19) are shown in Figs. 1-3, respectively. 
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Table 4. Parameters of models (15)-(19) 
Models μm KS KC YX/S YX/C KCI Cm n m 

Mink & Haldane 0.866 3.469 0.606 0.396 0.164 17.846 – – – 
Mink & Monod 0.693 0.423 0.488 0.398 0.152 – – – – 

Mink & Mink 0.622 0.157 0.143 0.395 0.161 – – – – 
Mink & Luong 0.736 0.733 0.491 0.399 0.158 – 24.335 0.313 – 

Mink & Han-Levenspiel 0.695 5.007 0.410 0.395 0.160 – 21.872 0.183 1.156
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Fig. 1 Experimental and simulation results for biomass concentration 
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Fig. 2 Experimental and simulation results for substrate concentration 
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Fig. 3 Experimental and simulation results for oxygen concentration 
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The obtained results for the optimisation criterion Q, relative errors SL and statistics λ 
(Table 4, Figs. 1-3) show that all models can be used for the modelling of a batch cultivation 
of Kluyweromyces marxianus var. lactis MC 5.  
 
Conclusions 
This study evaluates a mathematical model of a batch cultivation of lactose oxidation from 
natural substratum in the fermentation of the strain Kluyweromyces marxianus var. lactis MC 
5. In the model the mass transfer in the bioreactor for the oxygen concentration in the GP and 
LP is based on the dispersion model of GP and perfect mixing in LP. Eighteen model 
structures of specific rates in respect to S and CL have been investigated, namely Monod, 
Mink, Tessier, Aiba, Andrews, Haldane, Luong, Edward and Han-Levenspiel. The obtained 
results (criteria value, correlation and Fisher coefficients, relative error and statistics λ) in 
case of ( )μ S  show that the model of Mink has the best fit. Other models have low values of 
the evaluation criteria. In case of ( )Lμ C  all investigated models are adequate and can be used 
for modelling.  
 
Based on obtained results the following model variations have been proposed: Mink as ( )Sμ  
in a combination respectively with models of Haldane, Monod, Mink, Luong, and Han-
Levenspiel as ( )LCμ . After performed identification procedures the best statistical indicators 
are shown by models Mink & Haldane, Mink & Luong, and Mink & Han-Levenspiel.  
 
Considered model structures of specific rates are here applied in case of a batch mode of the 
fermentation process. Further models investigations might be performed when modelling  
fed-batch mode of the fermentation process. 
 
The elaborated algorithms and programs on Compaq Visual FORTRAN 90 might be used for 
modelling of other fermentation processes too. 
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