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Abstract: In the present paper a neural network approach called “Adaptive Critic Design” 

(ACD) was applied to optimal tuning of set point controllers of the three main substrates 

(sugar, nitrogen source and dissolved oxygen) for PHB production process.  

For approximation of the critic and the controllers a special kind of recurrent neural 

networks called Echo state networks (ESN) were used. Their structure allows fast training 

that will be of crucial importance in on-line applications. The critic network is trained to 

minimize the temporal difference error using Recursive Least Squares method.  

Two approaches – gradient and heuristic – were exploited for training of the controllers.  

The comparison is made with respect to achieved improvement of the utility function subject 

of optimization as well as with known expert strategy for control the PHB production 

process.  

 

Keywords: Mixed culture cultivation, PHB production process, Adaptive critic design 

(ACD), Optimization, Echo state networks (ESN). 

 

 

Introduction 
The mixed culture systems are quite common in nature: the human body, waste water 

treatment, ecosystems are some of well known examples. In such systems one microorganism 

assimilates substrate A and converts it to metabolite B which is converted by another 

microorganism to metabolite C. Since the change in culture conditions affects all 

microorganisms differently it is difficult to control such processes in an optimal way. 

 

The present paper considers the mixed culture system where sugars (glucose) were converted 

to lactate by the microorganism L. delbrueckii and then the lactate was converted to PHB 

(poly--hydroxybutyrate) by the microorganism R. euthropha. The main product – PHB –  
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is biodegradable polymer used as thermoplastic in food and drug industry. Hence the main 

purpose of the process control strategy is to maximize the outcome of this product accounting 

for the needs and mutual relations of both microorganisms in the culture. 

 

By now there are known several approaches to this problem. In [8, 28] different control 

strategies were exploited separately or in combination: to maintain the lactate concentration at 

an given optimal level using dissolved oxygen concentration as control variable, to maintain 

the glucose concentration at a given optimal level by its feeding rate, to change the set point 

of the glucose concentration according to the lactate concentration deviation from its set 

point. In [5] it was proposed to monitor the lactate production and consumption rates in order 

to determine the needs of the two microorganisms and depending on them to feed glucose or 

to change dissolved oxygen concentration. Another approach is adaptive control strategy 

proposed in [21] that determines the optimal glucose feeding rate based on the known from 

[28] optimal level of the lactate concentration or glucose concentration and monitoring of the 

second microorganism’s concentration and lactate [20]. In [4] it was proposed to maximize 

the process productivity by controlling the mixing intensity. In [19] an intelligent approach to 

optimization of the glucose and ammonium time profiles is proposed. It uses neural networks 

for process model and feed-back controller. In [9] fuzzy control approach is proposed that 

combines the expert knowledge about the lactate concentration dependence on the set points 

of dissolved oxygen and glucose concentrations. 

 

In previous work [10] the neural network approach called “Adaptive Critic Design” (ACD) 

was applied to synthesis of sugar’s concentration optimal time profile for the process.  

In [12] the same approach was extended to synthesis of optimal time profiles of all three main 

substrates (sugar, nitrogen source and dissolved oxygen). However by far the control scheme 

was open loop, i.e. there was no feedback from the process state to the controllers. Instead 

only time profiles of the set points of the control variables were adjusted. In [16] the ACD 

was extended to the closed-loop version of ACD using ESN structure for the controllers and 

two algorithms (gradient and heuristic) for training of these controllers accounting for ESN 

structure peculiarities were developed. 

 

Here we focus on the optimization results achieved on the task of PHB production 

maximization. The comparison of both training algorithms developed in [16] is made with 

respect to achieved improvement of the utility function subject of optimization as well as with 

expert strategy for control of the PHB production process. 

 

The rest of the paper is organized as follows: in Section 2 the PHB production process is 

described and the model used for its simulation is presented; next the basics of ACD 

optimization technique is presented; Section 2.3 gives brief description of the ESN structures 

is given; section three presents the optimization task that was solved – maximization of 

product outcome of the PHB process – and the results are presented and discussed; the paper 

finishes with the conclusion section. 

 

Problem statement 

PHB production process 
In [28] the PHB production process was modeled by a system with six nonlinear ordinary 

equations as follows: 

 

 1
1 1 1 1, , S nF FdX

S P DO X X X
dt V V

    (1) 
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S F n

F S S FdS
ν S P DO X S

dt V V


     (2) 

   1 1 2 2, , , , S nF FdP
S P DO X P DO N X P P

dt V V
      (3) 

 2
2 2 2 2, , S nF FdX
μ P DO N X X X

dt V V
    (4) 

 
 

3 2, ,
n F S

F N N FdN
P DO N X N

dt V V


     (5) 

 2 2
S nF FdQ

σ N X Q Q
dt V V

    (6) 

S n

dV
F F

dt
   (7) 

 

Here the main process state variables are: X1 – cell concentration of L. delbrueckii; X2 – cell 

concentration of R. euthropha; S – glucose concentration; P – lactate concentration; N – NH3 

concentration, and Q – product, i.e. PHB concentration. The bioreactor’s volume is denoted 

by V. The feeding rates of the two main substrates (sugar and nitrogen source) are denoted by 

FS and Fn, respectively. The specific growth and consumption rates are described as follows: 

 

 
 1
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The main parameters’ dependence on dissolved oxygen concentration (DO) is as follows: 

 

  2

1 1 3

a DO

m DO a e a
   (16) 

  2

/ 1 3

b DO

P SY DO b e b
   (17) 

  2
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   (18) 

  2
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  2

2 / 1 3

f DO

X PY DO f e f
   (20) 

 

In our simulation 
2 / .X NY const  The temperature is thermostated at 37 C. The pH was 

maintained at the specified value by adding NaOH or NCl solution. The dissolved oxygen 

concentration was maintained at the set point by changing the agitation speed and/or air flow 

rate. 

 

ACD approach 
ACD [22] originate from one side as a method approximating Bellman’s dynamic 

programming [2, 3] and from the other side as gradient version of associative “learning from 

experience” called Reinforcement Learning (RL) [1]. During the last thirty years theoretical 

developments in this field led to numerous variations of optimal control approaches [17]. The 

core of the methods is approximation of Bellman’s equation via neural network called 

“heuristic adaptive critic”. Training of a critic is done minimizing temporal difference (TD) 

error [27] thereby mimicking the brain’s ability to learn how to predict future outcomes on the 

basis of previous experience without awaiting the final results from future actions. The key 

component of ACD training and solving the optimization task is the backpropagation method 

that is gradient algorithm based on the chain rule of derivative calculation [29]. In contrast, 

the RL uses Hebbian or associative learning law for both critic and controller (called actor in 

terms of RL) networks. Usually the critic is trained off-line since it needs a collection of a 

variety of data from the beginning to the end of several process runs. Combination between 

off-line and on-line learning is also considered [23]. True on-line applications of ACD 

approaches, however, needs very fast training algorithms [24]. In highly non-linear 

environments the necessity for additional feedback connections arises, which further 

complicates the on-line training. In such cases the application of backpropagation trough time 

(BPTT) [29] is an alternative. However, it is impossible to be used in an on-line mode. 

Instead of that the Extended Kalman Filter (EKF) method [7] is usually applied, which is 

more complicated and resource demanding. Hence it is crucial to work towards finding 

simply trainable recurrent network structures for ACD schemes. 

 

ACD approach was already applied for optimization of biotechnological processes [6], 

however in off-line mode. 

 

In search of fast trainable neural network architectures in [12-14] it was proposed to use 

recently developed class of Recurrent Neural Networks (RNNs) called Echo State Networks 

(ESNs) [7]. Their structure incorporates a dynamic reservoir of neurons that is generated 

randomly and a fast trainable readout layer. These allow on-line adaptation via Recursive 

Least Square (RLS) method [7] as well as calculation of needed derivatives with much less 

computational effort [14]. 

 

From biological point of view however, the gradient learning is considered as non-plausible. 

It is claimed that associative learning algorithms like Hebbian law are closer to the biological 

neurons behavior. That is why in [15] it was proposed to incorporate associative learning laws 

within ACD scheme. That was done via training of actor with associative manner like in [1]. 

However in [15] the actor was not entire network structure but only time profile of the control 

variable. In [16] the approach was extended to the colsed loop scheme with ESN structures 

for the actors (controllers) and the gradient and associative training algorithms were extended 

accounting for ESN structure peculiarities. 
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The main scheme of the on-line approach according to [26] is given on Fig. 1 below. 

 

 
Fig. 1 Adaptive Critic Design optimization approach 

 

Here the dashed lines represent the training cycle. The vector State(t) represents the object 

state vector, a(t) is control (action) variable. The critic NN has to be trained to predict the 

utility function U(t) by approximating Bellman’s equation as follows: 

 

         
0

, ,
k

t

t

J State k a k U State t a t


  (21) 

 

where  is a discount factor. 

 

The critic network is trained so as to minimize the TD error: 

 

       1TDerror k J k U k J k     (22) 

 

The action ESN represents the controller that has to be adjusted so as generated by its control 

actions maximize (minimize) the utility function. The feedback connection from the process 

state to the controller can include the full state vector or some of state variables. The dashed 

lines represent the training cycles of critic and actor respectively. 

 

Concerning the action ESN, it has to be trained so as to generate proper control actions. In the 

classical ACD it is done via backpropagation of utility [29] that is gradient descent training. 

Here it is compared with biologically plausible associative learning algorithm adopted from 

early RL scheme [1]. Both algorithms are described in details in [16]. 

 

Echo state networks 
ESNs are a kind of recurrent neural networks that arise from so called “reservoir computing 

approaches” [18]. The basic ESN structure is shown in Fig. 2 below. 

 

The ESN output vector denoted here by out(k) (it will be J(k) or a(k) for critic and action 

networks respectively) for the current time instance k is usually a linear function of its input 

and current state: 

 

      ,out outout k f W in k R k     (23) 

 

a(k) 
ESN 

actor 

 

process 

ESN 

critic 

State(k) 

TDerror(k) 

J(k) 

dJ(k)/da(k) 

U(k) 
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Here, in(k) is a vector of network inputs and R(k) a vector composed of the reservoir neuron 

states; f 
out

 is a linear function (usually the identity), W 
out

 is a noutx(nin + nR) trainable matrix 

(here nout, nin and nR are the sizes of the corresponding vectors out, in and R). 

 

 
Fig. 2 Echo state networks structure 

 

The neurons in the reservoir have a simple sigmoid output function f 
res

 (usually hyperbolic 

tangent) that depends on both the ESN input in(k) and the previous reservoir state R(k – 1): 

 

      1res in resR k f W in k W R k    (24) 

 

Here W 
in

 and W 
res

 are ninnR and nRnR matrices that are randomly generated and are not 

trainable. There are different approaches for reservoir parameter production [18]. A recent 

approach used in the present investigation is proposed in [25]. It is called intrinsic plasticity 

(IP) and suggests initial adjustment of these matrices, aiming at increasing the entropy of the 

reservoir neurons outputs. For on-line training, the RLS algorithm [7] was used. 

 

Results and discussion 
The main goal of the optimization is to maximize the outcome of the process product Q. 

Hence the utility function at each time step k will be: 

 

     U k Q k V k  (25) 

 

and the overall utility for the process with N time steps will be: 

 

0

( )
N

sum

k

U U k


  (26) 

 

For the PHB production process the vector State(k) (from Fig. 1) includes all main process 

state variables, i.e.: 

 

             1 2, , , , ,State k X k S k P k X k N k Q k     (27) 

 

The ideology of the process control scheme is described in more details in [11, 28].  

We suppose that all concentration controllers work properly and that they are able to follow 

the set points. Hence the optimization task to be solved is to determine the proper values of 

these set points at each moment. Hence the control vector consists of the three set points as 

follows: 

in(k) 



out(k) 



reservoir 

W
 res

 

R(k) 

W
 in

 W
 out
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       * * *, ,a k S k N k DO k     (28) 

 

Following the ACD scheme from Fig. 1, for each control variable a corresponding ESN action 

network was trained using both gradient and associative rules described in [16]. In present 

work we choose to have only one input of each action ESN  the key intermediate metabolite 

P since it is on-line measurable and its concentration is of crucial importance for process 

trend. 

 

All control variables have imposed restrictions in terms of minimum and maximum values 

allowed. They were included in the utility function as follows: 

 

       21

2
U k Q k V k ra k   (29) 

 

Here ra(k) is a kind of “punishment” signal in the case when calculated by ESN control action 

is outside allowed interval [amin, amax] as follows: 

 

 
    

    

,

,

min min

max max

a a k a k a
ra k

a k a a k a

  
 

 

 (30) 

 

For the ESN critic training and simulation a Matlab toolbox from [7] with our improvements 

for IP training as in [25] was used. The critic network has 9 inputs (6 for the process state 

variables plus 3 for the control actions), 10 reservoir neurons and 1 output. The action 

networks have one input, one output and 5 neurons in the reservoir each. All reservoir neurons 

have hyperbolic tangent output function. The initial set point profiles were taken from [11]. 

Detailed optimization algorithm can be found in [12]. It consists of consecutive critic and 

actor training iterations. Here for comparative purpose simple gradient algorithm without any 

improvement (such as momentum term or variable speed) was used. After every cycle of a 

critic plus an action training iteration parameter  is slightly increased until it become equal  

to 0.5. During first 1000 iterations  reaches its maximal value and within the rest of  

200 iterations it was constant. Since in previous work [15] it was observed that the procedure 

is too sensitive to big changes in discount factor, here a small step of 0.001 was used. 

 

In [16] it was observed that although at the beginning the gradient algorithm looks faster and 

it reaches bigger utility values in comparison with the associative one, by the end of iterations 

associative algorithm gives bigger outcome in comparison with the gradient one. Looking at 

convergence speed it seems almost the same for both algorithms especially after discount 

factor reaches its maximum value. Further improvement of both algorithms could be achieved 

by using variable learning rate that will allow preventing observed now big variations of the 

utility values during iterations. In both cases the trained actors have stable work. There was 

not observed uncontrolled increase of trained weights ‒ a problem that was observed in the 

case of RLS training procedure before. 

 

Fig. 3 presents time trends of all process state variables obtained with different control 

policies: the defined by experts strategy [28], starting point of both optimization algorithms 

and achieved after optimization using gradient and heuristic training of ESN controllers.  

On Fig. 4 the corresponding time profiles of the three control variables are presented. Fig. 5 

presents achieved in these four cases utility by the end of the process. 
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Fig. 3 Time trends of the process state variables 
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Fig. 4 Obtained time profiles of the control variables 
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Fig. 5 Achieved utility value with four compared approaches 

 

Looking at Fig. 3 we observe that the key intermediate product (lactate) is closer to its optimal 

value determined by experts in the case of gradient optimization approach while in the case of 

heuristic optimization its final value is lower. This led to lower concentrations of the first 

microorganism while the concentration of the second reaches approximately the same level as 

in the case of expert control approach. This effect can be explained by the lower sugar 

concentrations maintained by both optimization strategies in comparison to the expert 

strategy. However we observe that both optimization strategies are able to maintain 

approximately constant value of lactate at the second stage of the process than could allow 

longer cultivation time. In contrast the expert strategy led to undesired increase of lactate by 

the end of process that could suppress growth of both strains in future. 

 

Both optimization control policies maintain higher nitrogen source concentrations at the 

second stage of the process. This can explain the fact that although the final PHB outcome is 

lower in the case of optimization strategies, its increase starts earlier than in the case of expert 

control and the concentration of PHB stays higher until about 25-th hour of cultivation when 

the expert strategy becomes more favorable. 

 

Looking at Fig. 4, we observe that while expert strategy prescribes gradual decrease of sugar 

concentration after inoculation of the second strain at 4-th hour of cultivation, the 

optimization strategies try to maintain this concentration higher longer. However after  

18-th hour both gradient and heuristic optimizations prescribe lowest possible sugar 

concentration to be maintained. 

 

Concerning the nitrogen concentration, both optimization decisions are to decrease it almost 

immediately after inoculation of the second strain but they maintain it at higher value during 

the rest of the process in comparison with the expert strategy. In contrast the expert strategy 

prescribes to keep nitrogen source at its maximal value during 14-th hour of cultivation and 

then to keep it as low as possible. 

 

While the experts prescribe to increase from time to keep dissolved oxygen concentration low 

after inoculation of the second strain and to increase it only from time to time during second 

stage of the process, both optimization strategies prescribe gradual decrease of dissolved 

oxygen in the broth reaching its minimal value at 18-th hour. 
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Observed accumulated utility during overall process (Fig. 5) shows that both optimization 

strategies give increased productivity in comparison to their starting point that is slightly 

higher than in the case of expert control strategy. We also observed that heuristic approach 

outperforms the gradient algorithm achieving highest total outcome of the process. 

 

Conclusion 
The carried out simulation investigations showed that both gradient and associative learning 

algorithms fit well to training of the ESN structure having the role of the controllers within 

ACD scheme. Although results did not show significant differences in the achieved results, 

associative learning can be consider as the better algorithm due to the following reasons: first 

it is more biologically plausible and second it seems that during the iterations it showed 

slightly smaller variations of the utility function and better convergence characteristics in 

comparison with the gradient algorithm. 

 

Concerning the obtained results for the PHB production process, both optimization strategies 

showed comparative performance with the expert control strategy. The main difference is in 

prescribed higher concentrations of the nitrogen source during second stage of the process and 

maintained lower glucose concentrations during this stage. It seems that these approaches will 

allow longer cultivation with possible better outcome at the end of the process.  

The investigations in this direction will be our next aim. 
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