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Abstract: There are many operon prediction models, but few methods can be applied to the 

operon prediction of new sequencing species effectively. In this paper, an operon prediction 

model based on Markov clustering algorithm is proposed. The model uses some generic 

attribute information of genomes and graph clustering algorithm instead of classifier to 

predict operon. Similarly to most operon prediction models, E. coli K12 and B. subtilis  

str. 168 were used to assess the prediction capability of the proposed model, the experiment 

results show that the proposed model has better capability of operon prediction than some 

other classical operon prediction methods. 

 

Keywords: Operon Prediction, Markov Clustering Algorithm, Generic Attribute, Graph 

Clustering. 

 

Introduction 
With the booming of the human genome project, bioinformatics is developing rapidly. In this 

process, people have realized that the construction of gene expression regulatory network is the 

key to reveal the mystery of life. Prediction of operon as a predictive gene expression regulatory 

network has attracted wide attention from researchers [2, 5, 8]. 

 

The concept of operon comes from the theory of protein synthesis regulatory mechanism 

proposed by Yaniv [16]. The theory indicates that operon is a basic unit related to transcription. 

Its characteristics mainly include: 

1) One operator contains one or more genes, and its transcription direction is consistent. 

2) The distance between adjacent genes in operon is less than that between different operon 

genes. 

3) There is a promoter in the upstream of an operon, and there is a terminator in 

downstream, and there is usually no promoter or terminator inside it. 

4) The genes in the operon are functionally related and belong to the same functional 

classification. 

 

The prediction of the operon can provide reference for people to recognize and construct 

biochemical and metabolic networks [10], and provide information for the study of 

biopharmaceuticals, protein functions and regulatory mechanisms. 
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The bioinformatics methods for operon prediction can be classified into two categories: training 

set method and independent training set method. Training set method mainly includes neural 

network method and machine learning method. Neural network has nonlinear transformation 

function. In the prediction of operon, the required data source can be extracted from the known 

operon. Each data source is used as input sample to train the neural network after processing. 

The trained network was applied to the genome studied and the operon of the genome was 

predicted. Radakovits et al. [14] use neural network to train each data source, and the prediction 

results are more accurate than the single data sources. But the neural network of the single 

hidden layer is less capable of dealing with the nonlinear separable classification problem.  

In general, the combination of multiple sources makes the problem not linearly separable, so it 

is necessary to further improve the network structure to get better results. Machine learning 

algorithm also plays an important role in operon prediction. Zaidi and Zhang [17] used naive 

Bayes network to predict operon, and combined with dynamic programming algorithm to 

improve prediction accuracy and sensitivity. Du et al. [4] apply Markov model to predict operon. 

Neural network algorithm and machine learning algorithm are trained by training set, 

combining multiple data sources instead of simple linear superposition, so the sensitivity of 

prediction results is improved. But they all rely too much on data sets, it makes the algorithm 

less universal. 

 

Comparative genomic approach is a common independent training set method. The method is 

based on the following hypothesis: if a series of sequences and functions can be preserved in 

the genome, the reorganized gene may be in the same operon. Radakovits et al. [14] find the 

conservative gene pairs by comparison of the genome in the process of prediction, and divide 

the results according to certain rules. The forecast results are arranged in order according to the 

score. The comparative genome approach is less dependent on the experimental data and the 

training set, but it loses the unique information on the genome, which affects the sensitivity of 

the algorithm. Genetic algorithm can simulate the process of biological evolution and find the 

optimal solution or quasi optimal solution of the problem domain [18, 19]. In the prediction of 

operon, the combination of genetic algorithm and other intelligent computing methods can 

improve the prediction accuracy. Jacob et al. [7] used the data sources such as inter-genic 

distance, metabolic network, conservative gene pair and gene function annotation, combining 

genetic algorithm with fuzzy rules, to cluster all the genes according to certain rules. The operon 

prediction using genetic algorithm is not dependent on the training set, and it is intelligent to 

cluster the characteristics of the gene cluster operon, and the accuracy and sensitivity are better, 

but the definition of the fitness function is more complex. 

 

Operon prediction related attribute information 
We can use one or more genome information to predict operon. Generally speaking, the more 

types of function and attribute information are used, the better prediction results can be achieved. 

But more attribute information does not necessarily have a better prediction effect. Therefore, 

the right choice of attribute information has an important influence on the prediction effect of 

operon. The common attribute information which used to predict operon is as follows. 

 

Inter-genic distance 
Inter-genic distance is one of the common attributes of operon prediction [6, 9, 12]. The inter-

genic distance is the distance between two genes in a genome sequence, usually is the number 

of base pairs with two genes. The inter-genic distance can be accurately calculated based on the 

location and termination position of genes in genome annotation information. The inter-genic 

distance between neighborhood genes ag  and bg  can be defined as follows: 
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     d , 1a b b ag g s g e g   , 

 

where ag  and bg  are two neighborhood genes,  bs g  and  ae g  denote the starting position 

and ending position of gene g respectively.  d ,a bg g  represents the distance between gene ag

and gene bg . 

 

Conserved genes clusters 
Previous studies have shown that genes belonging to the same operon are conserved among 

multiple genomes [1, 3]. Conserved gene pairs refer to two neighborhood genes x1 and y1 on 

the same chain of biological genomes. If there is another two neighborhood genes x2 and y2 on 

the same chain as the comparative genome, and the sequence similarity between gene x1 and 

x2, gene y1 and y2 meets the requirements. At the same time, the similarity between them is 

higher than that between x1 and y1, x2 and y2, so x1 and y1 have conserved gene pairs in this 

comparative genome. Fig. 1 is an example of a conserved gene cluster between Genome X and 

Genome Y1 to Yn. 

 

 
Fig. 1 Schematic diagram of conserved genes clusters 

 

In this example, the Genome X has 16 genes. At the same time, the Genome Y1 to Yn also 

contains 16 genes. There are 14 orthologous genes between Genome X and Y1.  

These orthologous genes belong to 4 conserved gene clusters. Gene cluster x1x2x3x4 and 

y1y2y3y4 constitute the identical conservative gene cluster. 

 

Phylogenetic spectrum 
The phylogenetic spectrum of a gene is a binary string, and the phylogenetic spectrum of the 

genome is a binary matrix. Each location of the matrix indicates whether the gene of the row 

has similar genes in the genome of the column. If there is a similar gene, the location is 1.  

If there is no similar gene, the location is 0. 

 

Phylogenetic spectrum can provide information of homologous genes in evolution, it can reflect 

the similarity of gene function classification and metabolic pathway. Fig. 2 shows the 

phylogenetic spectrum of species. Species II, III and IV are genomes for comparative analysis. 

As shown in Fig. 2, the phylogenetic relationship of gene gc  and gd  in species I is exactly the 
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same, so their functional classification and metabolic pathways may also have high correlation, 

and they are most likely to belong to the same operon. 

 

 
Fig. 2 Simple phylogenetic spectrum 

 

Operon prediction model based on graph clustering method 

Model description 
Using data from existing databases, operons of newly sequenced species can be effectively 

predicted. However, only a few researchers have proposed methods that can be effectively 

applied to the operon prediction of newly sequenced species. Due to the use of inter-genomic 

specific attribute information and over-fitting classifiers, most current methods do not have 

good generalization capabilities for operon prediction of new species. In the paper, we propose 

a graph clustering model using Markov clustering algorithm for operon prediction. The model 

uses some generic attribute information of the genome while using a clustering algorithm 

instead of a classifier. The model performs clustering operations based on four kinds of attribute 

information: inter-genic distances, conserved gene clusters, gene ontology similarities, and 

minimum free energy of inter-genic sequences. The model differs from the existing operon 

prediction models and methods in that gene clusters are used to perform operon predictions in 

place of existing neighboring gene pairs.  

 

Genes belonging to the same operon have the same transcription direction and shorter inter-

genic distances. Therefore, the genes on the same strand are firstly processed and operon 

candidate gene clusters are generated according to the inter-genic distance. Then the four kinds 

of attribute information of gene pair distances, conserved gene clusters, gene ontology 

similarities, and minimum free energy of inter-genic sequences in each gene cluster were 

calculated. Afterwards, four kinds of attribute information values of gene pairs in each gene 

cluster are processed using log-likelihood scores. Finally, the final operon information is 

obtained from the candidate operon cluster using the Markov clustering algorithm.  

As with most operon prediction methods, the microbial E. coli K12 and B. subtilis str. 168 were 

used evaluations to propose the model's ability to predict in a single genome. The results showed 

that the average sensitivity, specificity, and accuracy were 92.9%, 90.2%, 91.7%, and 89.9%, 

88.4%, and 89.1%, respectively. Experimental results show that the proposed model can 

effectively predict operons, and the prediction ability is better than other common operon 

prediction programs such as JPOP [14], OFS [15], MA-GA [13]. Although the predicted results 

are slightly different from the single-genome test on E. coli and B. subtilis by using specific and 

global genomic information, the method has better generalization ability in multi-species cross-
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validation. For example, using a constructed model to perform tests on P. furiosus is better than 

other existing methods. The test results show that operon prediction model not only has a good 

effect in single species testing, but also can obtain effective results in new species.  

 

Model specific process 
The operon can be considered as a special gene cluster, so the genome is divided into candidate 

operon clusters using special rules. In the previous related studies, a gene clustering method 

based on positive and negative strands was proposed. The method generates candidate operon 

gene clusters by dividing adjacent genes on the same strand into the same gene cluster.  

The advantages of this method are simple and fast. However, the DBTBS database shows that 

the inter-genic sequences within one operon of B. subtilis may contain other operons on the 

corresponding genomic strand. For example, sigA, dnaG, antE, and yqxD are the four genes in 

the genome. Their positions in the genome are - - + -, where “+” denotes the positive strand and 

“-”denotes the negative strand. In B. subtilis, sigA, dnaG, and yqxD belong to the same operon. 

Obviously, it can be seen that the use of positive and negative strands for gene clustering does 

not correctly predict this type of operon. 

 

In the paper, a novel method for generating operon candidate gene clusters using inter-genic 

distances is proposed. Since the operon is a transcription unit, genes within one operon are 

expected to be closer to each other. From existing operon databases, such as RegulonDB, 

DBTBS and DOOR, it can be found that the inter-genic distances of neighboring gene pairs 

within all operons are less than 600 bp. Obviously, the attribute is very important for operon 

prediction.  

 

After obtaining the log-likelihood scores of the four kind of attribute information in all 

candidate operon gene clusters, the weight of each attribute is set to 1, and then the four 

attributes are input into the Markov clustering algorithm to predict the final operators.  

In experiment, the expansion rate and expansion rate of the Markov clustering algorithm were 

set to 2 and 1.2, respectively. Fig. 3 is a schematic diagram of operon prediction using the 

Markov clustering algorithm.  

 

 
Fig. 3 A schematic diagram of the operon prediction in Markov clustering algorithm 

 

The vertices in Fig. 3 represent genes, and the edges represent the relationships between genes. 

Fig. 3(a) shows the relationship between genes in a hypothetical candidate operon cluster.  
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Fig. 3(b) shows predicted operon results using the Markov clustering algorithm for this putative 

gene cluster.  

 

Experimental results and analysis 
Matlab is used to implement and simulate the proposed model. The effectiveness of the operon 

prediction verification algorithm was tested by using predictive models on three species,  

E. coli K12, B. subtilis, and P. furiosus. It verifies the performance of the operon method 

proposed in this paper. The model uses a graph clustering algorithm instead of the commonly 

used classifier for operon prediction. However, log-likelihood fractions are based on species, 

so single-species experiments and cross-species experiments were performed to verify the 

validity of the proposed algorithm. The corresponding operon information for E. coli is obtained 

from the RegulonDB database. The corresponding operon information for B. subtilis was 

obtained from the DBTBS database. The data of micrococcus assays for Pyrococcus were 

derived from published studies [11]. Therefore, E. coli and B. subtilis were used as predictive 

species in a single species experiment, and the above three species were used as predicted 

species in a cross experiment. 

 

The role of four kinds of attribute information 
In order to evaluate the effects of the four genomes attribute information, the frequency 

distributions of operon pairs and transcription unit boundaries on different inter-genic distances, 

different numbers of conserved gene clusters, different gene ontologies similarity scores, and 

different minimum free energies were counted. It is estimated that operon pairs will have 

smaller inter-genic distances, greater numbers of conserved gene clusters, higher oncogene 

functional similarities, and greater inter-gene sequence minimum free energy than 

transcriptional unit boundary pairs. 

 

Fig. 4 shows the distribution frequency of the operon pairs and transcription unit boundary pairs 

under different gene distances.  

 

 

Fig. 4 Frequency distribution under different gene distances 

 

From Fig. 4, it can be found that the inter-genic distances of most operon pairs are between  

-10 bp and 20 bp, while at the same time the distance between most transcription unit 

boundaries is greater than 50 bp. 

 

Fig. 5 shows the distribution frequency of operon pairs and transcription unit boundary pairs 

under different conserved gene cluster numbers. 
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Fig. 5 Frequency distribution under different conserved gene cluster numbers 

 

From Fig. 5, it can be found that the operon pair has a very high number of conserved gene 

clusters and the number of conserved gene clusters at the transcriptional cell boundary pair is 

small. Therefore, the number of conserved gene clusters can correctly determine whether two 

gene pairs belong to one operon. 

 

Fig. 6 shows the distribution frequency of operon pairs and transcription unit boundary pairs 

under different gene ontology similarity scores. 

 

 

Fig. 6 Frequency distribution under different gene ontology similarity scores 

 

From Fig. 6, it can be found that the gene ontology similarity score of most operon pairs is 

greater than 3, but the gene ontology similarity score of most transcription unit boundary pairs 

is less than 3.  

 

Fig. 7 shows the distribution frequency of operon pairs and transcription unit boundary pairs 

under different inter-gene sequence minimum free energies. From Fig. 7, it can be found that 

the minimum free energy of the inter-genic sequences of most operon pairs is greater than -4, 

but the minimum free energy of the inter-genic sequences of most transcription unit boundaries 

is less than -4. 
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Fig. 7 Frequency distribution under different inter-gene sequence minimum free energies 

 

Single species validation 
In the process of validation, the prior probability of the log-likelihood score is calculated by the 

predicted species itself. Half of the species’ operators were used to calculate log-likelihood 

scores, while the other half of the operons was used to evaluate the effects of operon predictions. 

The predicted average sensitivity, specificity and accuracy in E. coli and B. subtilis were 91.3%, 

90.5%, 92.3% and 88.7%, 87.8%, and 89.6%, respectively. In order to compare with existing 

algorithms, the two species were predicted using the existing JPOP, OFS, MA-GA and specific 

and global genomic information methods. The prediction results are shown in Table 1 and  

Table 2.  

 

Table 1. Five methods for validation of single species on E. coli 

Prediction method Sensitivity Specificity Accuracy 

JPOP 84.8% 83.5% 84.7% 

OFS 85.9% 84.6% 85.5% 

MA-GA 88.7% 83.2% 86.2% 

UGSGG 92.6% 91.7% 92.6% 

The proposed model 91.3% 90.5% 92.3% 

 

Table 2. Five methods for validation of single species on B. subtilis 

Prediction method Sensitivity Specificity Accuracy 

JPOP 84.2% 80.7% 83.1% 

OFS 85.1% 80.6% 83.7% 

MA-GA 87.2% 87.8% 87.3% 

UGSGG 90.1% 88.5% 90.3% 

The proposed model 88.7% 87.8% 89.6% 

 

It can be seen from Table 1 and Table 2, the average sensitivity, specificity, and accuracy of 

the proposed model are better than JPOP, OFS, and MA-GA. The results of the prediction are 

slightly different than the effects of single genome tests predicted using E. coli and B. subtilis 

using specific and global genomic information methods. It may be due to the fact that our 

proposed model doesn’t use a classifier. In the paper, log-likelihood scores are used to train 

operon predictions using genomic information from the same species as a training set. 
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Multi-species validation 
In the process of validation, the prior probability of the log-likelihood score was calculated 

from species different from the predicted species. The prior probability used to predict the log-

likelihood fraction of the E. coli operon was calculated from B. subtilis, whereas the calculation 

method was the same. The average sensitivity, specificity, and accuracy of species crossover 

prediction in E. coli and B. subtilis were 90.6%, 91.1%, 91.3%, and 83.8%, 88.6%, and 86.8%, 

respectively. The operon prediction algorithm was also validated on the new genome. However, 

in addition to E. coli and B. subtilis, due to the lack of information on known operons from 

other species, gene chip-validated Pyrococcus operon information was used to validate the 

proposed method's ability to predict new species. The average sensitivity, specificity, and 

accuracy of the three methods for E. coli, B. subtilis, and P. aureus are shown in Table 3,  

Table 4, and Table 5.  

 

Table 3. Prediction results of species cross validation operon on E. coli 

Prediction method Sensitivity Specificity Accuracy 

OFS 86.2% 91.3% 88.2% 

UGSGG 88.5% 91.8% 90.2% 

The proposed model 90.6% 91.1% 91.3% 

 

Table 4. Prediction results of species cross validation operon on B. subtilis 

Prediction method Sensitivity Specificity Accuracy 

OFS 90.8% 83.1% 81.1% 

UGSGG 80.2% 86.3% 82.3% 

The proposed model 83.8% 88.6% 86.8% 

 

Table 5. Prediction results of species cross validation operon on P. aureus 

Prediction method Sensitivity Specificity Accuracy 

OFS 75.3% 77.2% 76.2% 

UGSGG 87.5% 73.2% 82.5% 

The proposed modela 87.9% 81.5% 82.9% 

The proposed modelb 88.7% 82.6% 85.9% 
a log-likelihood fraction calculation from E. coli 
b log-likelihood fraction calculation from B. subtilis 

 

From Tables 3-5, it can be seen that the average sensitivity, specificity, and accuracy of the 

proposed model prediction results are better than OFS and the use of specific and global 

genomic information methods. The experimental results prove that our proposed operon 

prediction model has strong capabilities for the operon prediction of new species. The effect of 

the prediction is better than the existing OFS methods and the use of specific and global 

genomic information methods. 

 

In order to further evaluate the effectiveness of the proposed operon prediction model, the 

results of operon prediction using single attribute information and using all four information 

about attribute were compared. Fig. 8 shows the ROC curve for operon prediction using the 

single attribute and all four information about attribute in three species.  
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Fig. 8 ROC curve of using a single attribute and all attributes  

(a) E. coli; (b) B. subtilis; (c) P. aureus 

 

It can be seen from the Fig. 8, the information for operon prediction results using of all attribute 

information much better than using a single attribute information operator to predict the results. 

Using the inter-genic distance alone as the attribute information to perform operon predictions 

is better than using other properties alone. Therefore, two genes are closely related to the 

distance between genes and whether they belong to one operon. In later studies, the coefficient 

can be increased appropriately. 

 

Conclusion 
The operon is the basic transcription unit in the microbial complex biological process.  

It provides much valuable information on biopharmaceuticals, protein functions, and biological 
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regulation mechanisms. In this paper an operon prediction model based on graph clustering 

algorithm is proposed. The model is based on the Markov clustering algorithm and uses the 

inter-gene distance, conserved gene clusters, gene ontology similarity, and minimum free 

energy information of inter-gene sequences for operon prediction. The model differs from the 

existing operon prediction model and method in that gene clusters are used instead of existing 

neighboring gene pairs, and graph clustering algorithms are used in place of currently used 

classifiers for operon prediction. Experimental results show that the model can effectively 

predict operons, and the prediction ability is better than other common operon prediction 

methods such as JPOP, OFS, and MA-GA. 
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