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Abstract: This paper proposes the design and the implementation of a Spark parallelization 

plan for improving the Smith-Waterman (SW) algorithm, named the Spark-OSW algorithm. 

Then, the Spark-OSW was verified through accuracy, performance and acceleration tests. The 

results show that the proposed algorithm achieved 100% accuracy, ran much faster than the 

SW, and performed well in cluster environment. The research findings shed important new 

light on the database search for gene sequences. 
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Introduction 
As an essential operation in bioinformatics, sequence alignment has immense popularity in 

many fields, ranging from disease diagnosis, drug engineering to biomaterial engineering [1]. 

Smith-Waterman (SW) algorithm is a commonly used approach of sequence alignment, thanks 

to its high accuracy. Nevertheless, this pairwise sequence alignment algorithm is too complex 

in space and time to achieve desirable computing results. This defect is magnified with the rapid 

growth of reference databases and long sequence alignment. 

 

Many techniques have been implemented to optimize the SW algorithm, such as graphic 

processing unit (GPU) [5, 7, 8, 11-13], message passing interface (MPI) [17], cluster [3, 4, 9], 

single instruction multiple data (SIMD) [2, 16, 18], field programmable gate array (FPGA) [14], 

etc. [20]. However, none of these optimized SW algorithms can fully satisfy the sequence 

alignment demand in the big data era, owing to the defect in algorithm parallelization. 

 

With the development of big data technology, more and more scholars are now using Hadoop 

[15] and Spark technology to achieve algorithm parallelization. Despite its advantages in 

computing speed and big data processing, the Spark technology, with its root in memory 
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computing, has not been widely adopted by biologists for parallelizing sequence alignment 

algorithms.  

 

Zhao et al. [18] were the first to implement the SW algorithm in the distributed computing 

framework on Apache Spark. The implementation managed to improve the system speed and 

calculate the similar sequences, but failed to achieve a high applicability or optimize the local 

alignment.  

 

Xu et al. [16] relied on the Spark to enable the SW-based SIMD in a horizontally scalable 

distributed environment, and successfully calculated the most similar sequences; however, this 

attempt could not solve the exact local optimal alignment, and the SIMD command set is 

featured by high complexity and low code portability. 

 

In light of the above, this paper proposes the design and the implementation of a Spark 

parallelization plan for improving the SW algorithm, named the Spark-OSW algorithm.  

Then, the Spark-OSW was verified through experiments. The results show that this algorithm 

enjoys low time complexity, fast speed, light computing load and good performance. 

 

The paper is organized as follows: Section 2 presents a review the literature on the SW and the 

Spark. Section 3 presents an improvement of the SW algorithm. In Section 4 the parallelization 

of SW algorithm on Spark platform is described and the Spark-OSW algorithm is introduced. 

Section 5 presents some tests of the accuracy of Spark-OSW algorithm and discusses the 

experimental results. In Section 6 several conclusions are done. 

 

Literature review 

Smith-Waterman algorithm 
The SW algorithm is a dynamic programming strategy looking for the local optimal alignment 

between two gene (protein) sequences. Originating from the Needleman-Wunsch algorithm, the 

SW algorithm mainly performs double sequence alignment in the local range. This algorithm 

can outperform others in the accuracy of double and multiple sequence alignments at the price 

of extremely high complexity in space and time. 

 

Let s and t be two gene sequences (Fig. 1), whose lengths are m and n, respectively. Then, the 

i-th character of sequence s can be denoted as   (1, ) is i m  and the j-th character of sequence 

t can be denoted as , (1 )jt j n  . 

 

 

Fig. 1 Gene sequences s and t 

 

 

Let D be the score matrix (Fig. 2) of the two sequences, and 
ijd  be the element in the i-th row 

and j-th column of the score matrix. 
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Fig. 2 Score matrix D 

 

The SW algorithm is implemented in the following steps: 
 

(1) Initialization: Assign zero to the element in the first row and first column of score matrix D, 

that is,
0  0, (1 )jd j n    and 0 0, (1 )id i m    (Fig. 3) 

 

 

Fig. 3 Initialization of the element as zero in the first row and first column 

 

(2) Calculation of score matrix D: The score function of score matrix D can be expressed as: 
 

( , )  1 

( , )   0, (     )

( , -)    (-, )   -1

p a a

p a b a b

p a p b




 
  

, (1) 

 

where ( , )  1 p a a   means the score is 1 when the two characters match; ( , ) 0, ( )p a b a b   

means the score is 0 when the two characters do not match; ( ,-) ( ,-) -1p a p b   means the 

score is -1 when one of the two characters is vacant. 

 

The element 
ijd  in score matrix D can be calculated as: 
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. (2) 

Calculate the value of each element 
ijd  in the score matrix according to Eqs. (1) and (2) to form 

the score matrix D. 

 

(3) Backtracking: Find the largest element 
ijd  in score matrix D, determine whether 

ijd  is 

calculated from 
, -1i jd , 

-1,i jd  or 
-1, -1  i jd , and write down the result. Repeat this process until 

reaching an element whose value is zero. In this way, a backtracking path can be obtained  

(Fig. 4). 

 

 

Fig. 4 Backtracking path 
 

(4) Solving local optimal alignment: Starting with the largest element 
ijd  of score matrix D, 

search for the local optimal alignment through reverse backtracking according to the path 

generated in Step 3 until reaching an element whose value is zero. During the backtracking 

process, if 
ijd  comes from 

-1,i jd , compare is  with “-”; if 
ijd  comes from 

, -1i jd , compare “-” 

with 
jt ; if 

ijd  comes from 
-1, -1  i jd , compare is  with 

jt . 

 

The Spark 
The Spark is a fast, versatile and highly open cluster computing platform [19]. The memory-

based feature of Spark increases the speed of some applications by 100 times [6]. The design 

of this platform accommodates the functions of many other distributed systems, including batch 

processing, iterative computing, inter-query (Hive) and stream processing (Strom). Moreover, 

the Spark provides various interfaces in addition to the common application programming 

interfaces (APIs) for Python, Java, Scala, and Structured Query Language (SQL). The Spark 

integrates well with Hadoop, Kafka and other big data tools [6]. With the adoption of 

MapReduce, this platform boasts all the advantages of Hadoop, a typical distributed computing 

framework. More importantly, Spark is memory-based, that is, the intermediate computing 

result is stored in the memory, eliminating the need to transfer the result to hard drive.  
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This feature reduces the time consumed in the input and output processes. Therefore, the Spark 

outperforms Hadoop in the quantity and quality of big data processing. 

 

The modules of the Spark are shown in Fig. 5. 

 

 

Fig. 5 The modules of the Spark [6]  

 

As shown in Fig. 5, the Spark mainly consists of the Spark Score, Spark SQL, Spark Streaming, 

Mlib, Graphx and Cluster Manager. Specifically, the Spark Score contains the basic function 

of the Spark and defines the API for Spark programming. The main programming abstraction 

of Spark is Resilient Distributed Datasets (RDD) [10]. Similar to Hive SQL and MySQL, Spark 

SQL is a library for Spark to process structured databases. Spark Streaming is real-time data 

stream processing module. Similar to Strom, this module provides an API to process real-time 

streaming data. The Mlib is a package containing general machine learning features  

(e.g., classification, clustering and regression), model evaluation, data import and so on.  

The Graphx is a library that processes graphs and performs parallel graph calculations.  

Like Spark Streaming and Spark SQL, the Graphx inherits the RDD API, offers various graph 

operations and provides common graph algorithms (e.g., the Pang Rank algorithm).  

The Cluster Manager is a separate scheduler in the Spark for cluster management. 

 

Improvement of the Smith-Waterman algorithm 
In recent years, Li et al. [9] made an improvement to the SW algorithm by recording the source 

of element 
ijd  when its value is calculated, eliminating the need to compute its value in source 

tracking of Step. The improved algorithm has much less computing load than the original 

algorithm. 

 

Inspired by Li’s modification [9], this paper proposes the Opti-SW algorithm to reduce the load 

and complexity of the computation. Specifically, the first two rows and columns of the score 

matrix were initialized simultaneously and the calculation of the score matrix formula was 

simplified. The workflow of the Opti-SW algorithm is shown in Fig. 6. 

 

Design of Spark-OSW algorithm 
In light of the features of the Spark platform and the steps of the Opti-SW, the author prepared 

a plan to parallelize the Opti-SW algorithm on the Spark (Spark-OSW). Following this plan, 

the Spark-OSW algorithm calculates the score matrix, sorts the scores, selects the score matrix 

and solves the optimal alignment. The computing load is positively correlated with the data 

size, because the local optimal alignment is solved with only a part of the score matrix. 

 

Workflow of Spark-OSW 
The workflow of the Spark-OSW is illustrated in Fig. 7. 
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Fig. 6 Flowchart of Opti-SW algorithm 
 

 

Fig. 7 Flowchart of Spark-OSW 
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Details of Spark-OSW 
 

(1) The first round of Map task 
 

Pair RDD1 = Pair RDD0.map()// map() function. The main task is illustrated in Steps 2-5. 

 

Step 1: Spark’s textFile() function reads the query sequence in Hadoop distributed file system 

(HDFS) to generate Pair RDD0. Complete Steps 2-5 after creating the query sequence and all 

sequence scores in the database. 

 

Step 2: Initialize the first column and the first row. Initialize the first row and the first column 

elements of the score matrix, respectively, 
0  0, (1 )jd j n    and 0  0, (1 )id i m    as zero. 

 

Step 3: Initialize the second row and second column. Initialize the second row and second 

column elements of the score matrix by improved equation and record the number of the 

element source. 

Note: The elements 
1 jd  in the second row comes from 

0, -1   ), (1jd j n  , while those 1id  

in the second column comes from 
-1,0 ( ), 1id i m  . The 

,i jd  from 
-1,i jd , 

, -1i jd  and 
-1, -1i jd  

are numbered as 1, 2 and 3, respectively. These numbers are always assigned as above in 

the following analysis. 

 

Step 4: Calculate the score matrix. Calculate the score matrix D according to improved equation 

and record the number of the element source. 

 

Step 5: Traverse the score matrix to obtain the alignment score maxScore and return Pair RDD1 

<maxScore, eachDbSeqName>, where MaxScore is the value of the largest element in the 

matrix and EachDbSeqName is the name of the database sequence. 

 

(2) The first round of Reduce task 
 

Pair RDD2 = Pair RDD1.filter() // Pair RDD2 aims to return the sequence in Pair RDD1 that 

meets the score requirements. 

 

Pair RDD2.persist()/*Use the RDD.persist() function to persist the alignment score of the  

Map stage. 

Note: The Spark automatically recalculates each RDD during the operation; the 

RDD.persist() function can be used to cache an RDD if it is favorable to reuse the RDD in 

multiple operations. 

 

Pair RDD3 = Pair RDD2.sortByKey() // sort by alignment score. 

Pair RDD4 = Pair RDD3.take(topK) // return the top K sequences with the highest score. 

 

(3) The second round of Map task 
 

Pair RDD5 = Pair RDD4.map() // main task of map(): solving the local optimal alignment. 

 

Starting with the largest element ijd  of score matrix D, search for the local optimal alignment 

through reverse backtracking according to the path generated in Step 3 until reaching an element 

whose value is zero. During the backtracking process, if 
ijd  comes from 

-1,i jd , compare is  with 
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“-”; if 
ijd  comes from 

, -1i jd , compare “-” with 
jt ; if 

ijd comes from 
-1, -1i jd , compare is  with 

.jt  Pair RDD5 returns <eachDbSeqName, OptimalAlignment>, where eachDbSeqName is the 

sequence name and OptimalAlignment is the local optimal alignment. 

 

(4) The second round of Reduce task 

 

Pair RDD5.foreach(println) // RDD.foreach(): Output the comparison results. 

 

Experimental verification 

Accuracy tests 
The Spark-OSW algorithm was compared with the SW algorithm through tests in the Spark 

platform.  

 

The test data were extracted from the gene sequence database of the National Center for 

Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/). The input data of the 

Spark-OSW include: query sequence queryFile lengths of 2, 4, 8, 16, 32 and 64; database 

sequence dbFile length of 64, 32, 16, 8, 4 and 2; the number of fragments splitNum of 32;  

the number of tasks taskNum of 1; the number of top k outputs of 1; the comparison ratio 

(comparison score / query sequence length) * 100%) of identity is 0.0 (i.e., any sequence of 

comparison ratios may be outputted). 

 

The input data of the SW algorithm include: query sequence queryFile lengths of 2, 4, 8, 16, 32 

and 64; database sequence dbFile length of 64, 32, 16, 8, 4 and 2; the number of fragments 

splitNum of 32; the number of tasks taskNum of 1. 

 

Table 1 compares the test results of the two algorithms for different query sequences in different 

database sequences. 

 

As shown Table 1, the Spark-OSW algorithm and the SW algorithm both achieved the optimal 

local alignment under different sequences and comparison ratios, indicating that the  

Spark-OSW is also an accurate sequence alignment algorithm. 

 

Performance tests 
The Spark-OSW algorithm was further compared with the SW algorithm through performance 

tests on a single-node Spark platform.  

 

Table 1. Accuracy test results of the two algorithms 

Query 

sequence 

length 

Target 

sequence 

length 

Comparison ratio Is the optimal local 

contrast of the SW and 

Spark-OSW output 

consistent? 

Spark-OSW 

accuracy SW 
Spark-

OSW 

2 64 100% 100% √ 100% 

4 32 75% 75% √ 100% 

8 16 62.5% 62.5% √ 100% 

16 8 50% 50% √ 100% 

32 4 12.5% 12.5% √ 100% 

64 2 3.125% 3.125% √ 100% 

https://www.ncbi.nlm.nih.gov/
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The test data were extracted from the gene sequence database of the National Center for 

Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/). The input data of the 

Spark-OSW include: query sequence queryFile lengths of 48; database sequence dbFile size of 

10MB, 20MB, 40MB, 80MB and 160MB (txt. files); the number of fragments splitNum of 32; 

the number of tasks taskNum of 1; the comparison ratio (comparison score / query sequence 

length)*100%) of identity is 1.0 (i.e., any sequence of comparison ratios may be outputted). 

 

The input data of the SW algorithm include: query sequence queryFile lengths of 48; database 

sequence dbFile size of 10MB, 20MB, 40MB, 80MB and 160MB (txt. files); the number of 

fragments splitNum of 32; the number of tasks taskNum of 1. 

 

The test results are recorded in Fig. 8, where the mean rate (R) is calculated as (SW runtime- 

Spark-OSW runtime)/ Spark-OSW*100% and the size (S) is the size of the database sequence 

file. 

 

 
Fig. 8 Performance test results of the two algorithms 

 

It can be seen from Fig. 8 that, the rate of the Spark-OSW is positively correlated with the data 

size within a certain range, i.e., the greater the data, the shorter the Spark-OSW runtime  

(the greater the SW runtime). The Spark-OSW is clearly more efficient than the contrastive 

algorithm. The high efficiency of the Spark-OSW is attributed to the optimized parallelization 

plan, which reduces the computing load proportionally to the data size. 

 

Spark cluster tests 
The test data were extracted from the gene sequence database of the National Center for 

Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/). A gene sequence of the 

length 48 was selected as the query sequence while a txt file of the size 20MB, 40MB, 60MB, 

80MB, 100MB, 120MB, 140MB, 160MB, 180MB or 200MB was taken as the database 

sequence.  

 

The Spark-OSW and the SW were operated ten times in a single-node Spark cluster, an eight-

node Spark cluster, and a sixteen-node Spark cluster, respectively. The runtime of each 

algorithm under each condition is recorded as Figs. 9-11, where the Spark-OSW curve is the 

actual runtime of the Spark-OSW, the SW curve is the actual runtime of the OSW, the T-Spark-

OSW curve is the theoretical runtime of the Spark-OSW and the T-SW is the theoretical runtime 

of the SW. 

 

https://www.ncbi.nlm.nih.gov/
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Fig. 9 Runtime of each algorithm in a single-node Spark cluster 

 

 

Fig. 10 Runtime of each algorithm in an eight-node Spark cluster 

 

 

Fig. 11 Runtime of each algorithm in a sixteen-node Spark cluster 

 

Then, the two algorithms each performed acceleration ratio experiments in the eight-node Spark 

cluster and the sixteen-node Spark cluster, respectively. The results of the two algorithms are 

compared in Fig. 12. 
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Fig. 12 Results of acceleration test 

 

As shown in Fig. 12, the acceleration of the Spark-OSW remained in a certain range despite the 

growth of the data size. For this algorithm, the acceleration in the sixteen-node cluster was 

much faster than that in the eight-node cluster, revealing that the algorithm performance 

improves with the growth in the number of nodes. In theory, the acceleration should be 

proportional to the number of nodes. However, the acceleration did not reach eight in the eight-

node cluster or sixteen in the sixteen-node cluster, an evidence to the transmission loss between 

the nodes. 

 

Conclusions 
This paper proposes the design and the implementation of a Spark parallelization plan for 

improving the SW algorithm, creating the Spark-OSW algorithm. Then, the Spark-OSW was 

verified through accuracy, performance and acceleration tests. The results show that the 

proposed algorithm achieved 100% accuracy, ran much faster than the SW, and performed well 

in cluster environment. In addition, the speed improvement, i.e., runtime reduction, is more 

obvious with the growth in data size. 
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