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Abstract: This paper proposes the design and the implementation of a Spark parallelization
plan for improving the Smith-Waterman (SW) algorithm, named the Spark-OSW algorithm.
Then, the Spark-OSW was verified through accuracy, performance and acceleration tests. The
results show that the proposed algorithm achieved 100% accuracy, ran much faster than the
SW, and performed well in cluster environment. The research findings shed important new
light on the database search for gene sequences.
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Introduction

As an essential operation in bioinformatics, sequence alignment has immense popularity in
many fields, ranging from disease diagnosis, drug engineering to biomaterial engineering [1].
Smith-Waterman (SW) algorithm is a commonly used approach of sequence alignment, thanks
to its high accuracy. Nevertheless, this pairwise sequence alignment algorithm is too complex
in space and time to achieve desirable computing results. This defect is magnified with the rapid
growth of reference databases and long sequence alignment.

Many techniques have been implemented to optimize the SW algorithm, such as graphic
processing unit (GPU) [5, 7, 8, 11-13], message passing interface (MPI) [17], cluster [3, 4, 9],
single instruction multiple data (SIMD) [2, 16, 18], field programmable gate array (FPGA) [14],
etc. [20]. However, none of these optimized SW algorithms can fully satisfy the sequence
alignment demand in the big data era, owing to the defect in algorithm parallelization.

With the development of big data technology, more and more scholars are now using Hadoop

[15] and Spark technology to achieve algorithm parallelization. Despite its advantages in
computing speed and big data processing, the Spark technology, with its root in memory
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computing, has not been widely adopted by biologists for parallelizing sequence alignment
algorithms.

Zhao et al. [18] were the first to implement the SW algorithm in the distributed computing
framework on Apache Spark. The implementation managed to improve the system speed and
calculate the similar sequences, but failed to achieve a high applicability or optimize the local
alignment.

Xu et al. [16] relied on the Spark to enable the SW-based SIMD in a horizontally scalable
distributed environment, and successfully calculated the most similar sequences; however, this
attempt could not solve the exact local optimal alignment, and the SIMD command set is
featured by high complexity and low code portability.

In light of the above, this paper proposes the design and the implementation of a Spark
parallelization plan for improving the SW algorithm, named the Spark-OSW algorithm.
Then, the Spark-OSW was verified through experiments. The results show that this algorithm
enjoys low time complexity, fast speed, light computing load and good performance.

The paper is organized as follows: Section 2 presents a review the literature on the SW and the
Spark. Section 3 presents an improvement of the SW algorithm. In Section 4 the parallelization
of SW algorithm on Spark platform is described and the Spark-OSW algorithm is introduced.
Section 5 presents some tests of the accuracy of Spark-OSW algorithm and discusses the
experimental results. In Section 6 several conclusions are done.

Literature review

Smith-Waterman algorithm

The SW algorithm is a dynamic programming strategy looking for the local optimal alignment
between two gene (protein) sequences. Originating from the Needleman-Wunsch algorithm, the
SW algorithm mainly performs double sequence alignment in the local range. This algorithm
can outperform others in the accuracy of double and multiple sequence alignments at the price
of extremely high complexity in space and time.

Let s and t be two gene sequences (Fig. 1), whose lengths are m and n, respectively. Then, the
i-th character of sequence s can be denoted as s;, (1<i<m) and the j-th character of sequence

t can be denoted as t;, (1< j<n).

ss A AT¢=*»G-:*» CZC t: G T T+ A - C A
A S A A I A A S
S: 81 S8 83 *°* 8 *** Sy Spy tt oty g Gy

Fig. 1 Gene sequences s and t

Let D be the score matrix (Fig. 2) of the two sequences, and d; be the element in the i-th row
and j-th column of the score matrix.
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Fig. 2 Score matrix D
The SW algorithm is implemented in the following steps:

(1) Initialization: Assign zero to the element in the first row and first column of score matrix D,
thatis, d,; =0, (1< j<n) and d;; =0, 1<i<m) (Fig. 3)

Seqt: t t; ty ta
dpo=0 [dp=0|dp=0| - |dy=0| - |dgp1=0| dp=0 |firstrow
Seqs:s; | dy=0
52 dzq]F'D
85j diu:'n

Sm1 dm-l,ﬂ':'n

Sm | uo=0
first
column

Fig. 3 Initialization of the element as zero in the first row and first column

(2) Calculation of score matrix D: The score function of score matrix D can be expressed as:

p(a,a)=1
p(a,b)=0, (a=b) , 1)
p(a, ')= p(-,b)= -1

where p(a,a)=1 means the score is 1 when the two characters match; p(a,b) =0, (a=b)
means the score is 0 when the two characters do not match; p(a,-) = p(b,-) =-1 means the
score is -1 when one of the two characters is vacant.

The element d; in score matrix D can be calculated as:

119



@ Int.]. BIOAuTOMATION, 2019, 23(1), 117-129 doi: 10.7546/ijba.2019.23.1.117-129

di—l,j +p(si,-)
di,j-1+ p(':tj)
di-l,j-l + p(si’tj),
0
Calculate the value of each element d; in the score matrix according to Egs. (1) and (2) to form

the score matrix D.

d, = max L<i<m, 1<j<n). )

(3) Backtracking: Find the largest element d; in score matrix D, determine whether d; is
calculated from d, ;,, d,,; or d;,,,, and write down the result. Repeat this process until

reaching an element whose value is zero. In this way, a backtracking path can be obtained
(Fig. 4).
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Fig. 4 Backtracking path

(4) Solving local optimal alignment: Starting with the largest element d; of score matrix D,

search for the local optimal alignment through reverse backtracking according to the path
generated in Step 3 until reaching an element whose value is zero. During the backtracking
process, if d; comes from d,, ;, compare s; with “-”; if d; comes from d

3

i j1» compare

with t; if dij comes from di—l,j—l’ compare s; with t;.

The Spark

The Spark is a fast, versatile and highly open cluster computing platform [19]. The memory-
based feature of Spark increases the speed of some applications by 100 times [6]. The design
of this platform accommodates the functions of many other distributed systems, including batch
processing, iterative computing, inter-query (Hive) and stream processing (Strom). Moreover,
the Spark provides various interfaces in addition to the common application programming
interfaces (APIs) for Python, Java, Scala, and Structured Query Language (SQL). The Spark
integrates well with Hadoop, Kafka and other big data tools [6]. With the adoption of
MapReduce, this platform boasts all the advantages of Hadoop, a typical distributed computing
framework. More importantly, Spark is memory-based, that is, the intermediate computing
result is stored in the memory, eliminating the need to transfer the result to hard drive.
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This feature reduces the time consumed in the input and output processes. Therefore, the Spark
outperforms Hadoop in the quantity and quality of big data processing.

The modules of the Spark are shown in Fig. 5.

Spark SQL Spark Streaming Mlib Graphx

Spark Core

Independent Scheduler Yarn Mesos

Fig. 5 The modules of the Spark [6]

As shown in Fig. 5, the Spark mainly consists of the Spark Score, Spark SQL, Spark Streaming,
Mlib, Graphx and Cluster Manager. Specifically, the Spark Score contains the basic function
of the Spark and defines the API for Spark programming. The main programming abstraction
of Spark is Resilient Distributed Datasets (RDD) [10]. Similar to Hive SQL and MySQL, Spark
SQL is a library for Spark to process structured databases. Spark Streaming is real-time data
stream processing module. Similar to Strom, this module provides an API to process real-time
streaming data. The MIlib is a package containing general machine learning features
(e.g., classification, clustering and regression), model evaluation, data import and so on.
The Graphx is a library that processes graphs and performs parallel graph calculations.
Like Spark Streaming and Spark SQL, the Graphx inherits the RDD API, offers various graph
operations and provides common graph algorithms (e.g., the Pang Rank algorithm).
The Cluster Manager is a separate scheduler in the Spark for cluster management.

Improvement of the Smith-Waterman algorithm
In recent years, Li et al. [9] made an improvement to the SW algorithm by recording the source
of element d; when its value is calculated, eliminating the need to compute its value in source

tracking of Step. The improved algorithm has much less computing load than the original
algorithm.

Inspired by Li’s modification [9], this paper proposes the Opti-SW algorithm to reduce the load
and complexity of the computation. Specifically, the first two rows and columns of the score
matrix were initialized simultaneously and the calculation of the score matrix formula was
simplified. The workflow of the Opti-SW algorithm is shown in Fig. 6.

Design of Spark-OSW algorithm

In light of the features of the Spark platform and the steps of the Opti-SW, the author prepared
a plan to parallelize the Opti-SW algorithm on the Spark (Spark-OSW). Following this plan,
the Spark-OSW algorithm calculates the score matrix, sorts the scores, selects the score matrix
and solves the optimal alignment. The computing load is positively correlated with the data
size, because the local optimal alignment is solved with only a part of the score matrix.

Workflow of Spark-OSW
The workflow of the Spark-OSW is illustrated in Fig. 7.
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Fig. 6 Flowchart of Opti-SW algorithm
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Fig. 7 Flowchart of Spark-OSW
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Details of Spark-OSW

(1) The first round of Map task
Pair RDD1 = Pair RDDO0.map()// map() function. The main task is illustrated in Steps 2-5.

Step 1: Spark’s textFile() function reads the query sequence in Hadoop distributed file system
(HDFS) to generate Pair RDDO. Complete Steps 2-5 after creating the query sequence and all
sequence scores in the database.

Step 2: Initialize the first column and the first row. Initialize the first row and the first column
elements of the score matrix, respectively, d,; =0, (L< j<n) and d;; =0, (I<i<m) as zero.

Step 3: Initialize the second row and second column. Initialize the second row and second
column elements of the score matrix by improved equation and record the number of the
element source.
Note: The elements d,; in the second row comes from d, ;,, (L< j<n), while those d;
in the second column comes from d;,,, A<i<m). The d;; from d,, ;, d;;, and d;, ;,

are numbered as 1, 2 and 3, respectively. These numbers are always assigned as above in
the following analysis.

Step 4: Calculate the score matrix. Calculate the score matrix D according to improved equation
and record the number of the element source.

Step 5: Traverse the score matrix to obtain the alignment score maxScore and return Pair RDD1
<maxScore, eachDbSeqName>, where MaxScore is the value of the largest element in the
matrix and EachDbSegName is the name of the database sequence.

(2) The first round of Reduce task

Pair RDD2 = Pair RDD1. filter() // Pair RDD2 aims to return the sequence in Pair RDD1 that
meets the score requirements.

Pair RDD2.persist()/*Use the RDD.persist() function to persist the alignment score of the
Map stage.
Note: The Spark automatically recalculates each RDD during the operation; the
RDD.persist() function can be used to cache an RDD if it is favorable to reuse the RDD in
multiple operations.

Pair RDD3 = Pair RDD2.sortByKey() // sort by alignment score.
Pair RDD4 = Pair RDD3.take(topK) // return the top K sequences with the highest score.

(3) The second round of Map task

Pair RDDS = Pair RDD4.map() // main task of map(): solving the local optimal alignment.

Starting with the largest element d;; of score matrix D, search for the local optimal alignment

through reverse backtracking according to the path generated in Step 3 until reaching an element
whose value is zero. During the backtracking process, if d; comes from d,, ;, compare s; with
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“-7, if d; comes from d, ;,, compare “-” with t;; if d; comes from d,,;,, compare s; with
t;. Pair RDDS returns <eachDbSeqName, OptimalAlignment>, where eachDbSeqName is the

sequence name and OptimalAlignment is the local optimal alignment.
(4) The second round of Reduce task

Pair RDD5.foreach(println) // RDD.foreach(): Output the comparison results.

Experimental verification

Accuracy tests
The Spark-OSW algorithm was compared with the SW algorithm through tests in the Spark
platform.

The test data were extracted from the gene sequence database of the National Center for
Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/). The input data of the
Spark-OSW include: query sequence queryFile lengths of 2, 4, 8, 16, 32 and 64; database
sequence dbFile length of 64, 32, 16, 8, 4 and 2; the number of fragments spl/itNum of 32;
the number of tasks taskNum of 1; the number of top k& outputs of 1; the comparison ratio
(comparison score / query sequence length) * 100%) of identity is 0.0 (i.e., any sequence of
comparison ratios may be outputted).

The input data of the SW algorithm include: query sequence queryFile lengths of 2, 4, 8, 16, 32
and 64; database sequence dbFile length of 64, 32, 16, 8, 4 and 2; the number of fragments
splitNum of 32; the number of tasks taskNum of 1.

Table 1 compares the test results of the two algorithms for different query sequences in different
database sequences.

As shown Table 1, the Spark-OSW algorithm and the SW algorithm both achieved the optimal
local alignment under different sequences and comparison ratios, indicating that the
Spark-OSW is also an accurate sequence alignment algorithm.

Performance tests
The Spark-OSW algorithm was further compared with the SW algorithm through performance
tests on a single-node Spark platform.

Table 1. Accuracy test results of the two algorithms

Quer Target Comparison ratio Is the optimal local
s uen3</:e s ugnce Spark- contrast of the SW and | Spark-OSW

Ign th Ign th SW OpSW Spark-OSW output accuracy
g g consistent?
2 64 100% 100% v 100%
4 32 75% 75% N 100%
8 16 62.5% 62.5% N 100%
16 8 50% 50% N 100%
32 4 12.5% 12.5% N 100%
64 2 3.125% | 3.125% N 100%
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The test data were extracted from the gene sequence database of the National Center for
Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/). The input data of the
Spark-OSW include: query sequence queryFile lengths of 48; database sequence dbFile size of
10MB, 20MB, 40MB, 80MB and 160MB (txt. files); the number of fragments splitNum of 32;
the number of tasks taskNum of 1; the comparison ratio (comparison score / query sequence
length)*100%) of identity is 1.0 (i.e., any sequence of comparison ratios may be outputted).

The input data of the SW algorithm include: query sequence queryFile lengths of 48; database
sequence dbFile size of 10MB, 20MB, 40MB, 80MB and 160MB (txt. files); the number of
fragments spl/itNum of 32; the number of tasks taskNum of 1.

The test results are recorded in Fig. 8, where the mean rate (R) is calculated as (SW runtime-
Spark-OSW runtime)/ Spark-OSW*100% and the size (S) is the size of the database sequence
file.

77.33%
80.00%

70.00% 62.13%  04.62% aljiy'

60.00%
50.00%

&= 40.00%
30.00%
20.00%
10.00%
0.00%

27.19%

10MB 20MB 40MB 20MB 160M
5
Fig. 8 Performance test results of the two algorithms

It can be seen from Fig. 8 that, the rate of the Spark-OSW is positively correlated with the data
size within a certain range, i.e., the greater the data, the shorter the Spark-OSW runtime
(the greater the SW runtime). The Spark-OSW is clearly more efficient than the contrastive
algorithm. The high efficiency of the Spark-OSW is attributed to the optimized parallelization
plan, which reduces the computing load proportionally to the data size.

Spark cluster tests

The test data were extracted from the gene sequence database of the National Center for
Biotechnology Information (NCBI: https://www.ncbi.nlm.nih.gov/). A gene sequence of the
length 48 was selected as the query sequence while a txt file of the size 20MB, 40MB, 60MB,
80MB, 100MB, 120MB, 140MB, 160MB, 180MB or 200MB was taken as the database
sequence.

The Spark-OSW and the SW were operated ten times in a single-node Spark cluster, an eight-
node Spark cluster, and a sixteen-node Spark cluster, respectively. The runtime of each
algorithm under each condition is recorded as Figs. 9-11, where the Spark-OSW curve is the
actual runtime of the Spark-OSW, the SW curve is the actual runtime of the OSW, the T-Spark-
OSW curve is the theoretical runtime of the Spark-OSW and the T-SW is the theoretical runtime
of the SW.
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Fig. 9 Runtime of each algorithm in a single-node Spark cluster
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Fig. 10 Runtime of each algorithm in an eight-node Spark cluster
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Fig. 11 Runtime of each algorithm in a sixteen-node Spark cluster

Then, the two algorithms each performed acceleration ratio experiments in the eight-node Spark
cluster and the sixteen-node Spark cluster, respectively. The results of the two algorithms are

compared in Fig. 12.
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Fig. 12 Results of acceleration test

As shown in Fig. 12, the acceleration of the Spark-OSW remained in a certain range despite the
growth of the data size. For this algorithm, the acceleration in the sixteen-node cluster was
much faster than that in the eight-node cluster, revealing that the algorithm performance
improves with the growth in the number of nodes. In theory, the acceleration should be
proportional to the number of nodes. However, the acceleration did not reach eight in the eight-
node cluster or sixteen in the sixteen-node cluster, an evidence to the transmission loss between
the nodes.

Conclusions

This paper proposes the design and the implementation of a Spark parallelization plan for
improving the SW algorithm, creating the Spark-OSW algorithm. Then, the Spark-OSW was
verified through accuracy, performance and acceleration tests. The results show that the
proposed algorithm achieved 100% accuracy, ran much faster than the SW, and performed well
in cluster environment. In addition, the speed improvement, i.e., runtime reduction, is more
obvious with the growth in data size.
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