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Abstract: Considering the importance of operon in microorganism transcriptional regulation, 

this paper sets up a new operon prediction model based on artificial neural network (ANN). 

Specifically, multiple genome information, ranging from intergenic distance (IGD), 

orthologous protein cluster (OPC), conserved gene pair (CGP) to system evolution spectrum 

(SES), were preprocessed by log-likelihood fraction and wavelet transform, and then inputted 

to the GRNN for operon prediction. The experimental results in E. coli K-12 and B. subtilis 

168 show that our model is a valid and feasible way to predict operon. The research findings 

shed new light on the prediction of operon information of new species.  

 

Keywords: Microorganism transcriptional regulation, Operon prediction, Generalized 

regression neural network. 

 

Introduction 
The term “operon” first appeared in the research of protein regulation mechanism, referring to 

a cluster of genes co-regulated by operators, promoters and terminators [3]. This cluster controls 

the gene manipulation in the transcription of mRNA, an intermediate product in protein 

synthesis, against a DNA template. As shown in Fig. 1, an operon is a transcriptional unit 

consisting of manipulating genes, public promoters, terminators, as well as other regulatory 

elements and structural genes. 

 

 

Fig. 1 Structure of operon 

 

Considering the importance of the operon to the regulatory network, this paper explores the 

operon structure in the entire genome, with the aim to guide the reconstruction of biochemical 

and metabolic networks, and promote the research of microorganism transcriptional regulation 

[4, 8, 11-12]. 

 

Preliminaries 

Definition of operon prediction 
Currently, there are mainly two ways to define operation prediction, namely, the neighboring 

gene pair prediction (NGPP) method and the gene cluster prediction (GCP) method. The former 
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is implemented in two steps: (1) Computing the attribute relationships of neighboring genes, 

and judging whether each and all neighboring genes belong to the same operon; (2) Counting 

the number of genes in each and all operons in the entire genome.  

 

On the upside, the attribute calculation is convenient, uncomplex, and the relationship between 

neighboring genes can be identified accurately. On the downside, this method only tackles the 

neighboring genes, failing to apply to single-gene operons. 

 

The GCP method divides the putative operon gene clusters considering the distance between 

the operon genes, and then analyze the genes in each cluster to obtain the final predicted operon. 

This method is quite advantageous in that it can predict single-gene operons and disclose the 

genetic relationships within the entire operon in a robust manner. However, the GCP method 

faces high complexity and inconvenience in the computation of some properties. By this 

method, all subsequent calculations need to be performed separately on the two strands of the 

genome, because operons only exist on the same strand of the genome. 

 

In the NGPP model, the neighboring genes in the same operon are defined as a pair of 

neighboring operators (NO pair), and those in different operons as a pair of transcription unit 

boundaries (TUB pair) [5]. In the GCP model, two genes in the same operon of a gene cluster 

are defined as an operon pair (OP), while those in different operons of a gene cluster as a non-

manipulated pair (NMP). In the cluster of neighboring genes shown in Fig. 2, Operon 1 and 

Operon 2 are two neighboring operons. For the NGPP model, b-c, c-d, d-e and e-f are NO pairs, 

and b-a, d-e and f-g are TUB pairs; For the GCP model, b-c, c-d, b-d and e-f are OPs and other 

gene pairs in the cluster are NMPs. 

 

 

Fig. 2 Neighboring gene cluster 

 

Data preprocessing 
The operon prediction involves a dazzling array of attribute information, which differs in range, 

unit, significant and even form of expression. For example, the intergenic distance (IGD) is 

described digitally, while the gene ontology is represented by strings. This calls for 

preprocessing of the data used for prediction. Otherwise, it will be impossible to achieve robust 

prediction, not to mention outputting accurate results. In the existing studies, the related data 

are mainly preprocessed by log-likelihood fraction and wavelet transform. 

 

Log-likelihood fraction, in log-likelihood fraction [9], different types of attributes are 

normalized by computing the relationship between two genes concerning a certain attribute 

value, and that between two genes in the same operon, in light of two prior probabilities: 
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where   1, |a bP f g g C  and   2, |a bP f g g C  are priori probabilities for conditions 1C  and 

2C  to satisfy the attribute  ,a bf g g , respectively; ag  and bg  are the attribute values of genes 

a and b in the gene pair a-b, respectively, used for operon prediction;   1 | ,  a bLL C f g g is the 

probability that gene pair a-b belongs to 1C  under  ,a bf g g .  

 

For the NGPP model, a and b, as a pair of neighboring genes, is an NO pair and a TUB pair 

under 1C  and 2C , respectively; for the GCP model, a and b, as any pair of genes in the gene 

cluster, is an OP pair and an NMP pair under 1C  and 2C , respectively. 

 

With different metrics of information, some attributes can measure non-neighboring gene pairs, 

such as conserved gene pairs (CGPs) and gene ontology similarities. Some can only measure 

neighboring attribute information, namely, the distance between genes and the minimum free 

energy. For gene cluster prediction, the original log-likelihood fraction formula should be 

extended as: 

 

       
1 1 2

, , * , * * ,
na b a c c c c bL g g l g g l g g l g g , (2) 

 

where  ,l x y  is a simple form expression of   | ,LL OP f x y ; 1 2 ,  ,   ,  nc c c  are the genes 

between gene  a  and gene b . If all the log-likelihood scores to the right of the equation are 

positive, the sign of the equation is positive. Otherwise, the sign of the equation is negative.  

For intergenic distance and minimal free energy, Eq. (1) should be used if the gene pairs in the 

gene cluster are neighbors, and Eq. (2) should be used if otherwise. 

 

Wavelet transform 
Wavelet transform is a novel mathematical approach of data processing like Fourier transform, 

except for its ability to localize the signal in time and frequency. Since its introduction in 1996, 

wavelet transform has been widely used in many fields related to bioinformatics [1, 10].  

This approach can be adopted to optimize and denoise unwanted attribute information, laying 

the basis for accurate operon prediction.  

 

The wavelet transform techniques like denoising and compression can be employed to process 

the attribute information processed by log-likelihood fraction, which may contain much noise 

information due to the use of probability statistics. Through the processing, the attribute 

information will become less volatile and more realistic. 

 

The effect of wavelet transform is illustrated in Fig. 3 below, where the dashed line describes 

the attribute information processed by log-likelihood fraction, and the solid line represents that 

processed by wavelet transform. Obviously, the attribute information curve becomes smoother, 

less volatile and more realistic after wavelet transform. 
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Fig. 3 The effect of wavelet transform 

 

Evaluation of prediction effect 
The evaluation of prediction effect is the key to determining the predictive power of the operon 

prediction algorithm. The most commonly used evaluation indices and tools include sensitivity, 

specificity, accuracy and receiver operating characteristic (ROC) curve. The first three indices 

can be defined as follows [6]: 
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where TP and TN are the number of corrected predicted NO pairs and TUB pairs, respectively; 

FP is the number of TUB pairs that are predicted incorrectly as NO pairs; FN is the number of 

NO pairs that are predicted incorrectly as TUB pairs; OP and TUB are the number of NO pairs 

and TUB pairs in the genome, respectively. 

 

The ROC curve is a 2D graph with the FP value on the abscissa and the TP value on the 

ordinate. The area above the curve is negatively correlated with the prediction effect. 

 

Operon prediction model based on generalized regression neural network 

Generalized regression neural network (GRNN)  
The artificial neural network (ANN) is a mathematical computational model inspired by 

biological neural networks. Each ANN consists of a set of interrelated artificial neurons, and 

completes the computing process by mimicking the interaction of the biological nervous system. 

The structure of the ANN changes adaptively through input adjustment in the learning phase. 

 

One of the most popular ANNs is the radial basis function (RBF network), which uses the RBF 

as activation functions. The GRNN is an improved version of the RBF network [2]. As shown 

in Fig. 4, the GRNN retains most of the features of the RBF network, while removing the weight 

connection between the hidden layer and the output layer. With strong nonlinear mapping and 
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fast training speed, the GRNN has been a popular tool in function approximation and other 

research areas. 

 

 

Fig. 4 The structure of GRNN 

 

Description of operon prediction model 
Taking neural networks as classifiers, this paper proposes an operon prediction model capable 

of fusing a variety of attribute information. In this model, several genetic attributes of the 

genome are selected, the classifier is replaced with the clustering algorithm for operator 

prediction, and four attributes are subjected to clustering operation, including IGD, CGP, 

similarity of gene ontology and minimum free energy of gene sequence. The proposed model 

only uses the calculated attribute information, rather than that derived from experimental data. 

It can be easily applied to newly-sequencing species, providing biologists with new species of 

operon information. 

 

The model is implemented in the following steps. To begin with, the position and orthologous 

cluster function of each gene were obtained from the entire genome that has been sequenced 

and annotated. Then, the CGP and the phylogenetic information of the gene were calculated 

based on the existing information. After that, the log-likelihood fraction and wavelet transform 

were used to process various inputs. Finally, multiple attributes were fused by a GRNN for 

operon prediction.  

 

To verify its prediction effect, the proposed model was applied to test two kinds of 

microorganisms: Escherichia coli (strain K-12) (E. coli K-12) and Bacillus subtilis (strain 168) 

(B. subtilis 168). The experimental process is as follows: Firstly, the IGDs of all genes in the 

two species were calculated using the genome data downloaded from GenBank, and the 

functional classification information of the orthologous clusters were extracted from the 

annotation file. Meanwhile, the information on CGP and system evolution spectrum (SES) of 

the two species were calculated using the 360 genome-wide data of sequenced complete 

microorganisms. Afterwards, experimentally validated operon data were extracted from 

RegulonDB and ODB, optimized and denoised by wavelet transform, and introduced to 

calculate the log-likelihood fractions of the four attributes of both species. Finally, the log-

likelihood fractions were taken as the training sample for the proposed operon prediction model. 

 

Specific flow of the operon prediction model 
(1) Preprocessing of the input data 

On intergenic distance, the distances between all neighboring genes in the predicted genome 

were calculated by Eq. (1); next, the prior probabilities of NO pair and TUB pair were computed 

at different IGDs, respectively; afterwards, the log-likelihood fractions of neighboring genes 

were obtained by Eq. (2) at different IGDs; finally, the log-likelihood fractions were optimized 

and denoised through wavelet transform. 
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On orthologous protein cluster (OPC), the functional relationships of the OPCs of neighboring 

gene pairs were classified by the degree of similarity, using the annotation information of the 

predicted genome; next, the prior probabilities of NO pair and TUB pair were computed under 

different similarity classifications; afterwards, the log-likelihood fractions of neighboring genes 

were obtained by Eq. (2) under different similarity classifications; finally, the log-likelihood 

fractions were optimized and denoised through wavelet transform. 

 

On CGP, the number of conserved genes in the comparative genomic set was calculated for all 

pairs of neighboring genes in the predicted genome; next, the prior probabilities of NO pair and 

TUB pair were computed at different numbers of conserved genes; afterwards, the log-

likelihood fractions of neighboring genes were obtained by Eq. (2) at different numbers of 

conserved genes; finally, the log-likelihood fractions were optimized and denoised through 

wavelet transform. 

 

On system evolution spectrum, the phylogenetic distances of neighboring gene pairs were 

calculated after calculating the SES of all the genes in the predicted genome; next, the prior 

probabilities of NO pair and TUB pair were computed at different phylogenetic spectral 

distances; afterwards, the log-likelihood fractions of neighboring genes were obtained by  

Eq. (2) at different phylogenetic spectral distances; finally, the log-likelihood fractions were 

optimized and denoised through wavelet transform. 

 

(2) GRNN-based operon prediction 

The main difficulty in operon prediction lies in the prediction of complex, unknown biometric 

problems involving various biological attributes. To realize effective prediction, the multiple 

attributes should be fused correctly and efficiently [7]. With strong nonlinear mapping ability 

and fast training speed, the GRNN provides an ideal solution to the fusion of various attributes, 

laying a solid basis for operon prediction. Compared with the RBFNN, the GRNN has an 

additional linear output layer beyond the output layer. Here, an operon prediction model is set 

up based on the GRNN, and implemented on the Matlab. Fig. 5 shows the simplified structure 

of the GRNN adopted in our model. 

 

 

Fig. 5 The structure of the GRNN in our model 

 

There are four nodes on the input layer of the GRNN, which correspond to the four genome 

attributes obtained through data preprocessing. Meanwhile, the output layer of the network has 

only one node, i.e. a probability within [0, 1]. This output indicates whether the neighboring 

gene pair belongs to the same person. In addition, the GRNN contains only one hidden layer. 

The number of hidden layer nodes is usually set the same as that of input vectors. However, 

this setting is not feasible if there are so many input vectors as to dampen the network 

performance. Thus, the number of hidden layer nodes in our model was determined iteratively: 

gradually increasing the number of hidden layer nodes from one to the number of input vectors, 
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finding the number that minimizes the output error and taking this number as the number of 

hidden layer nodes. 

 

Experimental results 
The proposed GRNN operon prediction model was verified through an experiment on  

E. coli K-12 and B. subtilis 168. The 1/2 operon of the two species was selected as the training 

set, and the other 1/2 operon as the test set for cross-checking. The mean sensitivity, specificity 

and accuracy of the prediction model on E. coli were 88.6%, 89.2% and 88.9%, respectively, 

and 87.4%, 85.5% and 86.3% on B. subtilis, respectively. For comparison, joint prediction of 

operons (JPOP) and operon finding software (OFS) were also tested on the same dataset of  

E. coli K-12 and B. subtilis 168. 

 

The predicted results are shown in Tables 1 and 2 below. Clearly, the GRNN model 

outperformed both JPOP and OFS in the sensitivity, specificity, and accuracy of the operon 

prediction results. 

 

Table 1. The prediction results of three methods on E. coli K-12 

Prediction method Sensitivity Specificity Accuracy 

JPOP 84.5% 83.8% 86.1% 

OFS 85.7% 84.9% 86.5% 

The proposed model 88.1% 89.5% 88.3% 

 

Table 2. The prediction results of three methods on B. subtilis 168 

Prediction method Sensitivity Specificity Accuracy 

JPOP 83.2% 80.9% 82.7% 

OFS 85.1% 81.3% 82.6% 

The proposed model 87.6% 85.2% 86.6% 

 

One of the four attributes was removed in turns and compared with the previous prediction 

results, aiming to test the role of each attribute in operon prediction. The results in Table 3 show 

that the best sensitivity, specificity, and accuracy of the prediction appeared when all four 

attributes were considered. In addition, the prediction effect was the worst when the IGD 

information was deleted, revealing that IGD has an important impact on the operon. Thus, the 

coefficient of IGD should be increased in the prediction model. The prediction effect did not 

change much at the removal of the SES. A possible reason lies in the fact that the SES is 

partially covered by the system gene profile and the conserved gene. Furthermore, the SES 

distance used in this section is a simple Hamming distance, which can be further improved to 

enhance the prediction effect of our model. 

 

Table 3. Comparison between four-attribute prediction and three-attribute predictions 

Information Sensitivity Specificity Accuracy 

Excluding intergenic distance 75.4% 85.7% 83.1% 

Excluding OPC 84.2% 87.3% 86.1% 

Excluding CGP 85.6% 87.9% 86.3% 

Excluding SES 86.1% 88.1% 87.3% 

All four attributes 88.5% 89.7% 88.8% 
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The prediction effect of our model was further evaluated by comparing its ROC curve with that 

of the OFS and that of the JPOP (Fig. 6). 

 

 

Fig. 6 ROC curves of three different methods 

 

As shown in Fig. 6, our model had a smaller area above the ROC curve than the other two 

methods, an evidence of good mean sensitivity and specificity. Figs. 7 and 8 respectively show 

the ROC curves on the two species when our model is adopted for prediction using all four 

attributes and one of the four attributes. It can be seen that the prediction results in the case of 

all four attributes were much better than the single-attribute cases. 

 

 

Fig. 7 ROC curves on E. coli K-12 under different attribute combinations 
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Fig. 8 ROC curves on B. subtilis 168 under different attribute combinations 

 

Conclusion 
Operon is a basic transcription unit in complex biological processes of microorganisms.  

It provides many valuable information in such field as biopharmaceutics, protein function, and 

biological regulation mechanism. In view of these, the author put forward an ANN operon 

prediction model, which relies on the GRNN and four attributes (i.e. IGD, OPC, CGP and SES) 

to realize operon prediction. The information of the four attributes were preprocessed by log-

likelihood fraction and wavelet transform, and then inputted to the GRNN for operon 

prediction. The experimental results in E. coli K-12 and B. subtilis 168 show that our model is 

a valid and feasible way to predict operon. 
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