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Abstract: This paper presents the estimation of substrate and biomass concentrations inside
a Chemostat used for waste-water treatment. These concentrations represent the state
variables of the process model. Most research in this field used only deterministic models, not
accounting for uncertainties and noises on the states and on the output. Hence, the estimation
of these concentrations may not be sufficiently accurate. For a more realistic description, we
used here a stochastic formulation. Unlike the other research works, we used a stochastic
differential equations (SDE) model which provides a better representation of the system in
his natural processing scale. This model also includes the aleatory effects in the process
which had been discarded in the other works. We then deal with the state estimation problem
using an Extended Kalman filter, which proceeds with a linearization of the model around
a deterministic trajectory. The classical prediction and update steps of the filter are then
carried-out and led to good results. Notice that the system in study has some interesting
properties such as discrete-time observations, high noise intensities and slow-time evolution.
Results are presented, discussed and compared with the related state-of-the-art researches.

Keywords: Extended Kalman filter, State estimation, Chemostat, Waste-water treatment,
Stochastic differential equations.

Introduction
Given the increasing need of the world population to clean water and the decline in water re-
sources in a large part of the planet, one of the most promising solutions to this problem is the
waste-water treatment. This treatment involves two steps: (i) a mechanical treatment including
the filtration, the grit removal, the degreasing and the decantation and (ii) a biological treat-
ment using mainly the bioreactor and the anaerobic digester [3]. We are more interested in the
bioreactor: it is a vessel in which a chemical process is carried-out involving micro-organisms
such as bacteria breaking-down polluting organic substances contained in the water. The lab-
oratory device representing the bioreactor is the Chemostat [28] (Fig. 1), which we attempt to
stabilize around an equilibrium in order to avoid the explosion or the extinction of the bacterial
population.

Before the stabilization, it is necessary to know the biomass (bacteria) and the substrate (organic
substances) concentrations inside the Chemostat. These quantities will represent the state vari-
ables in the Chemostat model. These concentrations are not directly measurable at the system’s
output, it is then necessary to use a software sensor to estimate their values. A first solution is the
use of state observers: these methods require generally a relatively accurate knowledge of the
system and also require the system to be observable. A detailed study about this last condition
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Fig. 1 The Chemostat (from [22])

is established by [10]. The observer based methods are applied at a macroscopic (large-size)
scale i.e. in the case of large population size where the randomly-occurring (stochastic) effects
are not visible on the system. However, at a mesoscopic (medium-size) or microscopic (small-
size) scale, aleatory state variations appear on the system and need to be taken into account [5].
Hence, the system at this level of description is modeled by Stochastic Differential Equations
(SDEs). In addition, the measurements are constantly subject to noises and uncertainties, which
need to be modeled in the output equation.

We propose in this paper to use stochastic estimation methods in order to determine the state
variables of the Chemostat. These methods allow to estimate both the state mean and covari-
ance matrix. The Kalman Filters (KF) are the most common methods for this purpose. They use
series of output measurements observed over time and containing statistical noise and other in-
accuracies to generate estimates of the unmeasured system states. For nonlinear estimation
problems, the Extended Kalman Filter (EKF) uses the same approach along with Taylor series
development to linearize the system around a stable equilibrium. The EKF algorithm works in
two steps: Prediction and Update. In the prediction step, the algorithm produces estimates of the
current state variables means together with their covariance matrix (the estimation uncertain-
ties). Notice that the EKF linearizes the system about an estimate of the mean before proceeding
to this prediction step. In the update step, when the next measurement value becomes available
(necessarily affected with some amount of noise), the previous estimations are updated using a
weighted average called the Kalman gain. The EKF algorithm is recursive, it can run on-line,
using only the present measurements and the previously calculated state estimations and their
uncertainty matrix.

It is reported in some research work that the EKF may have some robustness issues against
nonlinearities considering the abrupt changes in the system states that may occur during the
system’s evolution [15]. However, these incidents are not very common in this type of biological
systems which makes this algorithm a good choice for the state estimation of this process.

This paper is organized as follows: in the next section, we carry out a brief and concise compar-
ison of previous work related to this estimation problem. The section “The Chemostat model”
contains a description of the Chemostat stochastic model and its simulation using the Euler-
Maruyama scheme. In section “The Extended Kalman Filter”, we explain the linearization
procedure, the prediction and the update steps and we present the application of the EKF algo-
rithm to the system in study. Finally, section “Results and Discussion” shows the simulation
results and their discussion and comparison with the related researches. We conclude then about
the efficiency of this algorithm in this context.
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Related work
There exist a tremendous amount of work on this topic from which we will mention the most
similar research from the optimization based methods to the Bayesian methods of state estima-
tion for the deterministic state-space model of the Chemostat. A state of the art on the most
common methods for bioreactors is established by [7]. This paper gave a special attention to
the adaptive observers, the EKF and artificial neural networks, without giving any concrete
application of these methods on any particular model.

There exist, in fact, many applications of these techniques in the literature. For instance, in [8],
the authors used an invariant observer and they proved its convergence for the model in hand.
In [23], simple observer-based estimators where used for similar aerobic fermentation processes
for which the models were linearized, thus ensuring convergence in the neighborhood of the
equilibrium. The authors in [12] developed a KF based approach for a deterministic model of a
Chemostat used for microbial cultivation, including zero-order exponential memory functions
in the expressions of the specific growth rate.

The EKF algorithm appears in both [16, 26] and [24, 27]. In the first works, it was used for
state and parameter estimation of a bioreactor using a deterministic model with a normal output
noise, whereas in the lasts, it was used for state estimation of Fed-batch cultivation processes,
taking place in a Chemostat. Finally, neural network based estimators were used in [25] for the
estimation of the biomass concentration and the specific growth rate and were designed to work
independently of each-other, while still being implemented on the deterministic versions of the
Chemostat model.

On the stochastic version of the Chemostat model, the authors in [4] used a Bootstrap Particle
Filter (PF) for the same state estimation purposes. In his implementation, the authors consid-
ered two cases: a high frequency observations test and a low frequency one. Good and similar
results were found in both cases. However, this method may not be suited for practical imple-
mentations where the computation resources are usually very limited. In this paper we aim to
obtain better/similar results as in [4] with less computational cost. Table 1 gives a summary of
these related research works.

The Chemostat model
We consider a stochastic model of the Chemostat given by two stochastic differential equa-
tions (1). This model was first introduced by [5]. More precisely, it is a pure jump model
(continuous-time Markov chain) approximated by a diffusion (normal) process Xt = (Bt ,St)

T

which represents the solution of this SDE:
dBt = (µ(St)−D)Bt dt + c1

√
Bt dW 1

t ,

dSt = D(sin−St)dt− kscµ(St)Bt dt + c2
√

St dW 2
t .

(1)

In this model, the state variables Bt and St are the biomass and substrate concentrations at time

t, µ(St) = µmax
St

Ks + St
is a Monod type specific growth function [21], where µmax is the maxi-

mum growth rate and Ks is the half-saturation constant, sin is the input substrate concentration,
D is the dilution rate, ksc is the yield coefficient, W 1

t and W 2
t are two mutually independent

Brownian motions (Wiener processes) that are also independent of state’s initial conditions X0,
c1 and c2 are the noise intensities. We suppose Bt ≥ 0, St ≥ 0 for t ∈ [0,T ].
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Table 1. Summary of Estimation Results in the Literature (NL : Nonlinear, D: Deterministic).

Author Model
Estimation

Method
Convergence

Time
Estimation

Error
Properties

[8]
NL. D.

Chemostat
Model

Invariant
Observer

t ≈ 2 days
for both

Substrate
and

Biomass

0.01

Adjustable
convergence

time
Robust against

parameter variations

[2]

NL. D.
Chemostat
Model with

Contois
Kinetics [6]

Asymptotic
Observer

t ≈ 2 days < 0.01

Convergence speed
dependent upon
Dilution Rate

Could perform in
the case of partial
Kinetics model

knowledge

[11]

NL. D.
Chemostat
Model with

Contois
Kinetics [6]

High Gain
Observer

t ≈ 3 days < 0.01
Performs badly in

the presence of
noisy measurements

[14]
[13]

NL. D.
Chemostat
Model with
Activated

Sludge
Process

Interval
Observers

t ≈ 6 days < 0.2

Need the
cooperativity

property
Initial intervals of
the states must be

known
Convergence is

obtained even for
large initial intervals

[4]

NL.
Stochastic
Chemostat

Model

Particle
Filtering

t ≈ 1 day < 0.1
High computational

cost

[26]

NL. D.
Chemostat
Model with

normal
output
noises

EKF t < 1 day < 0.01
Very sensitive

against far initial
conditions
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For the model output, we suppose that only the substrate concentration Stk is measured at dis-
crete time instants tk = k∆ where ∆ is the observation time step. This output is subject to a
measurement noise vk of standard deviation σ which is supposed to be proportional to Stk [4].
This leads to the output Eq. (2).

yk = Stk +σ Stk vk, (2)

where vk
iid∼N (0,1) (iid – independent and identically distributed) and σ is the noise intensity.

System simulation
To simulate the System (1), we use an Euler-Maruyama scheme [19]. The simulation time step
δ is chosen small enough to have a good approximation of the integral in the system equations
but not too small to avoid high computational cost. For a simulation time T , we perform N
iterations of system simulation between every two observations yk with the simulation step
δ = T / (N Nobs), and we compute an output value yk for every step ∆ = T /Nobs where Nobs is
the number of observations in the time interval [0, T ].

The Brownian motion terms are approximated by:

dWtn =Wtn−Wtn−δ (3)

thus

dWtn =
√

δwtn , (4)

where wtn
iid∼N (0,Q) and Q is the identity matrix.

The Euler-Maruyama approximation of System (1) is given by (5):
Btn = Btn−1 +(µ(Stn−1)−D)Btn−1 δ + c1

√
Btn−1

√
δ w1

tn ,

Stn = Stn−1 +
(
D(sin−Stn−1)− kscµ(Stn−1)Btn−1

)
δ + c2

√
Stn−1

√
δ w2

tn ,
(5)

where tn = nδ and w1
tn ,w2

tn are normally distributed random variables with 0 mean and vari-
ance 1.

Note that only the non-negative solutions are taken into account. The values are set to 0 when-
ever they cross the time axis. The simulation algorithm is given in Algorithm 1.

The Extended Kalman filter
The Extended Kalman Filter algorithm contains two steps:

Prediction step
In order to carry out the EKF prediction for system (1), we need to linearize it around a nominal
deterministic trajectory x(t) and to compute its predicted expectation E

[
Xtn+1

]
and its predicted

variance var
[
Xtn+1

]
.

This system is of the form (6):

dXt = f (Xt)dt + g (Xt)dWt . (6)
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Algorithm 1 Simulation of the Chemostat model using Euler-Maruyama scheme.
v0, . . . ,vNobs ∼ N(0,1)
w1

0, . . . ,w1
N∗Nobs

∼ N(0,1)
w2

0, . . . ,w2
N∗Nobs

∼ N(0,1)
# initialization
(Bt0 ,St0) ∼ N(µ0,Q0)
# iterations
For k = 0, . . . ,Nobs do

For n = 1, . . . ,Ndo
µ = µmax

Stn−1

Ks + Stn−1

Btn = max (0, Btn−1 +(µ−D)Btn−1δ + c1
√

Btn−1

√
δ w1

n )

Stn = max (0, Stn−1− ksc µ Btn−1δ +D(sin−Stn−1)δ + c2
√

Stn−1

√
δ w2

n )
End For
Sk = Stn
yk = Sk +σSkvk

End For

The Euler-Maruyama discretization for system (6) is:

Xtn+1 = Xtn + f (Xtn)δ + g (Xtn)
√

δwtn (7)

with
√

δwtn =Wtn+1−Wtn , this increment is normally distributed with 0 mean and variance δ .

Suppose that the distribution of Xt is normal, and let:

X tn = E [Xtn ] (8)

and

Rtn = Var (Xtn) = E
[(

Xtn−X tn
)(

Xtn−X tn
)∗] . (9)

First, we compute the expectation E
[
Xtn+1

]
of Xtn+1 using Eq. (7):

X tn+1 = E
[
Xtn+1

]
= X tn +E [ f (Xtn)δ ]+E

[
g (Xtn)

√
δwtn

]
(10)

since g (Xtn) and wtn are independent, we get

X tn+1 = X tn +E [ f (Xtn)]δ +E [g (Xtn)]E [wtn ]
√

δ . (11)

Since the mean of wtn is 0, this last equation is reduced to:

X tn+1 = X tn +E [ f (Xtn)] .δ (12)

To compute E [ f (Xtn)], we linearize f (Xtn) around a given nominal deterministic trajectory
x(tn) using the Taylor-series development:

f (Xtn) ' f (x(tn))+ (Xtn− x(tn))∇ f (x(tn)) . (13)

We thus get:

E [ f (Xtn)] ' f (x(tn))+
(
X tn− x(tn)

)
∇ f (x(tn)) . (14)
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By replacing Eq. (14) in Eq. (12), we get:

X tn+1 = X tn + f (x(tn))δ +
(
X tn− x(tn)

)
∇ f (x(tn))δ . (15)

If we take the nominal trajectory x(tn) as the mean of Xtn , that is x(tn) = X tn , then Eq. (15) is
reduced to :

X tn+1 = X tn + f
(
X tn
)

δ . (16)

The next step is to compute the variance Rtn+1 = var
[
Xtn+1

]
of Xtn+1:

Rtn+1 = E
[(

Xtn+1−X tn+1

)(
Xtn+1−X tn+1

)∗] . (17)

First, we need to compute
(
Xtn+1−X tn+1

)
and

(
Xtn+1−X tn+1

)∗:
(
Xtn+1−X tn+1

)
=
(

Xtn + f (Xtn)δ + g (Xtn)
√

δwtn

)
−
(
X tn + f (x(tn))δ +

(
X tn− x(tn)

)
∇ f (x(tn))δ

)
. (18)

This Eq. (18) is re-organized under the following form:(
Xtn+1−X tn+1

)
= Xtn−X tn +( f (Xtn)− f (x(tn)))δ

+
√

δg (Xtn)wtn −
(
X tn− x(tn)

)
∇ f (x(tn))δ . (19)

In this equation, f (Xtn) is replaced by its linearization – Eq. (13), which leads to Eq. (20):(
Xtn+1−X tn+1

)
= Xtn−X tn +((Xtn− x(tn))∇ f (x(tn)))δ

+
√

δg (Xtn)wtn −
(
X tn− x(tn)

)
∇ f (x(tn))δ . (20)

By taking the nominal trajectory x(tn) = X tn as above, we get :(
Xtn+1−X tn+1

)
= Xtn−X tn +

(
Xtn−X tn

)
∇ f
(
X tn
)

δ +
√

δg (Xtn)wtn . (21)

Next, we compute the transposed of this last quantity:(
Xtn+1−X tn+1

)∗
=
(
Xtn−X tn

)∗
+∇ f

(
X tn
)∗ (Xtn−X tn

)∗
δ +
√

δw∗tng (Xtn)
∗ . (22)

Finally, after computing the product of Eq. (21) and Eq. (22) and the expectation of the result,
we get the expression of the variance Rtn+1:

Rtn+1 = Rtn +Rtn∇ f
(
X tn
)∗

δ +∇ f
(
X tn
)

Rtnδ + g
(
X tn
)

E
[
wtnw∗tn

]
g
(
X tn
)∗

δ . (23)

Note that all the other terms are canceled because of either E
[(

Xtn−X tn
)]

= 0 or E [wtn ] = 0.

Since E
[
wtnw∗tn

]
= var (wtn) = 1, we get:

Rtn+1 = Rtn +RtnF∗δ +FRtnδ + g
(
X tn
)

g
(
X tn
)∗

δ (24)

with F = ∇ f
(
X tn
)
.
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To perform the prediction step of the EKF algorithm for our system we use the following nota-
tion:

f (Xtn) =

(
f1 (Btn ,Stn)
f2 (Btn ,Stn)

)
, (25)

where Xtn = (Btn ,Stn)
∗ and f1 (Btn ,Stn), f2 (Btn ,Stn) are given by:

f1 (Btn ,Stn) = (µ(Stn)−D)Btn , (26)
f2 (Btn ,Stn) = D(sin−Stn)− kscµ(Stn)Btn . (27)

Also let:

g (Xtn) =

(
g1 (Btn ,Stn)
g2 (Btn ,Stn)

)
, (28)

where g1 (Btn ,Stn), g2 (Btn ,Stn) are given by:

g1 (Btn ,Stn) = c1
√

Btn , (29)

g2 (Btn ,Stn) = c2
√

Stn . (30)

In the algorithms, X̂−tn =

(
B̂−tn
Ŝ−tn

)
and R−tn denote, respectively, the predicted mean values of Xtn

and their covariance matrix at time tn. Whereas X̂tn =

(
B̂tn
Ŝtn

)
and Rtn denote the estimated

mean values of Xtn and their covariance at time tn. Furthermore, Qw =

[
1 0
0 1

]
and Qv = 1

denote, respectively, the state noise covariance matrix and the output noise variance.

The following notation is also used in the algorithms:

Ftn = ∇ f (Xtn) =

[
µ (Stn)−D µ ′ (Stn)Btn
−kcsµ (Stn) −D− kcsµ

′ (Stn)Btn

]
. (31)

The EKF prediction step of system (1) is given by Algorithm 2.

Update step
The update step of the EKF is given by Algorithm 3. In this step, the same method of the
standard KF is used to calculate the updated values of the mean E

[
Xtn+1

]
and covariance matrix

var
[
Xtn+1

]
. Unfortunately, because of the nonlinearity between the state variable Stk and the

noise variable vk in the output Eq. (2), we can not apply the update step directly. We propose
instead the following substitution for Eq. (2):

Let:

ỹk = log (yk) (32)

thus

ỹk = log (Stk (1+σ vk)) (33)

by using the properties of the logarithm, we get:

ỹk = log (Stk)+ log (1+σ vk) . (34)
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Algorithm 2 Prediction step of the EKF for system (1) with output (2).
# initialization
δ = T /(N ∗Nobs)
Xt0 ∼ N(µ0,Q0)
X̂t0 ← µ0
Rt0 = Q0

Qw =

[
1 0
0 1

]
# iterations
For k = 0, . . . ,Nobs do
# prediction step

For n = 1, . . . ,N do
B̂−tn ← max (0, B̂tn−1 + f1(B̂tn−1 , Ŝtn−1)δ )
Ŝ−tn ← max (0, Ŝtn−1 + f2(B̂tn−1 , Ŝtn−1)δ )

R−tn ← Rtn−1 +
(

Rtn−1F∗tn−1
+Ftn−1Rtn−1 + g

(
Xtn−1

)
Qwg

(
Xtn−1

)∗)
δ

B̂tn ← B̂−tn
Ŝtn ← Ŝ−tn
Rtn ← R−tn

End For
End For

Using a first order Taylor series development of log (1+σ vk) at point 1, we get:

ỹk = log (Stk)+ log (1)+σ vk log
′
(1) . (35)

Finally, we get:

ỹk = log (Stk)+σ vk. (36)

The following notation is used in the algorithms:

h (Xtk) = log (Stk) (37)

and:

Htk = ∇h (Xtk) =
[

0 1
Stk

]
. (38)

In this update step, we use the equation ỹk = h (Xtk)+σ vk instead of equation yk = h (Xtk ,vk)
(that is Eq. (2)) to compute the matrix Htk = ∇h (Xtk). This last matrix is used later in the
algorithm to compute the Kalman gain Kk and correct the predicted values of X̂tn and Rtn .

Notice that replacing yk by ỹk = log (yk) does not affect the estimation algorithm or its quality
since the same information is acquired in both cases. This substitution is carried-out only in
the update step: the system simulation still gives an output value yk. However, this also implies
considering log (yk) instead of yk in the error term when updating the estimation of X̂tk .

In order to present the correct structure of the EKF applied for this system, its complete listing
is given by Algorithm 4.
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Algorithm 3 Update step of the EKF for system (1) with output (2).
Qv = 1 % output noise variance
For k = 0, . . . ,Nobs do
# update step

B̂−tk ← B̂−tn
Ŝ−tk ← Ŝ−tn
R−tk ← R−tn
Kk = R−tk H∗tk

(
HtkR−tk H∗tk +σQvσ

)−1 # The Kalman gain[
B̂tk
Ŝtk

]
←
[

B̂−tk
Ŝ−tk

]
+Kk

(
log (yk)−h

(
X̂−tk
))

Rtk ← (I−KkHtk)R−tk
End For

Algorithm 4 State estimation for the Chemostat using the EKF algorithm for system (1) with
output (2).
# initialization
δ = T /(N ∗Nobs)
Xt0 ∼ N(µ0,Q0)
X̂t0 ← µ0
Rt0 ← Q0

Qw =

[
1 0
0 1

]
Qv = 1
# iterations
For k = 0, . . . ,Nobs do
# prediction step

For n = 1, . . . ,N do
B̂−tn ← max (0, B̂tn−1 + f1(B̂tn−1 , Ŝtn−1)δ )
Ŝ−tn ← max (0, Ŝtn−1 + f2(B̂tn−1 , Ŝtn−1)δ )

R−tn ← Rtn−1 +
(

Rtn−1F∗tn−1
+Ftn−1Rtn−1 + g

(
Xtn−1

)
Qwg

(
Xtn−1

)∗)
δ

B̂tn ← B̂−tn
Ŝtn ← Ŝ−tn
Rtn ← R−tn

End For
# update step

B̂−tk ← B̂−tn
Ŝ−tk ← Ŝ−tn
R−tk ← R−tn
Kk = R−tk H∗tk

(
HtkR−tk H∗tk +σQvσ

)−1 # The Kalman gain[
B̂tk
Ŝtk

]
←
[

B̂−tk
Ŝ−tk

]
+Kk

(
log (yk)−h

(
X̂−tk
))

Rtk ← (I−KkHtk)R−tk
End For
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Results and discussion
For the simulations of the previously described algorithms, we took a simulation time interval
of [0, 1000 h] in which we had Nobs = 1000 measurements, that is, Nobs iterations of update
step in the EKF. Between every two successive output values, we had N = 10 iterations of the
system simulation and of the EKF prediction. Hence, the discretization time step is δ = 0.1 h
and the final simulation time is T = 1000 h. The model’s parameters are:

• the substrate concentration at the input sin = 100 g/l;
• the dilution rate D = 0.01 h−1;
• the maximum growth rate µmax = 0.3 h−1;
• the yield coefficient ksc = 10;
• the half saturation constant Ks = 10 mg/l;
• the state noise intensities c1 = c2 = 0.03;
• the observation noise intensity σ = 0.2;
• and the initial state distribution PX0 (dx) = N

(
4,22).

The application of the EKF algorithm to the stochastic Chemostat model led to the estimation
results of the biomass and substrate concentrations presented in Fig. 2. The EKF has, generally,
a good estimation potential and, given reasonable noise intensities, high-frequency observations
and close initial conditions, it will give an accurate estimation of the process variables. Similar
results appear in related research work by [4] where a Bootstrap PF was applied to the same
process in identical conditions and at low and high observation frequencies. The estimation er-
rors are nearly the same (around 10%) and the convergence time is less than 1 day (see Fig. 3).
Another study is currently in progress using the Unscented Kalman Filter (UKF) [1]: the re-
sults seem equivalent even though another approach (the unscented transform) is used for the
approximation of the system’s nonlinearities.

However, while these methods (EKF, UKF, PF) appear to be similar under regular conditions,
they can present many differences in some particular situations where the system is subject to (i)
high noise intensities, (ii) very distant measurement values and (iii) unknown initial conditions.
In the literature, the KF methods are known to be robust to the last two issues, whereas the PF
methods are known to be, furthermore, advantageous in the case of high noise variances. From
another side, the EKF has a very low computational cost, as shown by the profiling results1 in
Fig. 4, yet it may diverge in the case of large variations of the states out of the linearization area.
However, as mentioned above, for this system, the state variations are more likely to remain
within the attractivity region of the considered equilibrium, so this issue is largely avoided. A
more detailed comparison between these different estimation methods will be the subject of our
future work.

The estimation errors are given by Fig. 5 and the mean square errors (MSE) of the state estima-
tions have the values, Eqs. (39) and (40). Notice that these MSE values exceed the previously
established 10% average because of the significant distance between the EKF initial values and
the system’s ones. These MSE values are reasonable for this class of biological models because
of the relatively high noise intensities affecting this type of systems, the aleatory nature of its
variables and the relatively distant observations. It is also obvious that the most significant es-
timation error comes from the biomass concentration, which is an unmeasurable variable in the
output equation.

1Machine is : Core 2 Duo Intel Processor with 2GB RAM, running MATLAB 2012a on a Linux OS.
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Fig. 2 Estimation of biomass B(t) and substrate S(t) concentrations using EKF

In order to inspect the efficiency of the algorithm in study, we performed additional tests in
which we took the previously mentioned conditions to their limits. The first test was about
small observation frequencies: we did three simulations with measurements every 10 h, 50 h
and 100 h, respectively. In this case, the EKF updates were performed only at these periods.
The obtained estimation errors are represented in Fig. 6. These errors are reasonable considering
the width of the proposed time steps. The second test contained different measurement noise
intensities, we simulated the EKF with three different intensities: σ = 0.2, σ = 1 and σ = 2.
The obtained estimation errors are represented in Fig. 7 where the EKF does not appear to be
robust against high output noises.

Finally, in view of the observation of [26] about the sensitivity of the EKF against far initial
conditions as shown in Table 1, we proposed a third test where we performed ten independent
simulations using ten different initial conditions (IC), randomly sampled from a uniform dis-
tribution in the interval [2, 20]. The obtained estimation errors are given in Fig. 8, the EKF
converges in all the situations except where the IC is in the attractivity region of the other
steady state of the system (the wash-out state) which represents the total extinction of the bacte-
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Fig. 3 Convergence time of the biomass and substrate concentrations

rial population. Furthermore, since the simulations in this last test are all independent, it could
be considered as a stability check of the EKF using different series of the random numbers
generated by the calculator. Similarly, the stability of the EKF algorithm was checked numeri-
cally by performing multiple and independent Monte Carlo runs (10000 simulations). All these
simulations converged to the state values.
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Fig. 4 Profiling Results using MATLAB 2012a on a Linux Machine

Fig. 5 Estimation error of biomass and substrate concentrations

This algorithm has a low computational cost: when used in an on-line estimation, it takes about
7.10−3 s to compute one estimation value (Fig. 4). It is a fast algorithm compared to the UKF
and to the PF. In this application, the EKF uses a single output second-order model with a time
step of 0.1 h, hence the state estimates could be calculated on a low-cost micro-controller, unlike
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Fig. 6 Comparison of estimation errors with different observation frequencies

Fig. 7 Comparison of estimation errors with different output noise intensities

other methods in the literature which require heavy computations.

MSEB = 0.1761, (39)

MSES = 0.0021. (40)
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Fig. 8 Comparison of estimation errors with different and far initial conditions

Conclusion
In this paper, we presented a method for the state estimation of a stochastic Chemostat model
using the extended Kalman filtering approach. Some particular adaptations were required in this
implementation, that are the linearization of the model around a deterministic trajectory and the
substitution of the output equation by an equivalent one in order to use the EKF algorithm
properly. These modifications will not require any additional calculations. The results obtained
on this basis are good regarding the uncertainties acting on the system and compared to similar
work in the literature. These results could perfectly be used for real-scale implementation using
a mid-range computer board. In case of parameters uncertainties, it would be necessary to
estimate the parameters values together with the state variables. This will be the subject of
our future study. The authors in [9] gave a tutorial to deal with this problem for deterministic
systems using observers. For stochastic systems, the most common parameter identification
methods are the Maximum Likelihood Estimation (MLE) and the Markov Chain Monte Carlo
(MCMC) methods described respectively in [17] and [20]. There exist also some KF based
methods such as the dual or joint EKF methods [18]. The use of the EKF on higher-order
models describing a two-reactions bioreactor is also in perspective.
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