
 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

233

Gene Sequence Input Formatting and

MapReduce Computing

Xiaolong Feng, Jing Gao*

College of Computer and Information Engineering

Inner Mongolia Agricultural University

Hohhot 010018, China

E-mails: fengxl@imau.edu.cn, gaojing@imau.edu.cn

*Corresponding author

Received: October 30, 2018 Accepted: April 25, 2019

 Published: June 30, 2019

Abstract: Considering the limitations of the application programming interface (API) of

Hadoop in gene sequence computing, this paper puts forward an input formatting method that

reads the format of gene sequence as key-value pairs in the form of records. This method relies

on the rewriting of Hadoop source code, which is an extension of platform function, and

eliminates the need to preprocess data with other tools. On this basis, a MapReduce computing

model was designed for distributed parallel computing of gene sequence alignment tasks.

Experimental verification shows that the proposed method can read many kinds of gene

sequence files effectively on Hadoop, and the proposed model can realize distributed parallel

computing of gene sequence alignment. The research findings provide a valuable reference

for bioinformatics computing tasks on Hadoop platform.

Keywords: Input formatting, MapReduce, Gene sequence, Sequence alignment, Short reads

mapping.

Introduction
Gene sequence computing mainly deals with big data. The large data scale poses a huge

computing load, requiring a long time to process. This calls for the improvement of big data

technologies [7]. One of the popular big data processing frameworks is called Hadoop, which

allows data to be partitioned and computed separately on each node in the cluster. Thus, this

distributed computing platform is applicable to many gene computing tasks [14]. However,

Hadoop only offers a general solution to big data problems, failing to meet the specific needs

of gene sequence computing. In fact, there is not yet any stable, efficient and scalable distributed

parallel computing model for gene sequence processing.

To make up for the gap, this paper designs a suitable gene sequence input formatting method

and a MapReduce computing model based on Hadoop platform, aiming to facilitate the

development of bioinformatics computing applications with an integrated research tool.

The proposed solution gives full play to the advantages of Hadoop in distributed parallel

computing and reduces the time consumption of bioinformatics computation.

Research background
Hadoop is a popular distributed framework for big data processing, which is highly reliable,

scalable, efficient, fault-tolerant and cost-effective [4]. The framework mainly consists of the

Hadoop distributed file system (HDFS), Hadoop YARN and Hadoop MapReduce. Specifically,

the HDFS is a distributed file system that stores files with data blocks in distributed cluster, and

ensures the data validity with a good fault-tolerance mechanism. The YARN is a resource

scheduling system that properly allocates CPU, memory and IO resources from the cluster to

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

234

different tasks, and ensures the resource exclusiveness in task execution. The MapReduce is a

two-phase distributed computing system (the Map phase maps data from one key-value pair to

another, and the Reduce phase aggregates data with the same key) and a programming model

for distributed systems.

Compared with the message passing interface (MPI), Hadoop can complete each task locally

on storage nodes rather than share memory in the storage area network (SAN), eliminating the

need to consider the underlying data flow, fault tolerance and parallelism. In addition, Hadoop

cluster is built in the data center connected by high-speed network, with the same architecture

and management platform, while grid computing runs on heterogeneous platforms with varied

network bandwidth. The above comparisons show that Hadoop is a desirable tool for

bioinformatics computing, in light of the data scale of gene sequence, the features of the task

and the cost of implementation.

The information of genetic sequence often consists of multi-line characters with a fixed format.

The commonly used storage formats for nucleotide and amino acid sequences are FASTQ and

FASTA, both of which use ASCII characters to represent biological information. In gene

sequence computing, the basic unit of data processing involves multiple lines. However, in the

application programming interface (API) of Hadoop, the input from files is usually read by

single line, i.e. the basic unit of data processing is a single line. It is necessary to make data

processing tools both recognizable by Hadoop and satisfy the distributed parallel computing of

gene sequence processing. Since the processing data need to be further processed in

MapReduce, the format processing method should also be optimized to reduce the complexity

and time consumption of MapReduce algorithm.

Literature review
Several big data techniques have been applied to gene sequence computing, such as Big Data-

Based Burrows-Wheeler Aligner (BigBWA) [1], Halvade [5] and Seal [13].

BigBWA is the latest parallel aligner of gene sequence, with better performance and scalability

than other gene aligners. Compared with the traditional aligners, BigBWA can execute gene

sequence alignment in parallel with original source code of aligner, and significantly enhance

the performance of gene sequence alignment algorithm. Nevertheless, the data must be

formatted (e.g., pair-end sequence merging and tag insertion) externally with Python tools

before task submission.

Halvade is a gene sequence alignment framework based on Hadoop 2.0 (java). In the Map

phase, the data are split into several parts, and the alignment algorithm is invoked for sequence

alignment; in the reduce phase, multiple processing programs are called to complete other tasks

of gene sequence analysis. Nonetheless, the multi-threaded approach neither supports

distributed expansion nor conforms to the computing platform, because the data input and

distribution in gene sequence alignment are executed by a platform-independent data

distribution program called Halvade Uploader.

Seal is a top-layer application based on Hadoop platform. This tool, developed with Python,

mainly implements MapReduce and HDFS operations. The data also need to be formatted by

Python before input.

All the above tools rely on Hadoop’s ability of distributed parallel computing to parallelize

computing tasks, and outshine serial programs in the performance of gene computing algorithm.

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

235

However, there are some details in the workflow that are unsuitable or inconvenient to be solved

by the Hadoop API. Some scholars have resorted to third-party programs or independent

applications, but sacrificed the model uniformly and computing efficiency.

To solve the problem, some scholars have changed the original format of gene sequence files,

making the gene sequence easily to identify in the computing model and suitable for processing

with Hadoop API. Taking the BigBWA for instance, the markers < seq >...sequence content...

</ seq > were added at the start and the end of a single-ended multi-line sequence, and the

markers < part >...sequence content... </ part > were added to a pair-end sequence.

After tagging, the sequence content in the computing model was easier to identify, and the

model overhead was increased. In data interpretation, the recognized sequence markers need to

be removed before reaching the alignment algorithm. In general, the data were preprocessed

with tools like Python, shell program and standalone applications, which are independent of

Hadoop platform.

Inspired by the previous research, this paper puts forward a gene sequence input formatting

method based on rewriting Hadoop source code. The rewriting enables Hadoop to adapt to the

processing of gene sequences. By this method, the data are inputted into computing models

without the aid of third-party tools. Next, a new MapReduce computing model was designed

for the distributed parallel computing of gene sequence alignment. The proposed strategy

eliminates data preprocessing through input formatting and reduces the overhead of computing

model in data format processing, thus enhancing the efficiency of parallel computing.

Materials and methods

Problem description
Taking FASTQ format (Table 1) as an example, the gene sequence file is a fixed-structure text

file containing ASCII characters [3]. Each gene sequence generally consists of four lines: the

first line is the sequence ID and basic information, starting with “@”; the second line is

sequence content; the third line starts with “+”, followed by sequence ID and description

information; the fourth line is the quality of the sequence content in the second line.

Table 1. A typical FASTQ file

@ERR000589.1.1 EAS139_45:5:1:1:691 length=51

NAGTTTTTATACGAAGATGTTTCCTTTTCTACCTTTGGTCTCAAAGCGATT

+ERR000589.1.1 EAS139_45:5:1:1:691 length=51

!IIIIIIII?IIG7;I0>69@:0@/8.DA?*0/$682++6I4*++8+0(2/

@ERR000589.2.1 EAS139_45:5:1:1:1580 length=51

NAGATTTTTTTCCCACTCTGTGGGTTGTCTGTTTACTCTGCTGACTGTTAC

+ERR000589.2.1 EAS139_45:5:1:1:1580 length=51

!IIIII7I@7IIIIIICIII:II5-H;.2@4+@101?7-;63+&*62+0#.

In Hadoop, data flows in the form of key-value pairs from files to the Map phase and then to

the reduce phase. The FASTQ file can be read by the line-by-line method in Hadoop API

(Table 2), with the offset of the line as the key and the content of the line as the value.

After the line-by-line reading, the data are subjected to shuffling, sorting and partitioning.

However, the information of the same gene sequence will be separated from each other, making

it impossible to complete the subsequent operations. To solve the problem, all information of a

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

236

gene sequence should be treated as the basic unit of data operation, that is, to read data from a

file in the form of gene record. For the input data in Table 1, the target format is to take the

offset of the first line of a gene sequence as the key, and all the contents of a gene sequence as

the value (Table 3).

Table 2. Line-by-line reading of the FASTQ file

Key Value

0 @ERR000589.1.1 EAS139_45:5:1:1:691 length=51

45 NAGTTTTTATACGAAGATGTTTCCTTTTCTACCTTTGGTCTCAAAGCGATT

97 +ERR000589.1.1 EAS139_45:5:1:1:691 length=51

142 !IIIIIIII?IIG7;I0>69@:0@/8.DA?*0/$682++6I4*++8+0(2/

Table 3. Target format for gene sequence input in MapReduce model

Key Value

0 ERR000589.1.1 EAS139_45:5:1:1:691 length=51

NAGTTTTTATACGAAGATGTTTCCTTTTCTACCTTTGGTCTCAAAGCGATT

+ERR000589.1.1 EAS139_45:5:1:1:691 length=51

!IIIIIIII?IIG7;I0>69@:0@/8.DA?*0/$682++6I4*++8+0(2/

194 @ERR000589.2.1 EAS139_45:5:1:1:1580 length=51

NAGATTTTTTTCCCACTCTGTGGGTTGTCTGTTTACTCTGCTGACTGTTAC

+ERR000589.2.1 EAS139_45:5:1:1:1580 length=51

!IIIII7I@7IIIIIICIII:II5-H;.2@4+@101?7-;63+&*62+0#.

To realize the target formation, it is necessary to rewrite Hadoop’s source code and design new

data input algorithms and classes, which satisfy the special requirements of gene record.

Considering the numerous file formats in gene sequence computing, the main difficulty lies in

making the data input method compatible with as many file formats as possible, that is, creating

a suitable data input algorithm. Once the file enters the gene record, the distributed parallel

computing of gene sequence can be performed on the MapReduce computing model.

In this paper, the computation task of gene short reads sequence mapping is cited as an example.

The short reads mapping, as a common gene sequence alignment, mainly compares various

short sequences with reference genome, aiming to disclose the relationship between short

sequence and reference genome [10].

To fulfill the task, the first step of MapReduce computing model is to split many gene records

into data blocks and allocate them to the multiple nodes of distributed cluster. Then, each node

maps the short reads sequence to the reference sequence separately, forming its own result file.

Finally, the result files are aggregated into a single result file.

Owing to the difference in gene data sequencing, the input data may be either single-end

sequence or pair-end sequence [11]. In the former case, a single data file should be distributed

to each node. In the latter case, two data files should be allocated to each node. These two cases

reflect the requirement of alignment algorithm [2]. Through formatting of the input data, gene

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

237

sequences will not be segmented in data operation, eliminating the abnormalities induced by

inconsistent data formats in distributed computing.

Input formatting method
In the recent version of Hadoop 2.7.7 [9], the InputFormat interface provides several methods

for input data segmentation, which divide the data into splits for a Map task, and then complete

the Map processing of all data. These methods include FileInputFormat class for file input,

DBInputFormat class for database input, etc.

The FileInputFormat class contains TextInputFormat for text file, SequenceFileInputFormat

for binary file, FiexedLengthInputFormat for fixed-length file, KeyValueTextInputFormat for

the file of key-value pair format, NLineInputFormat for the file with specified number of lines

per split, and CombineFileInputFormat for the file merged from small files [6].

The input format of TextInputFormat class is the closest to the target format of gene sequence

input, while the other classes are not suitable for gene sequence. The gene sequence file has the

following features: the file is a text file containing ASCII characters, the number of characters

is not fixed per line, no key and value can be identified in the file content, and the file consists

of multiple gene sequences, each of which encompasses multiple lines and should be treated as

an inseparable unit. The inheritance relationship of the TextInputFormat class and its related

classes in Hadoop is shown in Fig. 1, which only lists the attributes and methods related to the

design objectives.

+createRecordReader()
+isSplitable()

FileInputFormat

+createRecordReader() : RecordReader
+isSplitable() : boolean

TextInputFormat

+LineRecordReader()
+nextKeyValue()() : boolean

-in : SplitLineReader
-recordDelimiterBytes : byte[]
-key : LongWritable
-value : Text

LineRecordReader

+SplitLineReader()
+needAdditionalRecordAfterSplit() : boolean

SplitLineReader

+readLine() : int
+readCustomLine() : int
+readDefaultLine() : int

LineReaderRecordReader

Fig. 1 Inheritance diagram of textInputFormat and its related classes in Hadoop 2.7.7

The TextInputFormat class in Hadoop source code inherits from the FileInputFormat class and

overrides the createRecordReader() method in the super class for record creation, which returns

the object of the LineRecordReader class. The LineRecordReader class is a subclass of

RecordReader, which has a data member of SplitLineReader type named “in”. This data

member can invoke readLine() method to read text files line by line. The readLine() method is

not overridden in the SplitLineReader class, but inherits from its super class, LineReader.

Following the principle of TextInputFormat class, a series of new classes can be created for the

input formatting of gene sequences, and the line-by-line reading of text files can be changed

into multi-line reading. As shown in Fig. 2, the new classes can improve the original functions

without being separated from the Hadoop environment. In this way, the new classes are

compatible with the new data input format, without affecting the subsequent MapReduce

operations.

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

238

+isSplitable() : boolean
+createRecordReader() : RecordReader

GeneRecordFormat

+createRecordReader()
+isSplitable()

FileInputFormat

+GeneRecordReader()
+nextKeyValue() : boolean

-in : GeneSplitLineReader
-recordDelimiterBytes : byte[]
-key : LongWritable
-value : Text

GeneRecordReader

RecordReader

+readLine() : int
+readCustomLine() : int
+readDefaultLine() : int

GeneLineReader

+GeneSplitLineReader()
+needAdditionalRecordAfterSplit() : boolean

GeneSplitLineReader

Fig. 2 Inheritance diagram of gene input formatting classes

The input formatting of gene sequence in Hadoop is designed as follows:

 Define GeneRecordFormat class, which inherits from FileInputFormat class and

override createRecordReader() and isSplitable() methods; Return GeneLineRecordReader

object in createRecordReader() method which can receive a parameter of delimiter.

 Define GeneRecordReader class, which inherits from RecordReader class.

Use NextKeyValue() method in the source code of LineRecordReader class to read key-value

pairs in data files. Run method nextKeyValue() once to read a line of data files by invoking the

readLine() method. Design a new nextKeyValue() method in GeneRecordReader, allowing the

method to read multiple lines of data files every time it runs, such as Algorithms 1 and 2.

 Define GeneLineReader class, which implements Closeable interface. In the

LineReader source code, there are many data line reading methods, namely, readLine(),

readCustomLine(), readDefaultLine(), which empty the cache after reading one line of content,

making it impossible to accumulate multiple lines of content. Thus, design a new reading

method in the GeneLineReader class, which reads multiple lines without emptying the cache

until completing the reading of multi-line content of a sequence. Use a flag variable, whose

values are passed in by the input formatting algorithm in the nextKeyValue() method, to

determine whether to empty the cache.

 Define GeneSplitLineReader class, which inherits from GeneLineReader class, and

create constructor and needAdditionalRecordAfterSplit() method.

 Define GeneCompressedSplitLineReader and GeneUncompressedSplitLineReader

classes, which inherit from GeneSplitLineReader, and use them for data compression.

The gene input formatting algorithm should be compatible with the running environment of the

original program. By analyzing the source code, the author summarized the requiremetns on

the data input algorithm in the new class: input formatting algorithms in nextKeyValue()

Method of GeneRecordReader Class, invoke method nextKeyValue() once to read a gene

record, clear the cache before reading a new gene record, keep the cache when reading the lines

in a gene record, invoke method nextKeyValue()once and call readLine() many times, and keep

the number of lines in a gene record constant or identifiable by features.

Considering these requirements, two input formatting algorithms were designed to fit in with

more formats of gene sequence files: the input formatting algorithm based on line features

(Algorithm 1) and the input formatting algorithm based on specified number of lines

(Algorithm 2).

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

239

Specifically, Algorithm 1 was set up based on identifiable features of data. For example, in a

FASTQ file, a gene record has a distinct identifiable feature. The first and end lines respectively

starts with “@” and “!”. The Boolean variable flag in the algorithm determines whether the

cache is emptied (the cache is emptied when the variable is true and retained when the variable

is false). The variable was initialized as true and set to false when the first line of a record was

read, allowing the multi-line content of a record to accumulate into the value variable.

To identify the features of new line, the lastvalue variable was defined to record the values

before value accumulation. This variable can locate the new line of value and solve the problem

of duplicate or empty lines. The multiple lines of a record were read by invoking readLine()

method in a loop, and the start and end of the loop were controlled through line feature

identification. Thus, Algorithm 1 can recognize the record clearly, even if the number of lines

varies with records.

Algorithm 2 was designed based on neat record format. The specified number of lines was read

in a loop, forming a record. The reading errors will occur if there are blank lines or inconsistent

formats in the data file. The flag variable plays the same role as in Algorithm 1. The cache

content is retained after reading the first line of the record.

Algorithm 1. Input formatting algorithm based on line features

flag = true // Cache empty flag

lastvalue = "" // Record cache before update

value = "" // Record cache

while(true){

 value += readLine(flag) // While flag is true, clear the cache before reading

 if (value.length() > lastvalue.length()){

 Extracting features of new line

 Lastvalue = value; // update lastvalue

 }

 if (Satisfying the first line judgment condition)

 flag = false

 if (Satisfying the last line judgment condition)

 break

}

Algorithm 2. Input formatting algorithm based on specified number of lines

flag = true // Cache empty flag

value ="" // Record cache

//rowCount is count of lines per record

for (i = 1 to rowCount){

 value += readLine(flag) // While flag is true, clear the cache before reading

 if (i == 1) // Begin to retain the cache

 flag = false;

}

Obviously, the two algorithms were designed for data files with different features. Each of them

has its own merits and defects. Based on the features of record lines, Algorithm 1 can effectively

control blank lines and duplicate lines, but cannot read non-characteristic lines. Neither can it

read records in different formats, before adjusting the condition of feature judgment.

This algorithm is generally suitable for data files with different number of lines, if each line

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

240

contains identifiable features. With a constant number of lines, Algorithm 2 cannot solve the

problem of empty and repeated lines. To fit different record formats, the number of loops must

be adjusted. This algorithm applies to data files with neat format, i.e. the number of lines per

record is fixed with no blank line.

MapReduce computing model
In this paper, the Hadoop computing model is designed based on the functions and

programming rules of the platform. After input formatting, the task goes through the following

five phases: Map, Data partitioning, Merging, Reduce and Alignment [12]. Below are the

details on each phase.

In the Map phase, a tag is added to the pair-end sequence, indicating which end the sequence

belongs to, but not added to the single-end sequence. After adding the end-indicator, the left-

and right-ends of the pair-end sequence form a pair with the same key, laying the basis for

subsequent identification. The processing in this phase is summarized as Algorithm 3.

Algorithm 3. Map algorithm

INPUT: (key, value)

OUTPUT: (key, value’)

if (value stores a single-end sequence)

 value’ = value

if (value stores a pair-end sequence){

 if (value comes from the left-end sequence file)

 value’ = value + left-end tag

 if (value comes from the right-end sequence file)

 value’ = value + right-end tag

}

Context.write(key, value’)

In the phase of data partitioning, the partitioning algorithm embedded in Hadoop can distribute

data according to the demand [8]. Note that the gene sequence alignment is under the following

constraints: the number of left-end sequences equals that of right-end sequences in each

partition; the sequences in a partition remains in the same order for sequence files; the left- and

right-ends of a pair-end sequences must be allocated to the same partition. The processing in

this phase is summarized as Algorithm 4.

Algorithm 4. Partitioning algorithm

INPUT: (key, value’)

OUTPUT: partitionNum

fileSize = left-end seq file’ size //the same as right-end seq file

partitionNum = 0

while (partitionNum < n){

 if (key < (partitionNum + 1)fileSize/n)

 return partitionNum

 partitionNum++

}

return n – 1

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

241

Firstly, the offset interval is computed by the size of sequence file and the number of data

partitions. Then, the partition number is calculated with the key of the key-value pairs, which

represents the position of a sequence in the sequence file. Meanwhile, the partition number is

obtained in light of the offset interval of the key. In addition, the left- and right-ends of the pair-

end sequence are assigned to the same partition, as they have the same key at the same position.

In the merging phase, the functions embedded in Hadoop are adopted to shuffle, sort and group

the data in a partition according to the key. In this way, the sequences with the same key are

merged into the same dataset. For a pair-end sequence, a key corresponds to two values, and

the form of key-value pair is like (key, value’ []). In each partition, all sequences are sorted to

remain in the same order for the sequence file.

In the Reduce phase, the reducer function receives a data partition aggregated by key.

If the input is a single-end sequence, all sequences in the partition are written to the local file.

If the input is a pair-end sequence, the sequence is written to different local files according to

the end-indicator. This process is summed up as Algorithm 5. At the end of this phase, a single-

end sequence outputs a single local file, while a pair-end sequence outputs two local files.

Algorithm 5. Reduce algorithm

INPUT: (key, value’[])

OUTPUT: left_part_i, right_part_i OR part_i

//Output is local file, i represents node number

for (value: value’[]){

 if (value has a left-end tag)

 MutiOutput.write(“left”, value)

 else if (value has a right-end tag)

 MutiOutput.write(“right”, value)

 else

 Context.write(value)

}

In the alignment phase, the sequence alignment task is initiated in the cleanup() function of the

reducer and invoked by shell command, after the generation of the local data file(s).

The alignment task is performed in parallel on each node in the cluster. The single- and pair-

end alignment algorithms are launched to process the single and pair-end sequences,

respectively. After the completion of the tasks on a node, the result files are stored in the HDFS.

When the alignment tasks of all nodes are completed, the multiple result files in the HDFS are

merged into one file.

Results and discussion
Experimental design

The following experiments were designed to verify the performance of our gene sequence input

formatting method and MapReduce computing model. The gene data were extracted from the

1000 Genome Projects [15]. The 3.3G GRCh38.p12_genomic.fna was taken as the reference

genome, while two datasets, ERR000589 and SRR062634, were selected as the short reads

sequence. The specific information of the sequence is shown in Table 4.

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

242

Table 4. Short reads sequence datasets

Tag Name Number of reads Read length, [bp] Size, [GB]

D1 NA12750/ERR000589 1.2×107 51 5.2

D2 HG00096/SRR062634 6.7×106 200 3.5

As shown in Table 4, D1 is composed of pair-end sequences with a length of 51bp. It is suitable

for BWA backtrack algorithm. D2 is composed of single-end sequences with a length of

200 bp. It is suitable for BWA MEM algorithm. The two datasets differ in size, sequence length,

sequencing method and alignment algorithm, indicating that the datasets were selected

appropriately.

The test cluster is a Hadoop cluster of one name node and eight data nodes. Each node is a

VMware virtual machine with 8-core CPU, 8G memory and 1T hard disk. The Hadoop uses the

version of 2.7.3. The operating system is Red Hat Enterprise Linux 6.5. During the experiments,

the BWA mapping was performed with D1 and D2 as inputs. The same computing tasks were

run on Hadoop clusters with 1, 2, 4, 6, and 8 work nodes, respectively. The time consumption,

speedup and efficiency of each task were measured to evaluate the model performance.

Results analysis
All tasks were completed smoothly. The experimental results were the same as those of single-

machine operation, but achieved at a much shorter time. This means the gene sequence input

formatting method is valid and stable, and the computing model based on this method enjoys a

good performance. Table 5 shows the time consumption, speedup and efficiency of our model

on D1 and D2 at different number of work nodes. It can be seen that, despite the different

amounts of data, the two tasks consumed a similar length of time on the same number of nodes.

As shown in Figs. 3-5, the number of nodes is positively correlated with the time consumption

and speedup of the two tasks and negatively with the efficiency of parallel computing.

The experimental data show that the computing model greatly reduced the time consumption

for datasets of different sizes and different alignment algorithms, and improved the speedup

ratio and parallel computing efficiency.

Table 5. Performance comparison

Content Dataset Number of nodes

 1 2 4 6 8

Time consumption, (min) D1 258.8 131.1 67.8 45.3 38.5

 D2 249.6 127.1 72.8 49.5 36.7

Speedup D1 1.0 2.0 3.8 5.7 6.7

 D2 1.0 2.0 3.4 5.0 6.8

Efficiency D1 1.00 1.00 0.95 0.95 0.84

 D2 1.00 1.00 0.85 0.83 0.85

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

243

Fig. 3 Comparison of time consumption of D1 and D2

Fig. 4 Comparison of speedup of D1 and D2

The proposed computing model was further contrasted against several excellent parallel

computing methods, which have been proved as capable of improving the performance of gene

sequence alignment. All the experiments were performed using the same dataset on Hadoop

clusters with different configurations. The grouping experiments were performed at 1, 2, 4, 6

and 8 nodes. Since these algorithms use different computing environments, the time

consumption was not compared in the same dataset. In terms of the speedup ratio of parallel

computing (Fig. 6), the proposed computing model had certain advantages over the contrastive

algorithms. The results show that gene sequence input formatting method both saves the time

of data preprocessing and reduces the burden of MapReduce computing model, improving the

efficiency of parallel computing.

Fig. 5 Comparison of computing efficiency of D1, D2 and optimal

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

244

Fig. 6 Speedup comparison of different parallel methods

Conclusions
The proposed method of gene sequence input formatting can read many kinds of gene sequence

files effectively on Hadoop, and transmit them to the computing model to complete the

calculation. This method eliminates the need to preprocess data before submitting tasks, ensures

the integrity and unity of Hadoop applications, and saves the time of interactive processing.

It is safe to say that our method has some reference value for the record file reading in other

fields.

Our MapReduce computing model, which is based on the above method, was proved

experimentally to realize distributed parallel computing of gene sequence alignment.

This model makes gene sequence alignment scalable in distributed cluster, and significantly

reduces the time consumption of the same task from the level of single computer. In addition,

the model has a better speedup ratio of parallel computing than other gene sequence parallel

computing approaches.

For similar tasks, the parallel computing plan can be designed according to our integrated

solution: the input formatting classes should be designed according to Fig. 2, the input algorithm

should be selected from Algorithms 1 and 2 for input formatting; the MapReduce computing

model should be designed with reference to Algorithms 3, 4 and 5.

Acknowledgements
This work was supported by National Natural Science Foundation of China project 61462070.

References
1. Abuín J. M., J. C. Pichel, T. F. Pena, J. Amiqo (2015). BigBWA: Approaching the Burrows-

Wheeler Aligner to Big Data Technologies, Bioinformatics, 31(24), 4003-4005.

2. Almeida J. S., A. Grüneberg, W. Maass, S. Vinga (2012). Fractal MapReduce

Decomposition of Sequence Alignment, Algorithms for Molecular Biology, 7(1), 1-12.

3. Cock P. J., C. J. Fields, N. Goto, M. L. Heuer, P. M. Rice (2009). The Sanger FASTQ File

Format for Sequences with Quality Scores and the Solexa/Illumina FASTQ Variants,

Nucleic Acids Research, 38(6), 1767-1771.

4. Dean J., S. Ghemawat (2008). MapReduce: Simplified Data Processing on Large Clusters,

Proceedings of the 6th Conference on Symposium on Opearting Systems Design &

Implementation, 51(1), 107-113.

5. Decap D., J. Reumers, C. Herzeel, P. Costanza, J. Fostier (2015). Halvade: Scalable

Sequence Analysis with MapReduce, Bioinformatics, 31(15), 2482-2488.

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

245

6. Gattiker A., F. H. Gebara, H. P. Hofstee, J. D. hayes, A. hylick (2013). Big Data text-

oriented Benchmark Creation for Hadoop, IBM Journal of Research & Development,

57(3/4), 1-6.

7. Ghoneimy S., S. A. El-Seoud (2016). A MapReduce Framework for DNA Sequencing Data

Processing, International Journal of Recent Contributions from Engineering, Science & IT,

4(4), 11-20.

8. Gufler B., N. Augsten, A. Reiser, A. Kemper (2012). The Partition Cost Model for Load

Balancing in MapReduce, Cloud Computing and Services Science, 371-387.

9. Apache Hadoop Software Library, http://hadoop.apache.org/ (Last access 20 June 2018).

10. Li H. (2009). The Sequence Alignment / Map (SAM) Format, Bioinformatics, 25(1 Pt 2),

1653-1654.

11. Metzker M. L. (2010). Sequencing Technologies – the Next Generation, Nature Reviews

Genetics, 11(1), 31-46.

12. Pandey R. V., S. Christian (2013). DistMap: A Toolkit for Distributed Short Read Mapping

on a Hadoop Cluster, PLOS ONE, 8(8), e72614.

13. Pireddu L., S. Leo, G. Zanetti (2011). SEAL: A Distributed Short Read Mapping and

Duplicate Removal Tool, Bioinformatics, 27(15), 2159-2160.

14. Schatz M. C. (2009). CloudBurst: Highly Sensitive Read Mapping with MapReduce,

Bioinformatics, 25(11), 1363-1369.

15. Watson J. D. (1990). The Human Genome Project: Past, Present and Future, Science,

248(4951), 44-49.

http://hadoop.apache.org/

 INT. J. BIOAUTOMATION, 2019, 23(2), 233-246 doi: 10.7546/ijba.2019.23.2.000675

246

Xiaolong Feng, Ph.D. Student

E-mail: fengxl@imau.edu.cn

Xiaolong Feng, Ph.D. candidate. His main research directions are big

data processing and bioinformatics computing.

Prof. Jing Gao, Ph.D.

E-mail: gaojing@imau.edu.cn

Jing Gao, Ph.D., Professor, mainly engaged in cloud computing, big data

and agricultural informatization research.

© 2019 by the authors. Licensee Institute of Biophysics and Biomedical Engineering,

Bulgarian Academy of Sciences. This article is an open access article distributed under

the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

