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Abstract: The production of biogas in anaerobic fermentation is one of the most important 

interests in industrial applications for two main reasons: the elimination of organic waste 

and the production of renewable energy. The mentioned biotechnological process, which 

takes place inside of a continuous stirred tank bioreactor (CSTB), is described in this study 

by a two-step reaction scheme based on a second-order nonlinear model. After describing 

the dynamical model of the considered system, an adaptive gain sliding mode control 

(AGSMC) algorithm is proposed to regulate the concentration of some pollutants in a waste 

treatment process at a predefined constant (low) level. The stability is shown by the 

Lyapunov theory and the control action used did not exhibit any chattering behaviour. 

Several simulation results are provided to validate the proposed strategy and illustrate the 

overall performance improvements.  

 

Keywords: Nonlinear systems, Biotechnological process, Adaptive gain sliding mode 

control, Stability.  

 

Introduction 
In the recent industry, the growth of advanced control algorithms for biotechnological 

processes is troubled by major difficulties [1, 8, 14]. These processes are toughly nonlinear 

and additionally the process parameters are highly uncertain. Another difficulty lies mostly in 

the lack, of low-cost and reliable measurement instrumentation.  

 

Numerous methods have been proposed in the literature in order to overcome these 

difficulties such as adaptive approach [1, 7] and artificial intelligence (AI)-based strategies 

such as fuzzy logic controller [4, 9], neural network [3, 11] and genetic algorithm [17]. 

The adaptive control provides a high performance for the bioprocess. Nevertheless, the 

occurrence of large and abrupt changes in the process parameters might lead to the failure of 

the control process. Furthermore, the application of AI-based strategies can lead to better 

performance of the bioprocess, and can offer good responses. However, the major problem of 

these strategies is the high computational burden, which will lead to increase the controllers 

cost. 

 

During the last few years, the sliding mode control (SMC) algorithm has rapid expansion due 

to their advantages such as robustness, compact implementation, controller order reduction, 

low computational complexity, and insensitive to parameter changes. The SMC has been 
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extensively accepted as an effective technique for the control of uncertain nonlinear systems 

[15, 18]. Where the conventional SMC has been successfully applied in the electrical and 

mechanical process [21, 23]. This strategy was recently extended to the chemical process 

[16]. Moreover, some attempts for the implementation of the SMC [2, 5, 20] and SMC 

combined with model-reference adaptive control laws [10, 13, 19] are suggested for 

bioprocess. These strategies offer good performance in the occurrence of parameter 

uncertainties and external disturbances. 

 

For this purpose, an adaptation law is introduced in this paper to define the suitable switching 

gain in the discontinuous part of a conventional developed SMC controller for a nonlinear 

biotechnological process. Where the main contribution of this paper is to overcome both 

problems of perturbation rejection and chattering attenuation in sliding mode control strategy 

using adaptive control method. Thus, the proposed adaptive controller is composed of a 

classical SMC continuous part and a discontinuous part with an adaptive gain. The stability 

and convergence properties of this controller are proved through Lyapunov method. The main 

advantages of the use SMC algorithm with an adaptive gain is the enhancement of the system 

performances, mainly the system robustness and the settling time of the classical SMC 

technique. A complete simulation model for the proposed controller is developed with the 

MATLAB environment. Simulation results confirm the feasibility and performance 

improvement of the proposed controller at different operating conditions, compared to the 

conventional SMC.  

 

Dynamical model of the bioprocess  
In practice, the biotechnological process control is often limited to the regulation of the pH 

and temperature at constant values favourable to the microbial growth. There is, however, no 

doubt that the control of the biological state variables (biomass, substrates, etc.) can help to 

increase the performance. To develop and apply advanced control strategies for these 

biological variables, it is obligatory to obtain a useful dynamical model. 

 

By means of a mass balance of the components inside the bioreactor and obeying some 

modelling rules, a dynamical state-space model of a prototype continuous bioprocess that 

takes place in a CSTB is defined by the following nonlinear system [1]:  
 

1

( )

( )

X µ S X DX

S K µ S X DS u

e X C

  


   
  


, (1) 

 

where X represents the biomass concentration, [g/l]; S is the substrate concentration, [g/l];  

D is the dilution rate, [h-1]; e is the error; K1 is the yield coefficient. The control variable u is 

defined as the substrate supply rate to the reactor per unit of volume, [g/l·h], and C represents 

the desired concentration of biomass, [g/l]. For this specific bioprocess, the reaction rate is of 

the form φ(X, S) = µ(S)X, where µ(S) is the specific growth rate (a nonlinear function of S). 

There are numerous models for the specific growth rate, depending on the type of 

microorganisms involved in the reaction. One of the most common models for the specific 

growth rate is the Monod kinetic model: 
 

*

( )
( )M

µ S
µ s

K S



, (2) 
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where *µ  is the maximum specific growth rate and KM is the Michaelis-Menten constant.  

 

The control goal for bioprocess is to control the concentration error e to zero in order that the 

biomass concentration value X should converge to a prescribed set-point value specified by 

the constant C. 

 

SMC and adaptive gain SMC controllers  
This section gives the detail of the SMC design of the bioprocess defined by the dynamical 

process (Eqs. (1) and (2)). In general, the SMC approach usually consists of two steps [18, 

21]: 

 Step 1: Sliding manifold design: define a fictitious output variable (referred to as the 

“sliding variable”) depending on the measurable output and a certain number of its 

derivatives, whose vanishing guarantees that the resulting system behavior (i.e. the 

associated zero-dynamics) meets the desired performance specifications. 

 Step 2: Controller design: define a control action that steers to zero in finite time the 

sliding variable, despite of model uncertainties and disturbances. 

 

SMC law 
As mentioned above, the control objective for the waste treatment processes is to control the 

concentration of some pollutants at a constant low level. So, one can consider the following 

auxiliary output function, which is called in this case the sliding surface: 
 

( ) ( )e e µ S X DX X C        , (3) 

 

where σ is the sliding surface and λ is a positive constant. 

 

It has a relative degree one with respect to the control input. Thus, one can use first order 

sliding mode control (FOSMC) algorithm to ensure the robust stabilization of the considered 

manifold in Eq. (3). The first time derivative of the output in Eq. (3) is given as:  
 

 
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where  
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Eq. (4) can be expressed as follows:  
 

( )      µ S X u u d u  (6) 

 

with  
 

    1( ) ( ) ( ) ( ) ,
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where the unknown function d is introduced to represent all model uncertainties and external 

perturbations.  

 

The functions Ψ and Γ are supposed to be such that:  
 

,

0 .

M

m M

  


    

 (8) 

 

It is assumed that ΨM, Γm and ΓM exist but are unknown. 

 

The best approximation of the control law that would achieve 0  and ensures the robustness 

of the controlled system is:  
 

eq swu u u   (9) 

 

with  
 

    1  ( ) ( ) ( ) ( )       equ µ S X K µ S X DS µ S D µ S D X  (10) 

 

and  
 

sgn ,swu K K d  , (11) 

 

where K is a strictly positive scalar.  

 

The control input u in such case may be defined as:  
 

 
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Adaptive SMC law 
The performances of the above discussed SMC algorithm depends on the suitable selection of 

the gain K. Due to the high level of nonlinearity in the considered system and the presence of 

external disturbances, we can choose to increase the switching gain K to overcome the precise 

stabilization and the perturbation rejection problems in control design. However, higher 

coefficient may produce a larger chattering phenomenon, with an amplitude proportional to 

the discontinuity magnitude in the controller. Thus, the overall controller is composed of 

continuous part, as in Eq. (9), and a discontinuous part with an adaptive gain. 

 

The gain K is adapted to the sliding mode output according to the following algorithm:  
 

1

0

2 3

. ( , ) ( , ) 0,
( )

. ( , ) ,

t

K x t dt if x t
K t

K K if x t
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 (13) 
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where  
 

 sgn ( , )x t     (14) 

 

and 1K , 2K  and 3K  are constants and vary when there is a change in the surface sign at time 

*t . If *t is the largest time value and *t   denotes the time just before *t , * *( ),x t t   
 
 

 

and * *( ),x t t  
 
 

 for a suitable positive parameter  . 

  

Stability analysis  
We start with the study of stability of the classical SMC and then the study of stability of the 

adaptive SMC.  

 

The stability of the system under the control input (Eq. (12)) may be shown by choosing the 

following Lyapunov function that is positive definite:  
 

21
0

2
V  . (15) 

 

First time derivative is as follows:  
  

V   . (16) 

 

Introducing u in Eq. (16), one can get:  
 

'

1(( ( )( ( ) )) ( ( ) )( ( ) ) )V µ S K µ S X DS u X µ S D µ S D X         , (17) 

 

then  
 

( sgn ) 0V K K      , (18) 

 

which implies the stability of the studied system. 

 

Remark 1: The Singularity problem may be faced in the control design when X = 0 is devoid 

of practical significance (X = 0 means no microorganisms and the life in the bioreactor is 

stopped). 

 

We go to study the stability in the case of adaptive gain SMC (AGSMC):  

 

 First case: ( , ) 0x t    

Consider the following Lyapunov candidate function, where K* is a positive constant: 
 

 
2

2 *1 1

2 2
V K K


    (19) 

 

and  
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 *
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Therefore  
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 (21) 

 

There always exists * 0K  such that * 0K K  for all 0t . It yields:  
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with *KM m    and
K m

K
  


   .  
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m
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, which yields 0  and 

0k . Then, we get:  
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 (23) 

 

with:  min 2, 2K    .  

 

 Second case: ( , )x t    

According to the developed theorem in [6], if K is large enough with respect to 

perturbations/uncertainties effects, then the proposed sliding mode control with the gain 

adaptation algorithm Eq. (13) allows maintaining responses of system on the sliding surface 

0  . Assumed that responses of system reach 0  , it means that K is large enough as 

required by theorem in [12]. Before, the sliding mode is established in system for all rt t  

(where rt  represents the reaching time of the sliding control). Therefore, the theorem is 

confirmed. From Eqs. (8) and (9), we can note that the main feature of this approach is that it 

does not require a priori the knowledge of control gain. The auto-tuning of the control 

parameter consists in increasing the control gain K, from an initial value, since a sliding mode 

is established. 
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Results and discussion 
The simulated control tasks considers the problem of stabilizing the output e to zero, which is 

equivalent to the biomass concentration X converging to a pre-specified constant reference 

value C, where the values considered for the process parameters [12] are 1K =12, D = 0.2 1h , 

* 12.1 h , 10 g/l Mµ K . In order to analyse the behaviour and to test the performance of the 

controllers, the following simulation cases are considered: 

 The SMC law Eq. (12) is implemented for the continuous bioprocess, with the control 

parameters K = 3, λ = 1, and the set-point for the biomass concentration C = 50 g/l. 

A step change in the set-point is provided from the initial value C = 50 g/l to the value 

C = 35 g/l. 

 Control input u and gain adaptation law K (t) (Eqs. (12) and (13)). Gain is initialized at 

K (0) = 10, its dynamics being tuned with 
1 10K  , 

3 1K   and 3   s. 

 

Test 1: Nominal case 
We consider the nominal case where the system model is known and no external disturbance 

signal affects the system. Figs. 1 and 2 depict the evolution of biomass concentration and the 

tracking error, respectively, of the nominal process under the above-discussed controllers. 

 

 
 

Fig. 1 a) Time response of biomass concentration with SMC and AGSMC;  

b) zoom view. 

 

Compared to the classical SMC, it is clear that the proposed algorithm allows achieving fast 

convergence of system to its desired reference in Fig. 1a and Fig. 2. Moreover, it is clearly 

seen from Fig. 1b that the AGSMC allows to attenuate the chattering phenomena 

characterizes the response of the system under a fixed gain SMC.  
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Fig. 2 Error evolution of biomass with SMC and AGSMC 

 

For the final value of substrate concentration S, the observed chattering phenomenon is 

always greater in the classical SM control as shown in Fig. 3. The final value of S is almost 

constant from 13 h and reaches a constant value of 1.05 g/l at 14 h in the proposed control 

(AGMSC). On the other hand, for the classical control (SMC), the reaching time of the final 

value is more than 19 h.  

 
b) 

Fig. 3 a) Time evolution of substrate concentration with SMC and AGSMC,  

b) zoom view. 

 

As for the substrate concentration S, the non-trivial equilibrium point Se is given by [22]: 
 

*
1.05M

e

K D
S

D
 


. (24) 

 

 a) 
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Fig. 4a highlights the evolution of the control signals in both cases. The final value of u is 

more oscillatory in the classical control law (SMC) and the proposed one (AGSMC)  

(Fig. 4b).  

 
        b) 

Fig. 4 a) Control action of the SMC and AGSMC; b) zoom view. 

 

The gain parameter variation (AGSMC) is shown in Fig. 5. In order to compensate quickly 

the abrupt change in the desired concentration of the biomass, in the time, an increased value 

of the gain is established. Moreover, when the biomass concentration reaches its desired 

value, the parameter gain decreases to a low value. The value gain proposed in [12] (K = 3) 

has been used for the classical control, meanwhile with adaptive control, as shown in Fig. 5, 

the value of this gain is generally equal to 1. 

 

Fig. 5 Variation of the controller AGSMC gain 

 

 

a) 
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Test 2: Perturbed case 
In order to evaluate the robustness of the proposed control algorithm (AGSMC) and to 

compare with the robustness of the classical control law (SMC), the system was considered in 

a second test to be subjected to a randomly distributed external disturbance of a maximum 

value 0.072, i.e. we add a noise at the first equation: 

 

( )X µ S X DX W    (25) 

 

with W is an external disturbance.  

 

Fig. 6 represents a comparative study between the nominal case and the perturbed one for 

system evolution under the classical (SMC) algorithm, where the noise has an effect on the 

biomass concentration response. The system evolution in both cases under the proposed 

(AGSMC) algorithm is shown in Fig. 7. As seen, the system performances are preserved 

under the proposed control approach in both cases.  

 

 
Fig. 6 Evolution of biomass concentration  

under SMC in perturbed and unperturbed case 

 

 

Fig. 7 Evolution of biomass concentration  

under AGSMC in perturbed and unperturbed case 
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Fig. 8 represents the time evolution of the substrate under the classical SMC and the proposed 

AGSMC in perturbation case. Concentration of substrate reaches the final value in the case 

AGSMC (at 17 h) before the case SMC (after 19 h). Fig. 9 depicts the variation of the 

controller gains in the perturbed and unperturbed cases. In the AGSMC control, it varies and 

takes into account the presence of noise. In the classical SMC control, K is constant. Fig. 10 

shows the control action of the SMC and AGSMC in perturbed case. The oscillation band is 

narrower with AGSMC control compared to the classical SMC control. 

 

 
          b) 

Fig. 8 a) Evolution of substrate concentration  

with SMC and ASMC in the perturbation case;  

b) zoom view. 

 

 

Fig. 9 Variation of the controller AGSMC gain  

in perturbed and unperturbed case 

 

 

a) 
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       b) 

Fig. 10 a) Control action of the SMC and AGSMC in perturbed case;  

b) zoom view. 

 

Conclusion 
In this paper an adaptive gain sliding mode controller has been developed for the accurate 

stabilization of a nonlinear biotechnological process. Firstly, a classical sliding mode control 

algorithm is developed. Then the appropriate control parameters are obtained through a 

dynamical adaptation of switching gain to obtain fast convergence of system to its desired 

value. Simulation results are presented to illustrate the effectiveness of the proposed 

approach. Compared to the classical sliding mode control techniques, AGSMC method 

performs better than classical SMC method in terms of the stabilization accuracy, and system 

rapidity and robustness. 
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