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Abstract. The aim of the present paper is to propose a hierarchical genetic algorithm (HGA) for modelling and
investigating human limbs motions. HGA is capable of modelling natural hierarchy in brain control mechanisms
without restriction on the choice of the effector units model. Each solution of a particular motor task is uniquely
represented with the firing rates of motor units (MUs), although it is obtained by satisfaction of multiple goals
related to angle displacement, sum of the muscle forces, fatigue, etc. Making the model precise, considering
physiological properties of the MUs and muscles, kinematic and dynamic characteristics of the links, increases the
computational complexity of the algorithm and deteriorates its performance. To overcome this, new genetic
operations and strategies for handling multiple time-dependent goal functions are introduced. The relevance of some
machine learning techniques for modelling natural control mechanisms and for performance improvement are also
discussed.

1. Introduction
The motion capabilities of leaving beings are

formed during their ontogenetic and philogenetic
evolution. This is a continuous process of adaptation
related with finding optimal motion strategies and
their memorization. Trying to develop models of
muscle – joint – bone complexes and their control, one
always has to do many simplifications and to cope
with our knowledge incompleteness about the living
systems. However, it seems reasonable to keep exactly
their evolving nature, because this is the property that
has made them what they are. Perhaps the most
suitable multiobjective optimization and search
technique for this purpose is Genetic Algorithm (GA)

(K.Man et al., 1999; M.Vose, 1999). Unlike other
optimization techniques (for review see Raikova,
1999), GA can be controlled and monitored during the
process of producing solutions.

In order to understand better why a particular
muscle is activated during given movement, it is more
suitable to provide goals as control input of the
algorithm, and then to use experimentally based
control signals (such as EMG). The second approach
(used in S.Jonic et al., 1999; Y.Koike, M.Kawato,
1995; H.Savelberg, W.Herzog, 1997) can give us
only mapping, without helping us to explain the
reasons that provoke these control stimuli.
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2. Methods

2.1 Hierarchical genetic algorithm
Genetic algorithms represent the potential solutions

of a given problem as competing individuals during
genetic evolution. These solutions are obtained for
different values of design variables regarded as genes
of those individuals. During each step of the algorithm
(see Fig. 1) a subsequent generation is created by
means of genetic operations (mutation and crossover).
In the process of evolution the “better” chromosomes
generate a larger number of offspring and thus they
have higher chances of survival. In HGA, besides the

regular genes, there exist also control genes that
activate or inhibit a given subset of regular genes.

2.2 Elbow model
For illustration purposes elbow joint movements

are investigated. The model (see fig. 2) considers three
flexor (m. biceps brachii - BIC, m. brachialis - BRA,
m. brachioradialis – BRD), and two extensor (m.
triceps brachii TRI, m. anconeus ANC) muscles.

Each of these muscles consists of four different

types of MUs: I - fast twitch-fatigue resistant (FR); II -

fast twitch-fatiguable (FF); III - intermediate (IM); IV
- slow twitch (S) (see Loeb, G.E., 1987). The number
of MUs of a muscle is calculated using its
physiological cross section area and maximal force.
Elbow joint moment is calculated by:
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where iF is the i-th muscle force, id is the force arm of

the i-th muscle, ϕ is the angular acceleration, G  is the
gravity force of the hand and forearm, l is the distance
from O  to the application point of G , and

extM denotes the total external moment in the joint.
The aim is to calculate individual muscle forces, when
external moment of the joint extM  is given. Since this
problem is indeterminate one, optimization methods
have to be used for its solving.

3. Implementation

3.1 Problem encoding
The main task that must be solved in order to apply

GA is how the set of effector units and abstract goals
to be represented (encoded) in terms of genetic
algorithm theory. First, the design variables must be
determined. In living creatures a set of muscle fibers is
activated by a moto-neuron. As a result these muscle
fibers contract and develop force. Since MUs are fired
by electrical stimuli it can be concluded that the
natural design variables for GA are the moments of
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these activations. Besides information about activation
moments, physiological properties of the MUs (such
as contraction time, half relaxation time, lead-time,
etc.) must be also encoded in the gene. In the present
model these properties are used for calculation of the
mechanical responses of the MUs (twitches), but they
can be also a subject of optimization when trying to
model species evolution.

Unlike classical definition of HGA where genes
have fixed size, here the length of the genes
corresponds to the number of activation moments of
the MUs during the whole motion. This corresponds
exactly to the “natural design variables”, but hampers
the definition of the genetic operations.

 The muscle properties are encoded in genes of
higher hierarchy level. These genes are composed of
the genes corresponding to the muscle’s MUs and a set
of genes that encodes physiological properties of the
muscle as whole. The next level of hierarchy
comprises motor centers. These centers control the set
of the muscles and have no exact hierarchical order
because they control different aspects of muscle
behavior, for example conditioned and unconditioned
reflexes.

In natural systems the process of learning and
optimizing a new motor task is related to modification
of existing motor strategies for similar movements.
The idea of genetic operations is to accomplish just
those modifications. In the classical definition of HGA
there exist two types of operations: mutations and
crossovers. In the current study their definition is more
complex because of the varying length of the genes.

 The idea of mutation operations is to select a
particular bit of information (or bits in multipoint
mutations) and to alter it. In the context of the current
study this can be interpreted as adding or removing
stimulation impulse or shifting it back or forward in
time.

By analogy with nature, the crossover operations
combine the genes of two individual’s chromosomes

(see Fig.3). The problem that arises when genes are of
variable length is that they can not be aligned by sizes
and hence divided in the same proportion. Instead of
alignment by size, here alignment in time (see Fig. 4)
can be used.

The last step in problem encoding is how to

estimate obtained solution and compare it with the
desired one. There exist two main problems. The first
one is how to estimate more than one goal
simultaneously and the second is how to perform this
estimation not for a moment but for a time interval.
The first problem is often overcome by composing an
overall fitness function as a weighted sum of the
separate goal estimations, or by using pareto-optimal
fitness function (C.Foneska, P.Fleming 1995), where
each individual is compared with the rest of the
population and its relative “goodness” is evaluated.
Both of these approaches are implemented in the
program realization. Averaging the errors of the
obtained solution for discrete moments from the whole
movement time can solve the problem with
comparison of time curves. Another approach is to use
some transformation of the goal and result functions
and to compare parameters of the transformed
functions.

3.2 Program realization
A software environment for motor control

simulation was developed using HGA. It allows for an
interactive definition of the investigated system
(muscles, joints, shapes of motor unit twitches,
movement goals, etc.) and its properties, as well as
monitoring and control of the program execution.
These properties can be modified at run time, during
the simulation and the changes take effect immediately
after current step. This feature can be used for
simulating external events and monitoring the
response of the investigated system. Such events could
be a sudden load of the segments of the body, muscle
injuries simulated by removing some of the muscle’s
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MUs, changes in goals of the movement and so on.
The HGA is implemented as a standalone

Windows application, but this does not encapsulate the
project for further development since all the main
components are easily exportable and have self-
contained functionality. The current state of the
project and a demonstration release of the package can
be found on the web address:
http://www.motco.dir.bg/.

4. Results from investigation of
elbow flexion motions

The software had been used for prediction of
muscle force activation patterns during fast and slow
elbow flexion and extension motions. The results
show that the used approach predicts well
experimental observations such as triphasic–behavior
and antagonist co-contraction (for more details see
R.Raikova, H.Aladjov, 2001).

In contrast with frequently used objective criteria
based on minimization of muscle stresses raised to the

Figure 5: Elbow flexion from 0º to 150º for 300 ms and subsequent posture support. The three rows of the chart are
obtained using different approaches for evaluating overall goal satisfaction. First row: objective function is a weighted sum

with weights of 1 for the goal Minimal Joint Reaction (MJR) and 1000 for the Joint Angle (JA). Second row: objective
function is a weighted sum with MJR weight value 1 and JA goal weight value 100. In the third row pareto-optimal approach

is used.  In the first column results (gray curves) and joint moment goals (black curves) are shown, hence there the
satisfaction of the JA criterion is compared. The predicted muscle forces are shown in the second column:  BIC (black
thin line); BRA (dark gray thin line) BRD (light gray thin line) TRI (dark gray bold line) ANC (light gray thin

line). Predicted joint reactions are shown in the last column: R (dark gray bold line); horizontal projection: Rx (black
thin line); vertical projection: Ry (light gray thin line)
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power of n here results are obtained using elbow joint
reaction (A.Seireg, R.Arvikar, 1973) as one of the goal
functions. Three simulations are performed for elbow
flexion from 0º to 150º for 300ms and subsequent
posture support with different goal weights and
estimation mechanisms (see fig.5). The smaller the
relative weight of minimal joint reaction criterion as,
the lower the value of the predicted joint reaction and
muscle forces. However, in case of equal weights (the
third row of fig.5) HGA is unable to satisfy joint
moment goal. Despite of those differences triphasic–
behavior and antagonist co-contraction is predicted in
all three cases. It seems that these phenomena are
function of the accomplished movement and muscle’s
model, but not to the optimization criteria.

5. Discussion
Less then the real number of MUs are used in the

performed simulation. Simulations with the real
number of MUs are also possible, but a compromise
between model precision and computational load of
the algorithm must be made. The computational load
increases because of the resources (time and memory)
needed for calculation of the developed forces from
MUs using their specific twitch profiles. As far as this
model is rather complex (it accounts for fatigue, i.e.
the prehistory of the MU activation, it also ignores
stimuli that come during the absolute refraction period
of the MU and so on), each event that is needed for
calculation of MUs force slows down the execution of
the algorithm. The most frequent reason for
calculating the MU’s force output is the estimation of
the goal functions. Hence an improvement can be
achieved by decreasing the number of estimation
points, but in such a way that their representation
quality remains approximately the same.

The second factor that deteriorates the
computational speed is the duration of the processed
movement. The longer is the movement, the largest
the amount of stimuli that must be considered in the
history of the movement.

To decrease the influence of those factors and to
improve performance some new techniques are
proposed. It must be noted that cache is used for all
calculations. Its purpose is to prevent from over again
calculation of unchanged muscle forces.

The first proposed technique for decreasing the
computational load is to reduce the number of
estimation points of the goal functions. This is

accomplished by a variable precision of the
estimation. In the beginning the goals are monitored in
smaller number of checkpoints and the estimation of
the difference between obtained and desired value of
the goal is rougher. At each step of the algorithm the
precision increases with some step. The additional
effect of this is a shift of the estimation points that
decreases the impact of estimation discreteness.

Another technique that exploits the same idea is to
oscillate estimation points, but to keep their number
relatively small.

The idea of the moving frame approach is to
modify and estimate a sub-time interval that moves
with some step during the execution. This technique
combines the effect of decreased number of estimation
points with caching, and with lower error due to
averaging the estimations for an interval.

The above described techniques for improving
performance of the algorithm can be summarized as
methods for reducing estimation points of the goal
functions thus reducing the number of moments in
which the MU’s forces are evaluated. A new genetic
operation was also introduced, called “common
synchronous mutation” that can substantially increase
algorithm convergence. The basic idea of this
operation is that when a particular goal is optimized
with slight or no change in the estimations with
respect to other goals, simultaneous modifications of
the different part of the chromosome must be
accomplished. In particular, when one of the goals is
to trace given joint angle displacement (JAD) with
some precision and the other is to achieve minimal
sum of all muscle forces, common synchronous
mutation can simultaneously decrease the activation of
some antagonist muscles in one and the same degree.
This decreases the sum of forces without changing the
estimation with respect to JAD.

Method Comp. time Fitness
HGA 02:07:13 0.07156

Cache 01:19:11 0.07156
Variable precision 00:25:37 0.06875

Moving frames 00:23:27 0.06155
Oscillate estimation points 00:24:20 0.06875

Synchronous mutation 00:39:02 0.03636

Table 1: Performance comparison.

A comparison of the proposed improvement
techniques is presented in table 1. These results are
obtained for 10000 steps, using one and the same
initial solutions. It was not a surprise that moving
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frames approach achieves the highest speed up (see
fig. 6), since it combines the advantages of the
smaller number of estimation points, caching and
reduced error from averaging. The proposed new

genetic operation improves accuracy and can be
used in combination with any other technique.

Other non-investigated techniques could be
applied in order to boost the algorithm’s
performance. Such one could be a changing genetic
operations probability with respect to the history of
their application. The probability of the operation
that frequently succeeds in improving the fitness of
the individuals can be increased and vice versa.

Only the search aspect of the learning process is
discussed in this paper. The other part of learning
process - memorization - can be represented by
loading initial solutions from set of suitable solutions
obtained by solving similar tasks. Neural network or
some other classification technique can be used for
measuring similarity.

6. Conclusions
The presented HGA realization fits well into the

problems of motor control and generates results that
are in good agreement with experimental data. The
performed simulations show that the algorithm is
convergent and robust, producing principally similar
solutions during different runs despite its non
deterministic nature. It allows for using precise
models of MUs, muscles and their hierarchical
control mechanisms thus helping us to understand
better the problems faced by natural systems. The
proposed software implementation provides user-
friendly interactive tools for composing different
models and for investigating the solution sensitivity
to the model parameters. The program realization

provides a set of flexible, interface-independent,
event-driven classes that can be easily exported as
standalone components for further development.
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Figure 6: Convergence comparison


