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Abstract 

The aim of the paper is to consider some  problems that arise during the prediction of muscle forces when multi-joint biomechanical models are investigated. One issue is the contribution of the muscle forces in the formation of the joint reactions. Since the muscles are not pure torque generators their force directions are important when the efforts are transmitted via joints and can change essentially the loading of more proximal joints. These considerations are illustrated by a planar two-joint model using conventional “inverse dynamic approach” and another scheme for computation based on the free-body diagram and the supposition that the joint reactions depend on the muscle forces' direction. Other considered discussion point, important for dynamic conditions, is whether centroidal or non-centroidal local coordinate systems are more suitable and what are the differences in the equations for dynamic equilibrium.
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1. Introduction

In studies aiming to calculate unknown muscle forces, both under dynamic and static conditions and for one- and multi-joint biomechanical models of the lower or upper limb, the so called "inverse dynamic problem" is usually first formulated  (for review see Tsirakos et al., 1997). Probably Bresler and Frankel (1950)  first of all use this term. Its definition given in An et al. (1995) is: "the determination of intersegmental forces and moments at the joints based on given or measured kinematic and kinetic data"
.  Hence, the muscle forces can not participate at all in such computational scheme (Riener and Straube, 1997). The inverse dynamic approach is widely used investigating lower limb models during different daily activities (Brand et al., 1986; Crowninshield et al., 1978).  It is stated that the intersegmental resultant forces and moments do not represent any anatomical structure, but rather the total action of all these structures (muscles, ligaments, joint surfaces).  The muscle forces are not taken into account calculating joint moments and forces. They are supposed as internal forces along with ligaments and bony contact forces (Herzog and Binding, 1994).  The joint moments and joint reactions are computed consecutively from more distal, free link, to the proximal, fixed link of the model, using "free-body" approach and taking into account only external forces (gravitational, inertial and  the forces from the action of other bodies connected to the free body), but not the muscle forces. In this way, this approach is equivalent to a separate consideration of the equilibrium of every joint, supposing that the joints situated below this one do not exist, i.e. they do not allow any movement. Namely, all parts below the current joint are supposed as one rigid body. The way the forces are transmitted via joints is not of interest. For example, Happe and Van der Helm (1995) considering the shoulder joint, disregarded the elbow moment equation although biarticular muscles acting in the elbow and shoulder are included in the model. Usually solving optimization tasks, the attention is paid only on the moment equations. The calculated intersegmental resultant joint moment is distributed according to some optimization criterion among the muscles which contribute to this moments, i.e. the optimization tasks include only  moment equations in type ((muscle arm)i.(muscle force)i=M, where M is the intersegmental resultant moment in the joint (Pedersen et al., 1987; Crowninshield and Brand, 1981; Prilutsky, 2000). What happens with the intersegmental joint force? It is supposed that the muscle forces do not take participation in the formation of the latter, hence they create only pure moments, they are pure torque generators.  This is true in robotics, where each axis is generally moved by a rotational activator that delivers a pure moment (Cheze and Dimnet, 1995). In biomechanics, the motor effects are due to the action of agonist and antagonist muscles and they are usually modelled by springs that connect  segments of the links (see for example in Bobbert et al., 1986). So, the muscle forces have their application points, direction and  thus they have components along the coordinate axes besides lever arms. It is mentioned that in the inverse dynamic  approach "the resultant joint forces do not include the effect of internal forces (e.g. muscle forces), and thus the magnitude of the contact forces between two adjacent bones in a joint is underestimated" (Herzog, 1987), but to author’s knowledge there are no papers investigating what is the exact effect of this simplification. When one-joint models are considered, sometime the joint force is calculated using the muscle forces predicted by optimization methods and taking into account only the moment equation (An et al., 1984; Dul et al., 1984). Unit force vectors are included in the objective function in some papers (Hughes et al., 1995), but  passing to multi-joint models, the muscle forces influence on the net intersegmental reaction forces is omitted (Hughes et al., 1999). It is stated in An et al. (1984): "The magnitude and orientation of the resultant joint force across the humero-ulnar joint depend very much on the distribution of the muscle forces" (see also Figure 12 in Werner and An, 1994). The same can be seen in the figures presented in Dul et al. (1984) where the knee joint force is presented.  To calculate the contribution of the muscle forces to the formation of the net joint force, the unit muscle forces’ vectors have to be known, but such data are much rarely reported than the muscle lever arms.  


A source of incorrectness using the "inverse dynamic approach" mentioned from many authors is the existence of a possible antagonistic co-contraction. Since the directions of the moments of the muscles from two antagonistic groups are opposite, the calculated from kinematic and kinetic data intersegmental joint moment is lower that the moment that has to be distributed among the muscles from this synergistic group that resist it. In this way the predicted muscle forces are lower that the actual ones. Using one-joint model Kellis and Baltzopoulos (1999) conclude that the inclusion of the antagonistic forces in biomechanial models changes considerably the intersegmental loading. This problem is even more complex and important for multi-joint models because of presence of two-joint muscles. They play important role in transferring the efforts via joints (Raikova, 2001).  


It is very important  when multi-joint biomechanical models are investigated under dynamic conditions what coordinate systems are used for composing the equations for dynamic equilibrium. Such information usually misses, especially concerning the expressions for inertial forces and their moments. 

Methods

Two possible approaches for calculation of muscle forces will be illustrated using  a planar model consisting of two rigid bodies (body 1 and body 2, Fig.1a), connected in-between with a pin frictionless joint with rotation axis in O1. The body 2 is connected with the support by other pin frictionless joint with rotation axis in O2. So, a planar two-joint, 2DOF model is considered. 


Variant 1. Composing the free-body diagrams for the two bodies (Fig.1b and 1c) and writing the equations for moment and force equilibrium, according to the standard procedure of inverse dynamics, where the muscle forces are not taken into account,  the following equations are derived (for the used notations and directions see  Fig.1):

(1) M1ext=G1 (1/2)sin(1), R1x=0,  R1y=G1, 

(2) M2ext=-M1ext+G2 (2/2)sin(2)+R1y 2sin(2) = G12sin(2)-G1(1/2)sin(1)+G2(2/2)sin(2),

(3) R2x=0; R2y=G2+R1y=G2+G1.
Usually, calculating the net external joint moments M1ext and M2ext, depending on their direction, either flexor or extensor muscles are accepted as active and their forces are calculated following the conditions: if M1ext>0 then  F1=M1ext /d1 and F2=0, if M1ext<0 then  F1=0 and F2=(M1ext (/d2 (see Fig.2a for positions of the muscle forces Fi). Similarly, if M2ext>0 then F4= M2ext /d4 and F3=0, if M2ext<0 then F4=0 and F3=(M2ext (/d3. Here, di are lever arms of the muscle forces Fi and it is accepted that an antagonistic co-contraction is not possible. If one is interested  how the so calculated moments are distributed among the many muscles driving the joints,  optimization task  is solved. Usually this task has the form: to determine the minimum of the function (ciFin at the equality constraints d1F1-d2F2=M1ext and      d3F3-d4F4=M2ext and the inequality constraints Fi(0 for all i, where ci are weight factors at the i-th muscle force Fi. It has to be noted that the formula for M2ext (eq.(2)) is the same as this obtained if the bodies 1 and 2 are considered as one rigid body (i.e. if the joint in O1 does not exist) on which two forces, G1 and G2, act. 


Variant 2. Let us consider an other computational scheme (Fig.2) in which the muscle forces are included in the maintaining of the equilibrium, i.e. they are accepted as external forces. The moment equation for the equilibrium of the body 1 is the same as this for the previous variant:

(4) d1F1-d2F2- G1(1/2)sin(1)=0 ( M1ext= G1(1/2) sin(1).

The joint reaction R1, however, depends on the predicted muscle forces (see Fig.2b):

(5) R1x+F1cos(1)+ F2cos(2)=0 ( R1x=-F1cos(1)-F2cos(2),

(6) R1y+F1sin(1)+ F2sin(2)-G1 =0 ( R1y= G1-F1sin(1)-F2sin(2).


Considering the equilibrium of the body 2, the presence of the body 1 is replaced with the action of the reaction force R1 and the  moment M1ext (see Fig.2c) 
. Here, the terminology accepted in mechanics is used. According to Beer and Johnson (1962): “Unknown external forces usually consist of the reactions - sometimes called constraining forces - through which the ground and other bodies oppose a possible motion of the free body and thus constrain it to remain in the same position. Reactions are exerted at the points where the free body is supported or connected to other bodies”. The difference from the previous case is the dependence of  the joint reaction on the muscle forces F1 and F2. So, the moment equation with respect to O2 is: 

(7) d3F3-d4F4+ G2(2/2) sin(2) -R1x 2 cos(2)+R1y 2 sin(2)- M1ext =0.

Replacing M1ext , R1x and R1y with their expressions:

(8) d3F3-d4F4+G2(2/2)sin(2)-(-F1cos(1)-F2cos(2))2cos(2)+

(-F1sin(1)-F2sin(2)+G1)2sin(2) - G1(1/2) sin(1) =0,

the external moment which must be balanced from the muscle force F3 and F4 is:

(9) M2ext=G2(2/2)sin(2)+G12sin(2)+(F1cos(1)+F2cos(2))2cos(2)-(F1sin(1)+F2sin(2))2sin(2)-G1(1/2) sin(1).

The components of the joint reaction R2 can be calculated as follows:

(10) R2x-R1x+F3cos(F4 cos()=0 , R2y-R1y+F3sin(F4 sin(-G2

(11) R2x=-F1cos(1)-F2cos(2)-F3cos(F4cos(

(12) R2y=-F1sin(1)-F2sin(2) -F3sin(F4 sin(G2+G1.

As can be seen the situation in the joint O2 depends on the predicted muscle forces balancing the previous joint O1, as well as on the direction of these forces, i.e. on the angles 1 and 2. As to the muscle forces calculation, the previous approach can be applied supposing that antagonistic co-contraction is impossible. If M1ext>0 then  F1= M1ext /d1 and F2=0, if M1ext<0 then  F1=0 and F2=(M1ext (/d2. If M2ext>0 then F4= M2ext /d4 and F3=0, if M2ext<0 then F4=0 and F3=(M2ext (/d3. Other possibility is to solve an optimization task consisting of two equations:

(13) d1F1-d2F2= G1(1/2)sin(1)

(14) F1(cos(1)cos(2)-sin(1) sin(2))2+F2(cos(2)cos(2)-sin(2)sin(2))2+d3F3-d4F4=

-G12sin(2)-G2(2/2)sin(2)+ G1(1/2)sin(1),

the inequality constraints Fi(0 and some objective function. As can be seen the optimization task looks differently from usually used  forms (see for example in Hughes et al., 1999). The equation (14) contains the forces F1 and F2 besides the conventional muscle forces acting in the joint O2, namely F3 and F4.  Besides the muscle lever arms, the angles between the muscle forces and the coordinate axes are need for solution of the optimization task.


All the above considerations were made under static conditions, supposing that the joint reaction forces pass through the joint rotational centres. Generally, according to the D'Alembert's Principle, two vector equations can be written for dynamic equilibrium of a free body moving in the space:

(15)   

 ,

(16)    

,

where 

 is the resultant external force acting on the body; 

is the resultant of all interaction forces between the body and another bodies which are connected with it; 

 is the resultant of the inertial forces. O' is an arbitrarily chosen point (fixed or moving) in the body (Brand, 1930), and 

, is the moment of the corresponding force about this pole O'. Under static conditions the inertial forces and moments are zero. A discussion point remains, the moment of the reaction force 

. Using non-centroidal local coordinate system (CS) fixed in the body, the unknown member

can be eliminated choosing for centre of  the CS  such point that 

. For example, this is the case when human joints are modelled by pin joints and the centre of rotation is the centre of the CS. When centroidal CS are used, the moment of the joint reaction have to be added. The use of non-centroidal CS is easier and simpler since the muscle lever arms are usually given in the literature with respect to the rotational centres of the joints. In this case, however, the expression for the moment of the inertial forces is more complicated when  the point O' is moving one. It is (Raikova, 1995):

(17)   

,

where m   is the body mass; 

 is the position vector of the gravity centre C with respect to the local CS O'X'Y'Z' fixed in the moving body; 

 is the absolute linear acceleration of  the  pole  O'; I is the inertia matrix of  the  body about the point O'; 

 and 

are the instantaneous  angular  velocity and acceleration of the body about an axis through O', ( - denotes vector product. The first member of this expression takes into account the fact that the moment equation is written not with respect to the gravity centre C (see for comparison in Chao and An (1982), where the equations are written in centroidal CS), but with respect to other point O' in the body  that in biomechanical models is usually the centre of rotation in the joint.  This member 

 can change the net external moment  under dynamic conditions, for example M1ext in  eq.(4), and have to be taken into account. It is difficult to estimate  the effect of its neglecting in a general case.
Results

The calculated net external moments, muscle forces and joint reactions for the above described two Variants and different joint angles are summarised in Table 1. The nominal values of the parameters used for the computations are: 1=0.49 [m];2=0.32 [m]; G1=14.6 [N]; G2=16 [N]; d1=0.04 [m]; d2=0.03 [m]; d3=0.05 [m]; d4=0.06 [m]; =800; =1100;=750;=1000. The values of the angles i (see Fig.2b) are those for the configuration with (1=(2=0 ant they change  along with  (1 and (2 (.  These parameters are average values for a model of the human upper limb in the sagittal plane, where body 1 represents the hand and forearm as one rigid body and body 2 represents the arm, the joints in O1 and O2 are the elbow and shoulder joints respectively.  The first row of each considered case in Table 1 (from case A to  case F) presents the calculations according to the equations for Variant 1 (egs.(1)-(3)). The second row (i.e. IIa for all cases)  presents the calculations according to the equations for Variant 2 (eqs.(4)-(6), (9), (11) and (12)) using the nominal values of the parameters. In the next rows some nominal angles are changed (B-IIb, C-IIb, D-IIb, D-IIc, E- IIb, E- IIc, F-IIb and F-IIc - see the last column where the angle different from the nominal value is shown) or a  little antagonistic co-contraction  is allowed (A-IIb, A-IIc, B-IIc, C-IIc and E-IIc). The muscle forces are calculated without solving some optimization task, following the conditions given in Methods section.  


The joint reactions do not change anyway using the standard scheme of the inverse dynamics (Variant 1) and do not depend on the predicted muscle forces. They are the same for all configurations (from A to F, see row I) independently whether antagonistic co-contraction exists or not (see also eqs.(1) and (3)). They always have components only along the vertical axis. The moment in the proximal joint does not depend  on the predicted muscle forces acting in the distal joint. 


Using for the computations the equations of Variant 2, the value and the direction of the joint reaction R1 depend on the predicted muscle forces F1 and F2, as well as on the angles (1 and (2.  That is why the loading of the proximal joint O2 is different from this from Variant 1 and M2, R2, F3 and F4 differ essentially between the two Variants.  Comparing the cases I and IIa for all configurations, it can be seen that sometime the absolute values of the joint reactions R1 and R2 are less for Variant 1 (configurations C, D, E and F), sometime they are less for Variant 2 (configurations A and B). For some configurations M2ext has even different directions for the two Variants (B-IIa versus B-I, C-IIa versus C-I, F-IIa versus F-I). The latter depends in a high degree from the angles between the muscle force vectors and the coordinate axes.  The direction of M2ext can be changed changing the angle of the predicted non-zero muscle force in the distal joint (configurations B, C and F, case IIa versus case IIb). In this way, for some angles, F3 will be non-zero, for others F4 will be zero. For the configuration F of Table 1, the change of (2 from the nominal value 1100 to the other one, 1400, leads to a less value of the joint reaction R2 and  less F3 in comparison with the Variant 1 (Table 1, configuration F, case I versus case IIc). It is possible also to obtain such values of the  angles  (1 and (2 so that M2ext, F3  and F4 to be the same for the two Variants  (D-I versus D-IIb, E-I versus E-IIb). Independently of this, however, the  reactions in both joints remain essentially different. The sign of M2ext can be changed even if a little antagonistic co-contraction is added (configuration A, case I versus case IIc). The direction of the joint reactions, i.e. the position of the vectors (R1x, R1y) and (R2x, R2y) also depends on the predicted muscle forces.  
Discussion

The aim of the paper is rather to pose questions than to give answers. What is the suitable way for muscle forces' calculation when models with more than one joint are investigated?  What are the advantages and disadvantages of the two considered variants and for which biomechanical models and  aims they are more suitable? Considering the muscle forces as internal forces (here it can be mentioned that the division of the forces acting on nearly rigid bones as "internal" and "external" is someway conditional in biomechanics) is not in good accordance with the manner the muscles are presented in the biomechanical models, since they are usually modelled as springs connecting the bones via the attachment points. Neglecting the participation of the muscles and their tendons in the formation of the joint reactions not only prevents their right  estimation, but can lead to mistakes in the prediction of the muscle forces driving the more proximal joins. Optimization tasks with objective functions connected with the size and direction of the joint reactions can not be formulated correctly. Such criterion is used in the paper of Seireg and Arvicar (1973) which also pay attention on the influence of the directional cosines of the muscle forces on the computed joint reactions. The muscle tone and strength upload the human joints and prevent them from injuries. This fact can not be explained if the Variant 1 for computation is used. The Variant 2 is more suitable when one is interested in more exact evaluation of the joint reactions.  Its disadvantage is the high influence of the angles between the muscle forces and the coordinate axes on the calculated values (see Table 1). These angles strongly depend on the joint angles, but investigations on this topic are scarce. The formulated optimization task is more complex since the moment equations for more proximal joints  include the muscle forces  acting in the previous, distal joints.


There are many other simplifications that can influence the predicted muscle forces and joint reactions. The muscle lever arms depend on the joint angles also, but their influence is less significant than the angles between the muscle force vectors and the coordinate axes. The contact between the bones forming a joint can be not  in a point, i.e. R1 can have a moment arm with respect to O1 (Cheng et al., 1990). The existence of joint capsules and ligaments is ignored. For great regret, the lack of data does not allow at this stage to avoid from these simplifications.


Which coordinate systems are more suitable? The use of centroidal CSs eliminates the calculation of the first member of eq.(17), but the muscle moment arms have to be calculated according to the mass center of the body and the reaction moment has to be taken into account. Non-centroidal CSs with their origins in the rotation centres of the joints are more suitable, but the absolute linear accelerations of  these origins have to be calculated in the local CSs.
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CAPTIONS FOR FIGURES AND TABLES


Table 1. Computed net external joint moments M1ext and M2ext, muscle forces Fi and joint reactions R1 and R2 and their components Rx1, Ry1, Rx2, Ry2 for different model configurations  (from A to F) for Variant 1 (case I) and Variant 2 (cases II). The rows IIa present the results from computations for Variant 2  using nominal values of the parameters. Two other different cases are presented also. It is supposed that a little antagonistic co-contraction exists for the rows A-IIb, A-IIc, B-IIc, C-IIc, E-IIc. The nominal value of the angle between the non-zero muscle force predicted in the distal joint and the horizontal axis is changed with the value given in the last column of the rows B-IIb, C-IIc, D-IIb and IIc, E-IIb and IIc, F-IIb and IIc.  

, 

. 


Figure 1.  The used model and the free-body diagrams of the two bodies for Variant 1. O1 and O2 are the centres of rotation in the two joints; G1 and G2 are the gravity forces of the two bodies; 1 and 2 are the lengths of the bodies; (1 and (2 are the angles of deviation of the bodies from the vertical axis; M1ext and M2ext are the external moments in the two joints caused by the action of all external forces (without the muscle forces); R1y and R2y  are the vertical components of the joint reactions.


Figure 2.  The used model and the free-body diagrams of the two bodies for Variant 2. O1 and O2 are the centres of rotation in the two joints; G1 and G2 are the gravity forces of the two bodies; Fi are the muscle forces; (I are the angles between the i-th muscle force and the horizontal axis; 1 and 2 are the lengths of the bodies; (1 and (2 are the angles of deviation of the bodies from the vertical axis; M1ext is the external moment caused by the action of all external forces (without the muscle forces) acting on the body 2; R1x, R1y are the horizontal and vertical components of the reaction in the first joint, R2x and R2y  are these components for the second joint.

� Since a great diversity of used terms exists, namely "net intersegmental reaction forces", "joint reactions", "intersegmental resultant forces", etc. , the terms used in the cited papers are striven to be used in the current literary survey. 


2 The latter puzzles the author, namely whether the moment M1ext  has to be added in the moment equation for the body 2. Composing the free-body diagrams, cutting the kinematic chain in the point O1, two moments exist, M1ext and the muscle moment. These moments are equal in magnitude, but with opposite direction, so only the joint reaction creates moments with respect to O2 . Detaching the body 1 from the body 2, their interaction is replaced with a reaction only, which is equivalent to a force of unknown direction, since the human limb joints are accepted frictionless pins or hinges. In point O1 the external moment    M1ext is balanced by the muscle moment, and only an unbalanced joint reaction remains that acts on the body 2.  This concept was realized in Raikova  (2000). The main conclusions made below are valid independently whether M1ext is added or not in the equation (7). 


(  For simplicity, it is accepted here that the muscle lever arms and the angles between the muscle force vectors and the horizontal axis are constants independent on  joint angles.   
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