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Abstract

A lot of non-linear objective criteria are applied for solving the indeterminate problems formulated for di!erent biomechanical
models* most of them can be covered by the expression +c

i
DFo

i
Dn. It might be noted, however, that most of the suggested criteria are

not applicable if considerable antagonistic co-contractions exist. This could be an e!ect of treating the agonistic muscles and their
respective antagonists in one and the same manner in the objective function. Using a completely inverse approach (the muscle forces
are supposed to be known quantities) and a simple 1DOF model (actuated by three agonistic muscles and one corresponding
antagonist) it has been shown which values of the weight factors c

i
may predict di!erent levels of muscle forces from the two

antagonistic groups. Three hypothetical border variants for magnitudes of the muscle forces are considered (#exor muscles are only
active, extensor muscles are only active, considerable co-contraction of #exors and extensors exists). The main conclusions are: the
signs of c

i
at agonistic muscles have to be opposite to the c

i
signs at their antagonists; the signs of the weight factors depend on the

direction of the net external joint moment; the closer c
i
to zero, the bigger force will be predicted in the ith muscle. ( 1999 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Di!erent objective functions have been applied to
solve the indeterminate problems formulated for di!erent
biomechanical models (details on de"nitions and basic
concepts could be found in Herzog and Binding, 1994).
Most of the criteria can be covered by the expression
+c

i
DFo

i
Dn, whereDFo

i
D is the module of the ith muscle force

and c
i
is a weight factor (Tsirakos et al., 1997). Many

authors connect c
i
with muscle physiological cross-sec-

tional area (PCSA) or maximal muscle force (F
.!9

). For
example: n"2, c

i
"(1/PCSA

i
)2 (An et al., 1984); n"3,

c
i
"(1/PCSA

i
)3 (Crowninshield and Brand, 1981); n"3,

c
i
"1 (Pedersen et al., 1987; Prilutsky and Gregor, 1997);

n"a, c
i
"(1/PCSA

i
)a (Herzog and Binding, 1993). As it

could be noticed, the weight factors of all muscles have
the same signs and similar magnitudes by nature. Not-
withstanding that Hughes and Cha$n (1988) proved that
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coactivation of antagonistic muscles could not be pre-
dicted, if the "rst partial derivatives of the objective
function with respect to the design variables are positive,
objective functions with di!erent signs of c

i
are rarely

found. Cholewichki and McGill (1994) use a speci"c
function +M

i
(1!g

i
)2, where M

i
is the moment of the ith

muscle (M
i
may have positive as well as negative values)

and g
i
is an individual muscle gain. However, it is stated

in their paper that no physiological basis exists for choos-
ing such a type of an objective function. Herzog and
Binding (1993), using a planar 2DOF model, conclude
that a co-contraction of pairs of one-joint antagonistic
muscles is not possible, although they recognize that such
co-contractions are observed experimentally under cer-
tain conditions. They predict simultaneous activity in
a pair of two-joint antagonists. This is a consequence of
the chosen situation in the joints, however * the direc-
tion of the net external moment in the proximal joint is
opposite to that in the distal joint. The antagonistic
activities predicted in complex, multi-degree of freedom
models (Pedersen et al., 1987; Brand et al., 1986) could be
related to the fact that the muscle moment is a vector.
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When a muscle contracts it not only causes the necessary
moment (due to muscle primary function), but also other
moments (due to its secondary functions). For neutraliza-
tion of the parasite moments, other muscles have to be
active. The same is valid for the mechanico-chemical
optimization criterion used in Patriarco et al. (1981).
Patriarco's criterion is linear, all weight factors are posit-
ive, but it is used for force predictions during human gait,
where di!erent agonistic and antagonistic muscle groups
are active during di!erent step phases. Here, the import-
ance of the joint torques is mentioned, but a suggestion
about their eventual inclusion in an optimization func-
tion has not been made.

Another approach for identifying suitable objective
functions, i.e. for searching di!erent weight factors, is
related to the contractile condition of the muscle
(Herzog, 1987; Happee and Van der Helm, 1995; Kauf-
man et al., 1991b). The weight factors used in Herzog
(1987) are c

i
"(1/M

i
)2. Here M

i
is the maximum instan-

taneous joint moment caused by the action of the ith
muscle and M

i
"r

i
F
i

(r
i

is the lever arm of the ith
muscle). Using Hill's force}velocity relationship, F

i
is

expressed by the PCSA, the activation of the muscle, its
instantaneous length and instantaneous rate of change in
length. All c

i
are positive (independent of r

i
signs) and the

ith weight factor is inverse proportional to the ith muscle
lever arm squared. It is stated that the metabolic cost of
movement will be low using such an objective function.
The mathematical formulation and experiments (thought
and real) have been devoted to one-degree of freedom
models and antagonistic muscle activities have not been
taken into account. Investigating fast goal directed
movements, using a shoulder model with 95 muscle ele-
ments, Happee and Van der Helm (1995) propose an
objective function with c

i
"v

i
(1/F

i .!9
)2, where v

i
is the

muscle volume. They relate the proportion (F
i
/F

i .!9
)

with calcium ion concentration, respectively, with mus-
cular energy consumption. The weight factors are time
dependent, but they are always positive. In spite of the
explicitly written statement &&antagonistic activity will
never be predicted by any criterion of a form like equa-
tion . . . '', a discussion is presented about antagonistic
activity of thoracoscapularis muscle. Kaufman et al.
(1991a, b) used a modi"ed length}tension relationship
accounting for muscle architecture, but only to de"ne the
upper limits of the muscle forces. An antagonistic activity
is not obvious from the "gures presented. The &&min-
imum-fatigue criterion'' (Dul et al., 1984a, b) is often used
(Prilytsky and Gregor, 1997). The endurance time of the
muscle, ¹

i
"constant(F

i
)n, is included in the optimiza-

tion procedure. The constant is a function of F
i .!9

and of
the percentage of slow-twitch "bers, n is a negative non-
integer number. Surprisingly, in contrast to the con-
clusions made by many authors (Brand et al., 1986;
Herzog, 1987; Raikova, 1996) about the sensitivity of
load sharing to the muscle moment arms, the opposite

has been stated here. This contradiction follows from the
way the analytical solution is derived. First, the propor-
tion between the muscle forces is obtained and then the
moment equation is solved.

It is not expected that some of the formulations of
optimization problems for biomechanical models will be
ideal. Probably, the optimization criteria are task depen-
dent (Nieminen et al., 1995). However, speci"c peculiari-
ties observed by di!erent authors by means of natural,
thought, and numerical experiments have to be taken
into account in the process of designing new objective
criteria.

The purpose of this paper is to investigate which sets of
weight factors and powers in the objective function
+c

i
DFo

i
Dn, could predict di!erent levels of activities in

muscles from two antagonistic groups. The approach is
opposite to those used up to now * supposing that
muscle forces are known, the corresponding weight fac-
tors are calculated. Using a simple 1DOF model, three
hypothetical border variants for magnitudes of the
muscle forces driving the joint are considered (#exor
muscles are only active, extensor muscles are only active,
a considerable co-contraction of #exors and extensors
exists).

2. Methods

2.1. Mathematical evidence

Let us consider a simple model shown in Fig. 1. Three
muscle forces (Fo

1
, Fo

2
and Fo

3
) from a synergistic group

perform the counterclockwise rotation of the body about
the "xed point O. The action of a muscle belonging to the
respective antagonistic group is presented by the force
Fo
4
. An external moment, Mo

%95
, due to the gravity forces,

the inertial forces and the external loading, is applied to
the body. Supposing that both Mo

%95
and the lever arms

of the muscle forces, d
i
, are known, the moment

equation with respect to the centre O is written in scalar
terms as

M"d
%95

DMo
%95

D, (1)

where M"+4
i/1

d
i
F
i
is the sum of the muscle moments,

F
i
is the magnitude of the ith muscle force, d

%95
"(#1)

if Mo
%95

has a clockwise direction and d
%95

"(!1) if
Mo

%95
has a counterclockwise direction.

Let us consider the indeterminate problem de"ned by
Eq. (1) and the inequality constraints F

i
'0 (i"1, 2, 3,

4). Let us suppose that the distribution of the M
%95

among
the individual muscles is performed on the basis of some
optimization criterion having the form of Z"+4

i/1
c
i
Fn
i

(n'1) and c
i

are unknown weight factors. The main
question is: which c

i
could be used? The necessary condi-

tions for existence of an extremum (minimum, maximum
or saddle point) of Z, when the equality constraints are
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Fig. 1. One-degree of freedom model actuated by three synergistic
muscle (Fo

1
, Fo

2
, Fo

3
) and one antagonist of theirs (Fo

4
). Go is the gravity

force, Mo
%95

is the external moment in the joint.

ful"lled, lead to the requirement that all "rst partial
derivatives of the Lagrange function are zero (see for
details in Raikova, 1996). Consecutively, expressions for
muscle forces could be obtained:

nc
i
Fn~1

i
!jd

i
"0NF

i
"n~1S

jd
i

nc
i

(i"1, 2, 3, 4), (2)

where j is the Lagrange multiplier. Since the directions of
the moments of the muscles belonging to the two antag-
onistic groups are di!erent, d

i
are positive numbers for

i"1, 2, 3, but d
4
(0. From the requirements F

i
'0

there follows that j/c
i
'0 for i"1, 2, 3 and j/c

4
(0.

Hence, the signs of the weight coe$cients of the agonistic
muscles should be opposite to the sign of the weight
coe$cient of the antagonistic muscle. If j'0, c

1
, c

2
and

c
3

will be positive and c
4

will be negative. If j(0, c
1
,

c
2

and c
3

will be negative and c
4

will be positive.
Let us imagine that the individual muscle forces are

known. Then it follows from (2)

A
F
i

F
4
B
n~1

"

c
4

c
i

d
i

d
4

, (i"1, 2, 3). (3)

So, the conclusion about the signs of c
i
becomes clearer.

By using Eq. (3), the proportion between the magnitudes
of the weight coe$cients could be calculated if the pro-
portion between the magnitudes of the muscle forces is
known. The inverse proportion between c

i
and the re-

spective muscle force could be noticed. The bigger the
F
i
is with respect to F

4
, the closer c

i
is to zero. Hence,

a bigger muscle force is associated with a smaller value of
the respective weight factor.

Since min(const. f (x))"const.min f (x) if const'0
and min(const. f (x))"const.max f (x) if const(0, it is
su$cient to calculate c

i
for only one value of c

4
, following

the expression:

c
i
"c

4A
d
i

d
4

Fn~1
4

Fn~1
*
B (i"1, 2, 3). (4)

It may be concluded from Eqs. (2) and (4) that if the
weight coe$cient c

4
is multiplied by a constant, all other

c
i
, as well as j and Z, will be multiplied by the same

constant. The same results will be obtained using di!er-
ent values of the muscle forces if the proportions F

4
/F

i
remain the same. The value of the moment M, however,
will be di!erent.

3. Results and discussion

3.1. Numerical experiments

An illustration for elbow #exion}extension is sugges-
ted using the model shown in Fig. 1. Let the joint be
driven by three #exors: BIC (m.biceps brachii !Fo

1
),

BRA (m.brachialis !Fo
2
), BRD (m.brachioradialis !Fo

3
)

and one extensor: TRI (m.triceps brachii !Fo
4
). The data

used is taken from Lemay and Crago (1996) and is
summarized in Table 1. Three hypothetical border vari-
ants will be considered.
<ariant 1: It is supposed that the #exor muscles are

predominantly active and the extensor is nearly silent.
For example, let the forces developed by the #exors are
equal to 50% of their maximal values and F

4
"0.1[N]

(see Table 2). By using Eq. (4), the weight coe$cients
c
i
(i"1, 2, 3) could be calculated for di!erent values of

c
4

(in Table 2 only the calculations with c
4
"!100 are

submitted). It is evident from Table 2, that the increase of
the power n causes the decrease of c

1
, c

2
and c

3
. The cost

of the objective function, Z
%95

, decreases, too. If other
values of d

i
are used, the results change, but not to

a signi"cant degree.
<ariant 2. Let us consider a hypothetical mirror vari-

ant* the #exor muscles are nearly silent and the force of
the m.TRI is about 50% of the maximal available force of
this muscle (see Table 2). Since the sum of the moments
of all muscle forces M is negative, d

%95
"(!1). Hence,

the external moment in the joint has a counterclockwise

Table 1
Data used for muscle moment arms (d

i
), physiological cross-sectional

area (PCSA
i
) and maximal muscle force (F

.!9 i
) calculated using the

value 30 [N] cm~2 (Dul et al., 1984b). u is the joint angle

PCSA
i

[m2]
d
i
[m]

u"303
d
i
[m]

u"603
F
.!9 i

[N]

F
1
(BIC) 4.6]10~4 0.0204 0.0340 138

F
2
(BRA) 7]10~4 0.0151 0.0198 210

F
3
(BRD) 1.33]10~4 0.0244 0.0376 39.9

F
4
(TRI) 18.8]10~4 !0.0250 !0.0225 564
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Table 2
Computed weight coe$cients (c

i
), Lagrange multiplier (j) and value of the objective function (Z

%95
) for di!erent values of the muscle forces (F

i
) and

power (n) of the objective function. M is the sum of the muscle moments

n c
1

c
2

c
3

c
4

j Z
%95

Variant 1 2 2.190]10~1 8.381]10~2 8.376]10~1 !100 8.889]102 2.299]103

u"603
F
1
"69[N] 3 3.174]10~4 7.982]10~5 4.199]10~3 !100 1.333]102 2.299]102

F
2
"105 [N]

F
3
"19.95[N] 4 4.600]10~7 7.602]10~8 2.105]10~5 !100 1.778]101 2.299]101

F
4
"0.1[N]

M"5.173[N.m] 5 6.667]10~10 7.240]10~11 1.055]10~7 !100 2.222]100 2.299]100

Variant 2 2 !1.151]102 !5.678]101 !2.752]102 0.1 !2.256]103 7.940]103

u"303
F
1
"0.2[N] 3 !1.622]105 !5.337]104 !7.762]105 0.1 !9.543]105 2.239]106

F
2
"0.3[N]

F
3
"0.1[N] 4 !2.287]108 !5.017]107 !2.189]109 0.1 !3.588]108 6.314]108

F
4
"282[N]

M"!7.039[N.m] 5 !3.225]1011 !4.716]1010 !6.172]1012 0.1 !1.265]1011 1.781]1011

Variant 3 2 !3.335]10~3 !1.622]10~3 !1.380]10~2 0.001 !2.256]101 4.027]101

u"300

F
1
"69[N] 3 !1.363]10~2 !4.357]10~3 !1.950]10~1 0.001 !9.543]103 1.136]104

F
2
"105[N]

F
3
"19.95[N] 4 !5.570]10~2 !1.170]10~2 !2.757]100 0.001 !3.588]106 3.203]106

F
4
"282[N]

M"!3.570[N.m] 5 !2.277]10~1 !3.143]10~2 !3.896]101 0.001 !1.265]109 9.031]108

direction. For illustration, the calculations are performed
with c

4
"0.1. It could be noticed that all other c

i
are

negative, their absolute values are much bigger than
c
4

and increase rapidly when the power n increases. In
contrast to the "rst variant, Z

%95
increases with n and j is

negative.
<ariant 3: This is a borderline hypothetical case* all

muscles develop 50% of their maximal forces. Since the
maximal force of m.TRI is the biggest, M is negative and
the external joint moment has a counterclockwise direc-
tion. Here the absolute values of all weight coe$cients
have similar orders, since all forces are essentially di!er-
ent from zero. In contrast to the previous variants, these
values are not much in#uenced by the power n.

The type of extremum is numerically investigated for
the three variants (see Fig. 2). One of the muscle forces
has a "xed value, two are changed near the optimal point.
The fourth muscle force is calculated from the moment
equation (if this force is negative, there is no solution*
see Fig. 2b). Then the value of the objective function, Z, is
computed and compared with the Z

%95
. It could be no-

ticed that the objective function reaches its local max-
imum for Variants 2 and 3 and its local minimum for
Variant 1. If all c

i
for Variants 2 and 3 are multiplied by

(!1) the type of extremum will be minimum too.
Independent of some authors' statement that only

a co-contraction of two-joint muscles could be predicted
(Herzog and Binding, 1993, 1994), which implies that the
hypothetical Variant 3 would not be observed in a real

situation, the existence of one-joint antagonistic muscles
should not be ignored, even if their forces are nearly zero
(Variants 1 and 2). Certainly depending on the direction
of the external moment, either the forces of the #exor
muscles or the forces of the extensor muscles can be set to
zero in the Eq. (1). However, muscles that are nonactive,
for a certain period of time or posture, are also controlled
by the human brain. Hence, if an objective criterion has
a claim to re#ect somehow the motor control of the
human brain, the nonactive muscles must be also in-
cluded in this criterion.

4. Conclusion

Di!erent mathematical approaches are applied in
the motor control study * neural network models
(Nussbaum and Cha$n, 1997; Koike and Kawato 1994,
1995), sti!ness and impedance control (Hogan et al.,
1987), equilibrium point (trajectory) hypothesis (Latash,
1992; Gotlieb, 1994; Flash, 1987), maximum smoothness
theory of coordination (minimization of jerk) (Hogan
and Flash, 1987; Hagan et al., 1987; Krylow and Rymer,
1997). The present paper is addressed to the optimization
techniques, where muscle forces are included in the objec-
tive functions as design variables.

The main "ndings from the performed calculations are:
if an objective criterion having the form +c

i
DFo

i
Dn is used

to solve an indeterminate problem and antagonistic
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Fig. 2. Investigation of the type of extremum for the three variants listed in Table 2 for n"2 (muscle forces are given in [N]). Fig 2(a) Variant 1,
F
1
3[68, 70], F

2
3[104, 106], F

4
"0.1, F

3
is calculated from the moment equation, Z"0.219F2

1
#0.08381F2

2
!0.8376F2

3
!100F2

4
, Z

%95
"2299;

Fig. 2(c) Variant 2, F
2
3[0.1, 0.5], F

4
3[281, 283], F

3
"0.1, F

1
is calculated from the moment equation, Z"!115.1F2

1
!56.78F2

2
!275.2F2

3
#0.1F2

4
,

Z
%95
"7940, there are no possible solutions for F

4
'282; Fig 2(c) Variant 3, F

2
3[95, 115], F

4
3[272, 292], F

3
"19.95, F

1
is calculated from the

moment equation, Z"!0.00335F2
1
!0.001622F2

2
!0.0138F2

3
#0.001F2

4
, Z

%95
"40.27.

muscles are included in the model too, the weight factors
c
i
of the muscles from the two di!erent groups (agonist
} antagonistic) must have di!erent signs, and these signs
are connected with the direction of the net external mo-
ment in the joint. The absolute value of the weight factor
is connected with the value of the muscle force in an
inverse proportion * more force will be predicted for
a muscle whose Dc

i
D is closer to zero. The conclusions

about the signs and the values of the weight factors in the
objective function +c

i
DFo

i
Dn, drawn by using the so pro-

posed inverse approach, con"rm the previous investiga-
tions (Raikova, 1996; Raikova and Dimitrov, 1996). The
sets of the possible values of c

i
have been investigated

using analytical solutions of the optimization tasks

for 1DOF (Raikova, 1996) and 3DOF (Raikova and
Dimitrov, 1996) planar models. The relationship between
the net joint moments and the signs and values of the
weight factors has been explicitly observed.

The general question about the physiological inter-
pretation and analytical expressions of these weight fac-
tors remains. They could be functions of di!erent mor-
phological characteristics of the muscles (PCSA, moment
arms, maximal muscle forces, volume), of the current and
the previous states of the muscles (change of the length,
fatigue, contraction velocity), of the current loading of
the limbs (joint moments and joint reactions or contact
forces), of the voluntary brain control and so on. Further
numerical, thought and natural experiments might help
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in designing new, more complex objective criteria provid-
ing possibilities for an adequate description of the human
limb driving system.
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