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A critical point in models of the human limbs when the aim is to investigate the motor control is the
muscle model. More often the mechanical output of a muscle is considered as one musculotendon force
that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic
conditions, the relationship between the developed force, the length and the contraction velocity of a
muscle becomes important and rheological muscle models can be incorporated in the optimization
tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was
proposed [22]. A muscle is considered as a mixture of motor units (MUs) with different peculiarities
and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare
these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model
with five muscles. It is concluded that the rheological models are suitable for calculation of the current
maximal muscle forces that can be used as weight factors in the objective functions. The model based
on MUs has many advantages for precise investigations of motor control. Such muscle presentation can
explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between
the MUs activation and the mechanical output is more clear and closer to the reality.
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INTRODUCTION

Several approaches could be applied for investigation of

motor control strategies used by humans. The so called

“static optimization” solves numerically or analytically

differently formulated, constrained optimization tasks.

Mathematically, these tasks are composed of a set of

equations derived from the force and moment equilibrium

along with inequality constraints setting upper and lower

limits on the design variables. These design variables are

usually the total mechanical output of the musculotendon

units. Commonly the equations form an indeterminate

system that imposes the use of optimization methods that

are based on a relevant objective function. There are two

possible ways for dealing with this objective function.

The first one is construction of its analytical form

according to some physiological considerations based on

total muscle force, muscle stresses, endurance time,

mechanical energy, saturation, etc. ([1–6]; for review see

Refs. [7,8]). It is questionable, however, whether a simple

analytical mathematical function is adequate to represent

the control of such highly complex and nonlinear systems.

The second possibility is to form a complicated function

of design variables allowing a good description of

different biomechanical models and motor tasks without

considering its physiological interpretation [9]. Similar to

artificial neural networks, this function could be

considered as an approximation of unknown interrelations

between the variables of interest. Static optimization has

its upholders [10] as well as its opponents [11].

A debatable point is its appropriateness for dynamic

conditions. The main reasons for doubts are: the objective

functions are usually time-independent; the contractile

properties of the muscles, i.e. the well-known relation-

ships of force with length and velocity, are not taken into

consideration; the previous state of the muscles is not

considered since the optimization is performed for a

current time moment. Recent publications have shown

that static optimization could be used with same success

for dynamic conditions [12–14]. What is omitted when
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the muscle is considered as a simple force generator? The

control signals in a muscle, coming from the motor axons

to the muscle fibers, cause “contractions” of separate

motor units (MUs), hence of a muscle part. These

contractions always result in a force production, but not

necessarily, always a change of the muscle length occurs.

Hence, it could be considered that the force of a MU is

controlled by neural impulses and thus the length and

contraction velocity of a muscle are controlled indirectly.

A feedback is needed for tracing the results from the

action of the control system. Among other sensor

information, afferent signals provide feedback for the

current state of the length, contraction velocity and tension

of the muscle from muscle spindles and Goldgy tendons.

This is why Hill-type muscle models (they are also called

phenomenological or rheological muscle models [15])

seem more adequate [16,17]. They consider a muscle as a

specific visco-elastic material and the corresponding

model represents the whole muscle as a combination of

contractile and elastic elements. Besides the problems

with the determination of specific constants for every

muscle, the question about controlling neural signals

arises when attempting to calculate directly the developed

muscle force for a given length and contraction velocity.

These signals can also be subjected to optimization, i.e.

design variables, or processed electromyographic signals

(EMGs) can be used as input. The surface EMGs reflect

the overall neural activity of muscles and the problems

with their proper registration, processing and relationship

with developed muscle force are well known. Actually, the

general effect of neural activity of MUs that compose the

muscle is registered. Since there are different types of

MUs with respect to the force capacity (cross-section area

and respective maximal force) and to the contraction

velocity (i.e. fast, slow and intermediate MUs), an exact

relationship between developed muscle force and

processed surface EMGs could not be established in the

general case. In addition, the linear summation of the

mechanical outputs of different MUs for forming the force

output of the whole muscle seems reasonable, while such

summation of electrical potentials does not [18]. The use

of intramuscular electrodes allows to observe for the

activity of selected MUs, but what portion of MUs in the

muscle is currently activated can not be established.

For most of the used muscle models the mechanical

output of a musculotendon unit is one force. Actually this

force is a sum of the forces developed from individual

MUs. The mechanical response of a MU to a neural pulse,

the so called “twitch”, has a well-known bell-shaped form.

The parameters that describe this form are different for

different MUs type. They depend on the current length of

the muscle [19], presence of fatigue, age, sex and level of

training [20,21]. To have as general output a smooth

enough muscle force, the time sequence of activation of

different MUs is very important. The authors are of the

opinion, that models considering a muscle as a mixture of

different MUs and the muscle mechanical output as a

summation of MUs twitches, are more realistic and could

provide more realistic means for detailed investigation of

motor control. That is why a new approach and computer

algorithm based on MUs peculiarities was developed

[22,23]. A hierarchical genetic algorithm (HGA) was

implemented for predicting the time moments of neural

activation of MUs of the modeled muscles. The software

realization, MotCo package, can be inspected on the web

site http://motco.dir.bg.

The aim of the present paper is to apply the above

approaches: (1) static optimization, where the mechanical

output of a muscle is considered as one musculotendon

force; (2) optimization based on Hill-type muscle model

where this force is dependent on the current muscle length

and contraction velocity; and (3) the method based on MU

twitches, i.e. implementation of HGA using the MotCo

software, for investigation of a fast elbow flexion and to

compare the results.

METHODS

A one-degree of freedom (DOF) model of the elbow in the

sagittal plane is considered (for details see Ref. [22]). Five

muscles are modeled—three flexors: m.biceps brachii

(BIC), m.brachialis (BRA), m.brachioradialis (BRD) and

two extensors: m.triceps brachii (TRI) and m.anconeus

(ANC). Only fast elbow flexion from 08 to 1508, that is

from fully extended to fully flexed forearm, for 0.25 [s] is

considered. The following function is chosen for modeling

the change of the elbow angle during motion:

wðtÞ ¼ 2
wran

2p
sin

2pt

T

� �
þ

wran

T
t; ð1Þ

where T ¼ 0:25 ½s� is the duration of the flexion and

wran ¼ 5p=6 ½rad� is the range of the movement. In this

way a symmetrical sinusoidal law for angle velocity and

acceleration is modeled (see Fig. A1 in Appendix), that is

in good agreement with reported data for ballistic motions

[24,25]. The moment equation with respect to the axis of

flexio/extensio in the elbow has the form:

X5

i¼1

diFi ¼ Mext where Mext ¼ Izz €wþ GlG sinðwÞ; ð2Þ

where i ¼ 1–5 represents the muscles BIC, BRA, BRD,

TRI and ANC, respectively and Fi are the respective

muscle forces, di are the moment arms of the muscle

forces, Mext is the external joint moment due to the action

of the inertial and the gravity forces, G and Izz are the

gravity force and the inertial moment of the hand and

forearm, ẅ is the angular acceleration and lG is the

distance from the axis of rotation in the joint to the

application point of G. The muscle moment arms are

dependent on the elbow angle and are calculated from the

regression equations given in Refs. [26,27] (note that di .

0 for BIC, BRA and BRD, but di , 0 for TRI and ANC).

The graphics di(t) are shown in Fig. A2 in Appendix.
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The used data for the present calculations are:

lG ¼ 0:18 ½m�; Izz ¼ 0:01087 ½kg m2� and G ¼ 13:72 ½N�:
Three cases with respect to the way of modeling the

muscle forces and the respective optimization tasks will be

considered.

One Force Independent of Muscle Length and

Type of the Muscle MUs

It is supposed that the muscle force is independent of the

current or previous state of the muscle, muscle contractile

properties, etc. i.e. it is a simple design variable in the

following optimization task:

OT1

min
X5

i¼1

ciF
n
i

at the equality constraint
P5

i¼1diFi ¼ Mext;
where ci ði ¼ 1; 2; . . .; 5Þ are weight coefficients that may

have both positive and negative values [7,28].

The analytical solution of the optimization task

obtained using Lagrange multipliers method is:

Fi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mn21

ext di

nSn21ci

n21

s
; where S ¼

X5

j¼1

dj

ffiffiffiffiffiffi
dj

ncj

n21

s !
: ð3Þ

Apart from using this analytical solution, the same

optimization task was also solved numerically by using

the function constr of the optimization toolbox of

MATLAB (MatWorks Inc.), but imposing additional

inequality constraints 0 # Fi # Fmax
i ; where Fmax

i is the

maximal possible force of the i-th muscle calculated by

multiplying the physiologic cross-sectional area of the i-th

muscle (PCSAi) by 50 N/cm2 [16]. The following values

were used for PCSA: BIC-5.37 [cm2]; BRA-5.55 [cm2];

BRD-1.33 [cm2]; TRI-4.37 [cm2] and ANC-1.24 [cm2].

Hence, the respective maximal forces are: Fmax
1 ¼

268:5 ½N�; Fmax
2 ¼ 277:5 ½N�; Fmax

3 ¼ 66:5 ½N�; Fmax
4 ¼

236:5 ½N� and Fmax
5 ¼ 62 ½N�:

Rheological Muscle Model Accounting for the

Type of the Muscle MUs

The muscle is represented as a contractile element acting

in parallel with a passive elastic element [29,30]. A series-

elastic element is not considered since it corresponds to

the tendon and aponeurosis at the muscle ends, so it is not

an active muscle component. According to Brown et al.

[30], the force of a muscle can be expressed relative to its

current length l, contraction velocity _l and degree of

activation a by the following equation:

Fðl; _l;aÞ ¼ aF max½FðlÞFðl; _lÞ þ FPE2ðlÞ�

þ F maxFPE1ðl; _lÞ; ð4Þ

where F(l) represents the force–length relationship,

Fðl; _lÞ represents the force – velocity relationship,

FPE1ðl; _lÞ and FPE2ðlÞ represent passive elastic elements

and F max is the maximal isometric force and 0 # a # 1:
l is normalized to the optimal muscle length at which the

muscle develops maximal isometric force.

Usually the human muscles are a mixture of different

MUs [20]. Although an exact classification of MUs type

is not established, three main types are usually

differentiated—fast, slow and intermediate [31]. Brown

et al. [30] distinguish fast-twitch and slow-twitch

muscles using different constants for force–length–

velocity relationships. For the current investigation, the

equations and constants given in Ref. [29] (see Table I,

page 123 in Cheng et al. [29]) are used. Supposing that

the i-th muscle consists of 100·ki percents fast-twitch

fibers, where 0 # ki # 1; the Eq. (4) can be rewritten

for the i-th muscle as follows:

Fiðli; _li;ai; kiÞ ¼aiF
max
i

	
kiF

f
i ðliÞF

f
i ðli; _liÞ

þ ð1 2 kiÞF
s
i ðliÞF

s
i ðli; _liÞ

þ Fi PE2ðliÞ


þ Fmax

i Fi PE1ðli; _liÞ

ð5Þ

where F
f
i ðliÞ; F

f
i ðli; _liÞ; Fs

i ðliÞ and Fs
i ðli; _liÞ represent

the force–length and the force–velocity relationships

for fast and slow parts of the i-th muscle, respectively.

According to Cheng et al. [29], the force in the parallel

elastic element does not depend on the fiber types.

The length and the contraction velocity of each modeled

muscle for the investigated fast elbow flexion are

calculated by the regression equations for the length

dependencies on the elbow joint angle given in

Refs. [26,27]. Hence, given the elbow angle f(t) from

Eq. (1), the dependencies li(w) and _liðwÞ are known for

each muscle (they are shown in Figs. A3 and A4 in

Appendix). Therefore, the muscle forces are expressed by

Eq. (5) as functions of time, degree of activation and the

interrelation between the fast and the slow parts

constituting the muscles. The optimization task can be

formulated and solved differently. The first way is to

assume that the muscle activations ai are design variables,

but not the muscle forces. Then two optimization tasks

(OT2 and OT3) can be composed:

OT2

min
X5

i¼1

ai

TABLE I Parameters of the considered two types of MUs (fast, slow)
(see Fig. 1) given in [ms]

MU type T lead Tc T ref Thr T tw

Fast 20 30 30 60 120
Slow 70 80 80 200 480
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at the equality constraint:
P5

i¼1diFiðli; _li;ai; kiÞ ¼

Mext and the inequality constraints: 0 # ai # 1 and 0 #

Fiðli; _li;ai; kiÞ # Fmax
i ðli; _li; kiÞ; for i ¼ 1; 2; . . .; 5;

OT3

min
X5

i¼1

Fiðli; _li;ai; kiÞ

PCSAi

� �n

at the equality constraint:
P5

i¼1diFiðli; _li;ai; kiÞ ¼

Mext and the inequality constraints: 0 # ai # 1 and 0 #

Fiðli; _li;ai; kiÞ # Fmax
i ðli; _li; kiÞ; for i ¼ 1; 2; . . .; 5;

(note that here F max
i ðli; _li; kiÞ is the maximal force of the

i-th muscle calculated for the current length and

contraction velocity by substitution ai ¼ 1 in the Eq. (5),

i.e. when the muscle is fully activated).

The second way for formulation of the optimization

task is to use the force–length–velocity relationship as a

boundary condition only, hence as an upper limit of the

possible maximal muscle force for current length and

contraction velocity. This limit is used as weight factor in

the objective function instead of PCSA [2]. Then the

muscle forces Fi are design variables in the following

optimization task:

OT4

min
X5

i¼1

Fi

Fmax
i ðli; _li; kiÞ

� �n

at the equality constraint:
P5

i¼1diFi ¼ Mext and the

inequality constraints: 0 # Fi # Fmax
i ðli; _li; kiÞ for

i ¼ 1; 2; . . .; 5;
where the maximal muscle forces are calculated for

current length and contraction velocity during the motion

substituting ai ¼ 1 in Eq. (5).

The OT2, OT3 and OT4 were solved numerically using

the function constr of the optimization toolbox of

MATLAB.

Muscle Model based on Motor Unit Twitches

The main difference here is that the mechanical output of a

muscle is not one musculotendon force, but it is obtained

by the summation of the mechanical responses of MUs

that compose the whole muscle. The design variables are

the time moments of neural activation of MUs. A HGA is

implemented for this task (see, for details, Refs. [22,23]).

A brief, simplified description of the algorithm is

presented below. The MU twitch (the mechanical response

of a MU of a single neural impulse) has a specific bell-

shaped form (see Fig. 1a) that is dependent on the MU

type (slow, fast) and was described analytically elsewhere

[22]. Repetitive neural impulses with inter-pulses time

period greater than the absolute refractory period (Tref)

cause a superimposition of the twitches (Fig. 1b) up to

unfused and fused tetanus. Both maximal firing rate and

maximal force of a MU depend on the chosen value of Tref.

The total muscle force is the sum of the developed forces

of all MUs of this muscle. The time moments of neural

activation of all MUs of a muscle are coded in a “string of

genes” and overall activity of all modeled muscles is

presented by an “individual” obtained by a concatenation

of these strings. On each step of the algorithm, these

“individuals” are modified by different genetic operations

(mutation, crossover) that change in some way the

moments of neural activation. The obtained solutions, old

and new, are estimated by a fitness function and the better

ones “survive”. The genetic operations are applied again

over these and this process continues until some end

condition is fulfilled. In the present paper, the used

FIGURE 1 (a) MU twitch shape and parameters. Fmax
MU -maximal force

of the MU caused by one neural impulse; Tlead- “lead time”: the time
between the neural activation and the start of the force development;
Tc-“contraction time”: time from the start of the MU mechanical
contraction, to the time where MU force reaches its maximum;
Tref-“absolute refractory period”: during this time the MU is unable to
respond to new neural activation; Thr-“half-relaxation time”: time from
the start of the MU mechanical response to the time when the MU force
becomes twice lower than Fmax

MU ; Ttw-duration of the twitch. (b) Forces
developed by two types MUs, fast (I) and slow (II), stimulated with their
maximal frequencies f I

max and f II
max: These depend on the absolute

refractory period. Lines I / f I
max and I / f II

max are responses of fast MU
stimulated with f I

max and f II
max, respectively; lines II / f I

max and II / f II
max are

responses of slow MU stimulated with f I
max and f II

max, respectively.
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fitness function FitFun is a weighted combination of

the following criteria: minimal total error (DM) between

the desired (computed from Eq. (2)) joint moment and the

joint moment obtained by summing the forces of all MUs

and multiplying the calculated muscle forces by their lever

arms; minimal muscle activation (MUAct), i.e. minimum

of the total number of neural impulpes; minimal total

muscle force (Sum). The optimization task is formulated

as follows:

OT5

to find tk
i;j that minimize the function: FitFun ¼

wmomDM þ wactMUAct þ wforSum at the inequa-

lity constraints: t pþ1i; j 2 t pi; j $ T refi; j
; p ¼ 1; 2; . . .;

StimNumi; j; and at given twitch form FMUðt; T lead;
Tc; T ref ; Thr; T tw;Fmax

MU Þ (see Fig. 1a) and percent of fast

and slow MUs for the muscles,

where: tk
i; j is the k-th time moment of neural activation of

the j-th MU of the i-th muscle; Tref i, j is the absolute

refractory period of the j-th MU of the i-th muscle (see

Fig. 1a and Table I); StimNumi, j is the number of impulses

of the j-th MU of the i-th muscle for the whole duration of

the movement; wmom, wact and wfor are weight factors at

the following quantities:

DM ¼
1

N int

XNint

j¼1

Mextðt0 þ j·DtÞ2
1

N

XN

i¼1

diFiðt0 þ j·DtÞ

 !
;

i.e. total error between the desired and current joint

moment;

MUAct ¼
XN

i¼1

XNumi

j¼1

StimNumi; j

MaxStNumi; jðdurationÞ
;

i.e. muscles’ activation;

Sum ¼
1

N·N int

XN

i¼1

XN int

j¼1

Fiðt0 þ j·DtÞ;

i.e. the sum of the currently calculated forces of all

muscles, where

N int ¼
duration

Dt
:

Here N is the number of the modeled muscles (N ¼ 5

for the current study), Numi is the number of the MUs of

the i-th muscle; FiðtÞ ¼
PNumi

j¼1

PStimNumi; j

k¼1 Ftw
i; jðt

1
i; j; t2

i; j; . . .;
tk
i; j; tÞ; ðtk

i; j # tÞ is the force of the i-th muscle as function of

time t obtained by summing the force outputs,

Ftw
i; jðt

1
i; j; t2

i; j; . . .; tk
i; j; tÞ; of this muscle MUs caused by

neural impulses applied at the times tk
i; j; MaxStNumi, j is

the maximal possible number of impulses for a given time

“duration” for which the j-th MU of the i-th muscle is able

to respond (this number depends on the absolute refractory

period for a MU); Nint is the number of the time intervals

Dt for which the muscle forces are estimated, beginning

from an initial time t0. The inequality constraints reflect

the fact that a MU does not respond with a rise in its force

output if the time between two successive impulses is less

than an absolute refractory period Tref i, j.

There is a lack of information about the number and

type of MUs for most of the muscles. The current

simulations are performed with a nearly real number MUs,

supposing that this number is proportional to PCSA of the

muscle. As a basis, the value given in Ref. [32] for m.BIC,

namely 774 MUs, is used. So, the numbers of the MUs for

other muscles are: m.BRA-804; m.BRD-194; m.TRI-686;

m.ANC-180. Different types of MUs can be modeled in

the software setting different parameters of their twitches

(Fig. 1a). Only two types are considered in this paper, fast

and slow, and their parameters are given in Table I. It is

assumed first that all muscles consist of 50% fast and 50%

slow MUs. Then Fmax
MU ¼ 0:3288 ½N� for fast and Fmax

MU ¼

0:0382 ½N� for slow MUs for all muscles. For the second

numerical experiment, it is supposed that the muscles

BRA, BRD and ANC consist only of fast MUs. Then their

maximal forces are changed as follows: m.BRA-Fmax
MU ¼

0:19095 ½N�; m.BRD-Fmax
MU ¼ 0:1905 ½N�; and m.ANC-

Fmax
MU ¼ 0:190425 ½N�: These maximal forces are calcu-

lated so that the sum of tetanic forces of all MUs of a

muscle is equal to the maximal possible force of this

muscle calculated by its PCSA.

RESULTS

Three-phasic behavior of muscles, typical for ballistic

motions, can be predicted using static optimization even if

the dynamic properties of the muscles are not accounted

(Fig. 2a,b). The flexors are active when the external joint

moment is positive, i.e. for t [ ð0; 0:16 sÞ<
ð0:235 s; 0:25 sÞ: Extensor activities are predicted if

Mext , 0: The differences between the predicted muscle

forces for n ¼ 2 and 3 are not significant (Fig. 2a vs. 2b;

see also Ref. [33]). The forces shown in Fig. 2a,b are

obtained using the analytical solution of OT1 given by

Eq. (3). The inequality constraints 0 # Fi # Fmax
i are not

imposed directly, but are satisfied because of used weight

coefficients. According to previous investigations [34],

when the absolute value of a weight coefficient is very big

(here jcij ¼ 1500 for extensors when M . 0 and for

flexors when M , 0), the predicted force of the respective

muscle is near zero. That is why antagonistic co-

contraction is not predicted here. Because of the used

weight coefficients the obtained solutions (Fig. 2a,b)

coincide with these obtained by subroutine constr of

MATLAB with the often used objective functionP5
i¼1ðFi=PCSAiÞ

n for n ¼ 2; 3 respectively and the

inequality constraints 0 # Fi # Fmax
i : The analytical

solution, however, is more precise and smooth.
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The minimization based on muscle stresses leads to an

interrelation between the predicted muscle forces in a

synergistic group proportional to their PCSA, namely

Fi

Fj

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdij

jdjj

PCSAi

PCSAj

n21

s
ðsee Eq: ð3ÞÞ:

Besides ci, the muscle lever arms also influence the

predicted muscle forces. The PCSAs of m.BIC and

m.BRA have similar values and their predicted forces are

near, but m.BIC force is larger since its lever arm is longer

everywhere (see Fig. 2 in Appendix). If other ci are used

(see Fig. 2c), it is possible to predict antagonistic co-

contraction.

Aiming to show how a new objective function could be

constructed, the following time dependent analytical form

of the weight coefficients can be used:

ci ¼ signðdiÞ

�
1

ðFmax
i ðli; _li; kiÞÞ

n1

1

ðPCSAiÞ
n2

ebi ·signð2Mext=diÞ; ð6Þ

where n1 þ n2 ¼ n and bi is a parameter reflecting in

percent the current capability of the muscle to develop

force. For example, if a muscle has an optimal length, it is

not fatigued, not damaged, etc. then bi ¼ 100; else

0 , bi , 100: If bi ¼ 100 and n1 ¼ 2; n2 ¼ 0; the results

of using the optimization criterion min
P5

i¼1ciF
2
i with

ci having the form from Eq. (6) will coincide with those

obtained by the criterion min
P5

i¼1ðFi=Fmax
i Þ2: If n1 ¼ 0

and n2 ¼ 2; the results will coincide with those obtained

by the criterion min
P5

i¼1ðFi=PCSAÞ2: The advantage of

this form of ci is that it allows a simple derivation of an

analytical solution of the optimization task. The direction

of the muscle moment defines the sign of the weight

coefficient, that is why the ci for antagonistic muscles are

with opposite sign. The interrelation between the direction

of the muscle moment and the direction of the external

moment defines when a muscle has to be preferably active.

Like in the rheological muscle models, the current length,

the contraction velocity and the percent of fast and slow

MU could be accounted for in bi. For example, if

bi ¼ 100 £ ð1 2 ðjD liÞj=ðLoiÞÞ; where D li is the devi-

ation of the current muscle length from the optimal muscle

length L0i, the reduced capabilities of the muscle for force

producing when its length is different from the optimal

one, will be accounted for. The muscle forces calculated

using Eq. (3) and ci from Eq. (6) with n ¼ 2; n1 ¼ 2;
n2 ¼ 0; b1 ¼ 84; b2 ¼ 85; b3 ¼ 85; b4 ¼ 90; b5 ¼ 92

are shown in Fig. 2c. The maximal forces were computed

using Eq. (5) and ai ¼ 1 for all i supposing that all

FIGURE 2 Predicted muscle forces using static optimization and the objective function min
P5

i¼1ciF
n
i ; i.e. solving the optimization task OT1.

(a) n ¼ 2; ci ¼ (1/PCSAi)
n for i ¼ 1; 2; 3; ci ¼ 21500 for i ¼ 4; 5 if Mext . 0 and ci ¼ 1500 for i ¼ 1; 2; 3; ci ¼ 2ð1=PCSAiÞ

n for i ¼ 4; 5 if Mext , 0:
(b) n ¼ 3; ci ¼ 2ð1=PCSAiÞ

n for i ¼ 1; 2; 3; ci ¼ 21500 for i ¼ 4; 5 if Mext . 0 and ci ¼ 1500 for i ¼ 1; 2; 3; ci ¼ 2ð1=PCSAiÞ
n for i ¼ 4; 5 if

Mext , 0: (c) n ¼ 2; ci ¼ ð1=PCSAiÞ
n for i ¼ 1; 2; 3; ci ¼ 22 for i ¼ 4; 5 if Mext . 0 and ci ¼ 2 for i ¼ 1; 2; 3; ci ¼ 2ð1=PCSAiÞ

n for i ¼ 4; 5 if
Mext , 0: (d) ci has the analytical form from the Eq. (6). The following constants are used: n ¼ 2; n1 ¼ 2; n2 ¼ 0; b1 ¼ 84; b2 ¼ 85; b3 ¼ 85; b4 ¼ 90
and b5 ¼ 92:
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muscles consist of 50% fast and 50% slow MUs. They are

changed considerably during the motion—see Fig. 3.

Using muscle activations as design variables, i.e.

solving OT2 and OT3, besides the predicted individual

muscle forces (Fig. 4a–d), a general information about the

control of these muscles is obtained (Fig. 4e–h). Since the

optimization criterion for OT2 is linear, the predicted

results (Fig. 4a, b) show the typical behavior for such

criteria, namely, inadequate muscle synergism. The

muscle BIC is activated dominantly. When its force

becomes insufficient for satisfying the external joint

moment, i.e. it exceeds the maximal value, m.BRA is also

included and after that, m.BRD, which has little non-zero

force for a short time period. This is more clearly seen in

Fig. 4e. When a1 reaches its limit, a2 becomes non-zero,

when a2 reaches 1, a3 becomes non-zero. The force of the

m.ANC is near zero. When the structure of the muscles

BRA, BRD and ANC were changed, i.e. when they were

composed of only fast fibers, the predicted muscle forces

do not change practically (Fig. 4a vs. 4b), but the

activation changes (Fig. 4e vs. 4f). In Fig. 4f, m.BRA does

not reach its force upper limit, since its maximal force is

bigger when it consists of only fast MUs (see Fig. 3). The

results from solving OT3 (Fig. 4c,d,g,h) are very

interesting. Here the aim was to find such ai so that the

moment equation is fulfilled, the minimum of the sum of

the squared muscle stresses to be reached and the

inequality constraints to be fulfilled. Hence, the difference

from OT1 is that the design variables are muscle

activation ai̇, but not the muscle forces since they are

expressed using Hill-type model by li; _li;ai and ki (see

Eq. (5)). Figure 4d looks just like Fig. 2a where the results

from solving OT1 with n ¼ 2 were shown. This is due to

the fact that the weight factor in the objective functions

used for both OT1 and OT3 is the PCSA and the force

limits for all muscle forces are not reached. Figure 4c

slightly differs from Fig. 4d just because of reaching upper

limits. When all muscles consist of 50% fast and 50% slow

parts, the maximal forces of the muscles BRA and BRD

are lower (see Fig. 3) and this is why m.BRA reaches its

limit in Fig. 4c (see also Fig. 4g), but when m.BRA

consists of only fast MUs this does not happen. It is

interesting that the interrelation between the forces of

m.BIC and m.BRA is inverse to the interrelation between

their ai (Fig. 4c vs. 4g; Fig. 4d vs. 4h). The m.BIC

develops bigger force, but the degree of the activity of

m.BRA is higher.

The interrelation between the predicted forces in the

muscles from a synergistic group changes when instead of

PCSAs, the maximal muscle forces as functions of time,

namely F max
i ðli; _li; kiÞ; are used as weight factors in the

objective function, hence solving OT4 (Fig. 5a). The

predicted force of m.BRA becomes significantly lower (see

for comparison Fig. 5a vs. 4d) since the maximal force of

m.BRA is lower than that of m.BIC for the whole

movement duration (see Fig. 3). When the muscles BRA,

BRD and ANC have only fast MUs, the results are nearly

the same as those shown in Fig. 5a (not shown by a figure).

They differ essentially, however, if the inequality

constraints Fi # Fmax
i ðli; _li; kiÞ; are not included in the

optimization task (Fig. 5b). The non smoothness of the

curves in Fig. 5a between 0.075 [s] and 0.105 [s] is caused

from reaching the upper limit for the m.BIC force.

The results from using the HGA with the muscle model

based on MU unit twitches (Figs. 6a and 7a) show

significant muscle co-contraction, especially essential in

the time interval t [ ð0:1 s; 0:15 sÞ: In contrast to the

previous models, the predicted force of m.BRA is bigger

than that of m.BIC and this is more expressive when

m.BRA consists of only fast MUs (Fig. 7a). Here the

influence of the bigger lever arm of the m.BIC disappears

because of the considered very fast motion. To perform

such fast flexion, all fast MUs of all flexors must be

activated initially. The number of the fast MUs of m.BRA

is with 15 more than this of m.BIC for Fig. 6a and with

417 for Fig. 7a. That is why the m.BRA force is longer.

FIGURE 3 Maximal forces of the muscles during the motion when all muscles consist of 50% fast and 50% slow parts and when the muscles BRA,
BRD and ANC consist of only fast MUs.
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FIGURE 4 Muscle forces (first vertical panel) and muscle activation ai (second vertical panel) predicted by solving the optimization tasks OT2 and
OT3. First horizontal panel: OT2, all muscles consist of 50% fast and 50% slow MUs, i.e. ki ¼ 0:5 for all i. Second horizontal panel: OT2, the muscles
BRA, BRD and ANC consist of only fast MUs, i.e. k1 ¼ 0:5; k2 ¼ 1; k3 ¼ 1; k4 ¼ 0:5; k5 ¼ 1: Third horizontal panel: OT3, n ¼ 2; all muscles consist of
50% fast and 50% slow MUs, i.e. ki ¼ 0:5 for all i. Fourth horizontal panel: OT3, n ¼ 2; the muscles BRA, BRD and ANC consist of only fast MUs, i.e.
k1 ¼ 0:5; k2 ¼ 1; k3 ¼ 1; k4 ¼ 0:5; k5 ¼ 1:
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The longer m.ANC predicted force in comparison with

other optimization tasks is again due to the necessity for

activation of all fast MUs of the extensors, so that the

deceleration phase of the movement is being performed.

The change of the proportion between fast and slow parts

in the muscles BRA, BRD and ANC influences their

activation much more (Fig. 6c vs. 7c; Fig. 6d vs. 7d; Fig. 6e

vs. 7e) in comparison with the optimization tasks in which

the rheological muscle model was used. When the muscles

become faster, their participation in the motion becomes

more significant. The total activities of the faster muscles

BRA, BRD and ANC increase considerably while they

remain the same for m.BIC and m.TRI. This is clearly

seen from the number of neural impulses applied on the

MUs per each 1 ms time interval, i.e. the so-called

“simulated EMG” by the authors (Figs. 6b–f and 7b–f).

This number is not equivalent to the number of active MUs

of a muscle, since one MUs may receive more than one

impulse for the motion time and typical for fast motions

doublets [35,36] are encountered.

DISCUSSION

The aim of the paper is to apply three different ways for

muscle force modeling and to compare the results

obtained by solving different optimization tasks based

on these models. It is suitable to investigate a simple one

DOF model for these purposes. The predicted muscle

forces will be, of course, different if models with more

DOF are used, but the main conclusions about the

advantages or the disadvantages of some of the muscle

models will be similar. Very fast elbow flexion is

considered aiming to study the influence of the dynamic

muscle properties and of interrelation between the fast and

slow parts constituting a muscle. The phenomenological

muscle model presented by Brown, Cheng and Loeb in

Refs. [29,30] is used since it allows to separate the

properties of slow and fast MUs and the constants in the

force–length–velocity relationships for both MUs type,

precisely obtained by natural experiments, are available.

Many scientists use such models relating muscle force

proportionally to muscle activation, maximal isometric

force, force–length and force–velocity relationships

[37,38]. Hence, muscle activation is a parameter reflecting

whole muscle control. Our interest was not to discuss the

physiological meaning of this parameter and its relation

with firing frequencies of the MUs or natural EMG

signals.

There is no essential advantage with respect to the

predicted muscle forces obtained by solving optimization

tasks in which these forces are presented by a

phenomenological muscle model, particularly regarding

the antagonistic muscle co-contractions. The functions

ai(t) are supplements that give an additional information

about the total muscle activity. A logical objective

function when ai are design variables is the linear sum of

ai, but the results from solving OT2 are not satisfactory

(Fig. 4a,b). Rehbinder and Martin [37] proposed to use the

sum of the squared muscle activation, i.e. min
P5

i¼1a
2
i in

OT2. Notwithstanding that the arguments for doing this

are not clear, we examined this criterion as well.

Surprisingly, the results were very close to those obtained

by solving OT4. The muscle forces’ distribution was

similar to the one shown in Fig. 5a. This similarity is due

to the fact that the muscle force in the Eq. (5) is a linear

function of ai and the force of the passive elastic element

PE1 is nearly negligible with respect to the other

components of this equation. Actually, according to

Eq. (5), the muscle force is a sum of two time-dependent

functions, i.e. FiðtÞ ¼ ai f ð1Þi ðtÞ þ f ð2Þi ðtÞ: The values of the

function f ð1Þi ðtÞ are about thousand times greater that those

of f ð2Þi ðtÞ for the whole movement duration for all muscles,

hence FiðtÞ < ai f ð1Þi ðtÞ: Since f ð1Þi ðtÞ < Fmax
i ðtÞ (because

the maximal muscle force is obtained for ai ¼ 1), using

the criterion min
P5

i¼1a
2
i is similar to using the criterion

min
P5

i¼1ðFiðtÞ=ðF
max
i ðtÞÞ2 if the optimization task is

solved for every discrete t. According to Eq. (3), the

relation between the predicted forces in the muscles from

a synergistic group for the last criterion is Fi=Fj ¼

diðF
max
i Þ2=djðF

max
j Þ2: There is a similar relation when the

criterion is min
P5

i¼1a
2
i : The similarity of Figs. 2a and 4d

FIGURE 5 Muscle forces predicted by solving OT4 with n ¼ 2: (a) All muscles consist of 50% fast and 50% slow MUs, i.e. ki ¼ 0:5 for all i.
Upper limits for all muscles are taken into consideration. (b) All muscles consist of 50% fast and 50% slow MUs, i.e. ki ¼ 0:5 for all i. Upper limits,
i.e. the inequality constraints: 0 # Fi # F max

i ðli; _li; kiÞ are not imposed.
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FIGURE 6 Muscle forces and activation predicted by MotCo software when all muscles consist of 50% fast and 50% slow MUs. The fitness function is:
1000 £ DM þ 1 £ MUAct þ 1 £ Sum: Figure (b)–(f) represents the number of neural impulses applied to the MUs of the respective muscle for every
millisecond, i.e. the so-called “simulated EMG” by the authors (note that the time scale for these plots is longer than the ones for the other figures,
because of the lead time influence).
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FIGURE 7 Muscle forces and activation predicted by MotCo software when the muscles BIC and TRI consist of 50% fast and 50% slow MUs, but the
muscles BRA, BRD and ANC consist of 100% fast MUs. The fitness function is: 1000 £ DM þ 1 £ MUAct þ 1 £ Sum: Figure (b)–(f) represents
the number of neural impulses applied to the MUs of the respective muscle for every millisecond (note that the time scale for these plots is longer than the
ones for the other figures because of the lead time influence).
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can be explained by such relations ignoring upper limits’

constraints. Apart from the fact that the muscle forces are

design variables for OT1 (Fig. 2a), but for OT3 (Fig. 4d)

they are the muscle activations, the interrelation between

the forces of the muscles from a synergistic group for both

tasks, when n ¼ 2; is Fi=Fj ¼ diðPCSAiÞ
2=djðPCSAjÞ

2:
In general, it could be proved that if the i-th muscle force

is represented as a function of the muscle activation ai, i.e.

Fi ¼ f iðaiÞ; ai are design variables and the optimization

criterion is
P

ci fi(ai)
n, the muscle forces distribution will

be the same as this obtained from applying static

optimization with design variables Fi and the optimization

criterion
P

ciF
n
i : Hence, regarding the muscle forces’

distribution, using such phenomenological models in

optimization procedures does not lead to new solutions of

the indeterminate problem. It seems more suitable to use

such models for calculation of the maximal possible

muscle forces for a given motion (Fig. 3) and to include

these values in an objective function as this is proposed in

Ref. [2], i.e. solving OT4 (see also Refs. [39,40]). These

values strongly depend on contraction velocity and can

change considerably the muscle force distribution (Fig. 5b

vs. 2a) if the interrelation between the maximal forces of

the muscles from one synergistic group changes during the

motion. These maximal forces are subject to errors,

however, since Eq. (5) includes many parameters specific

for a muscle, they are very sensitive to the evaluation of

the optimal muscle length, to the dependence of the

muscle length from the joint angle and to the constants in

the force–length–velocity relationship. Static optimiza-

tion with design variables, simple muscle forces and

quadratic objective function with PCSAs as weight

coefficients can be used for dynamic conditions when

objects of interest are general tendencies in motor control.

Such an objective function as that from Eq. (6) with both

positive and negative weight coefficients allows a

derivation of a simple analytical solution even for models

with more DOF [41].

It is questionable whether upper limit constraints

Fi # Fmax
i or Fi # Fmax

i ðli; _li; kiÞ are necessary for

formulating an optimization task, or they have to be

included for choosing a suitable objective function. For the

considered fast elbow flexion some maximal forces were

reached when the contraction velocities of the muscles

were very high (Figs. 4a–c and 5a). Note that the

considered motion is an extreme case. The upper bound

constrains cause somehow artificial and non-smooth

inclusion in the movement of muscles that have not still

reached their maximal forces (Fig. 5a vs. 5b). For

computations with HGA, i.e. OT5, upper limits on the

muscle forces were not imposed explicitly. Independent of

this, the muscles can not exceed their physiological limits

because of the maximal twitch force Fmax
MU : Comparing,

however, the muscle forces presented in Figs. 6a and 7a

with the maximal forces shown in Fig. 3, it can be seen that

the predicted muscle forces of BRA and BRD are bigger

than their Fmax
i ðli; _li; kiÞ for t [ ð0:068 s; 0:140 sÞ: The

MUs composing the modeled muscles, however, are able to

satisfy the required external joint moment with greater

accuracy for the whole movement. This discrepancy can be

due to non precise data for muscle lengths or to the

constants used in the force–velocity relationship. Force–

length–velocity relationships are obtained by an artificial,

usually fixed and repetitive, muscle or nerve stimulation.

Maybe, bigger muscle efforts can be developed during a

natural, probably non-synchronized activation. The fre-

quencies at which MUs reach their maximal forces are very

different. They depend on their absolute refractory period

(Fig. 1b). Obviously applying one and the same frequency

for different MUs maximal activation of all MUs can not be

provoked. Using the muscle model based on MUs artificial

upper limit constraints are not needed. They are fulfilled

indirectly, by setting the parameters of the twitches. If the

forces, the type and the number of MUs are insufficient for

performing a given motion, then this motion will not be

performed and the required joint moment will not be

satisfied.

The differences between the predicted muscle

activation (Fig. 4e–h) and the predicted muscle forces

(Fig. 4a–d) provokes a question concerning the use of

EMG signals as means for verification of the modeled

results. If ai is considered as a global reflection of the

control signals over a muscle (according to van Bolhuis

and Gielen [38] ai is “a measure for the amount of

muscle activation”), an antagonistic co-contraction can

be seen with respect to the muscle activations, but not

with respect to the muscle forces (see Fig. 4g vs. 4c and

Fig. 4e vs. 4a). For example, all ai are different from zero

for t [ ð0:16 s; 0:23 sÞ; but only m.TRI and m.ANC have

nonzero predicted forces. The so called “simulated

EMG” by the authors (Figs. 6b–f and 7b–f) that presents

the number of neural impulses applied over the muscles

for a given time period seems much closer to the surface

EMGs than the predicted muscle forces. Hence, it seems

more suitable to use this kind of available output of the

MotCo software for comparison of the predicted results

with some experimental ones than the muscle forces (see

for comparison Fig. 3, pp.362 in Ref. [24] and Fig. 6b–f).

Moreover, electromechanical delay is accounted for

properly.

There is only limited data about the type and the

number of MUs in the human limb muscles. In this paper,

we considered only two hypothetical variants. For the first

one all muscles consist of 50% fast and 50% slow parts.

For the second numerical experiments we changed this

proportion for the muscles BRA, BRD and ANC and they

had only fast MUs aiming to see how the predicted results

will change, but not because of evidence that muscles

BRA, BRD and ANC are faster that m.TRI and m.BIC.

Comparing these two variants for the optimization tasks

where the rheological muscle model is used (Fig. 4a vs.

4b; Fig. 4c vs. 4d), the conclusion is that the interrelation

between the fast and the slow parts of the muscles does not

change the muscle force distribution apparently. The

differences in the predicted muscle activation are bigger

(Fig. 4e vs. 4f; Fig. 4g vs. 4h), but they are primarily due to
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the fact that some of ai reach their upper limits. The latter

is connected with the change of the maximal muscle

forces (Fig. 3). Maybe, the results will be different if the

activation parameter is considered separately for slow and

fast parts of the muscles, since the neural control of

different MUs and their firing rates differ (Fig. 1b). This

case, however, is not considered in the present paper, since

the design variables will be twice greater than the simple

muscle forces and the optimization tasks OT2 and OT3

will look different from OT1 and OT4. The differences

between the predicted muscle forces by HGA when the

muscles consist of different portion of fast MUs (Fig. 6a

vs. 7a) are bigger than when the rheological muscle model

is used. The change of the activities of the muscles BRA,

BRD and ANC is too obvious (Fig. 6c vs. 7c; Fig. 6d vs.

7d; Fig. 6e vs. 7e). When all muscles consist of 50% fast

MUs, the muscles BIC and BRA have nearly equally

predicted forces since the number of their fast MUs is

nearly the same. When m.BRA consists of only fast MUs,

the HGA prefers its MUs and the predicted force of

m.BRA increases in comparison with the force of m.BIC.

The bigger difference between Fig. 6a and 7a is also due to

the fact that the fast and the slow MUs differ not only in

their maximal forces, but also in the time constants of their

twitch form (see Table I). Even when all muscles consist

of equal slow and fast parts, the contribution of the fast

MUs to the total muscle force is incomparably bigger than

the contribution of the slow MUs (Fig. 8). The HGA

chooses what MU is suitable to be activated accounting

for all parameters of the MUs twitches and probably this is

the natural mechanism. Since the number of the neural

impulses received from a muscle can be logically related

to registered EMG signals, it could be concluded that the

latter depend significantly on the type of MUs that

constitute the muscle. The observation that the activities

of MUs, and hence the forces of the muscles, depend on

the MUs type and the required motions, can help us to

explain why for some motions small muscles such as

m.ANC have a considerable activity. One of the reasons

could be that caput longum of m.TRI is a biarticular

muscle unit and during fast elbow motions it takes part in

stabilization of the shoulder. So, probably using of its fast

MUs is not so effective as using of the fast MUs of the

monoarticular m.ANC. Another reason could be a

deficiency of fast MUs in m.TRI, i.e. all fast MUs of all

extensor muscles must be activated for performing the

very fast elbow extension.

Considering a muscle as a mixture of different MUs

significant antagonistic muscle co-contraction was pre-

dicted (Figs. 6a and 7a) and it was very different from this

one shown in Fig. 2c (it has to be noted that solving OT1,

it is impossible to predict non-zero muscle forces when the

joint moment is zero). This muscle model can provide a

physiologically based explanation of this experimentally

observed phenomenon. Such co-contraction will be

predicted by HGA even when the motions are slow and

changes in the direction of the external joint moment do

not exist. This is explained in detail elsewhere [22].

The main reason is the form of the MU twitch (Fig. 1a).

The curve of the required joint moment is rather smooth.

It is difficult to describe it by bell-shaped MU twitches.

The twitches of the antagonistic muscle MUs produce

moments with opposite direction and their superimposi-

tion make the movements more graceful. Another reason

FIGURE 8 Contribution of the fast and slow MUs in the formation of the force of the whole muscle BRD from MUs twitches in the case when the
muscle consists of 50% fast and 50% slow MUs. (a) The sum of the forces of all fast MUs. (b) The sum of the forces of all slow MUs. (c) The individual
forces of all fast MUs. (d) The individual forces of all slow MUs.
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for antagonistic co-contraction is the fixed time (Ttw 2 Tc)

that is necessary for the decrease of the force of an already

activated MU to zero. When the joint moment changes

very steeply, the antagonistic activity is necessary for

compensation of the force of the previously activated

MUs.

The difference between the muscle model, based on

MUs and their twitches, and other ones is the highly

nonlinear dependence between the activation (neural

impulse) and the developed force (see Fig. 1). Rheological

muscle models are not able to predict the twitch form [15].

It is possible to present each MU with separate constitutive

equations as it is described in Cheng et al. [29], where a

“Virtual Muscle” modeling package is presented, but we

are not aware of reported investigations where this

possibility is realized. Besides the problems with the

necessary constants and activation signals for each MU,

the problem with twitch prediction remains. The model

considering a muscle as a mixture of MUs and calculating

the whole muscle force on the base of the twitches of the

individual MUs is closer to reality. The application of the

developed MotCo software can provide a detailed insight

into the motor control and can explain many physiological

phenomena. It allows to investigate how motor synergies

are achieved, to solve “indeterminate problems” avoiding

the questions about the physiological interpretation of

objective functions. There are many other advantages of

employed approaches not considered in the present paper.

A possibility for accounting for muscle fatigue is

provided. Among the currently used criteria in the fitness

function, many other time-dependent and time-indepen-

dent ones can be added, thus motor tasks with other aims

(for example, big accuracy of the end-point trajectory,

posture support with minimum fatigue and so on) can be

studied. The HGA presents a modeling means that is

significantly closer to the natural way humans control their

motor system. It mimics a trial and error method for

training where the successful solutions are stored and

further modified.

CONCLUSIONS

The main conclusions of the present paper are:

. modeling the muscle force output using Hill-type

models does not help much when indeterminate

problems are solved and does not give more realistic

results; such presentation could be used for estimation

of the current maximal muscle forces, which, for

dynamic conditions depend much on the current

muscle length and contraction velocity;

. since phenomenological muscle models are sensitive to

many constants specific for each muscle and because of

difference between the predicted muscle force and

muscle activation, their application for direct calcu-

lation of the muscle forces using as input processed

EMG signals is questionable;

. static optimization considering the musculotendon

forces as design variables and using quadratic or cubic

objective functions with weight coefficients related to

the muscle PCSAs or maximal muscle forces could be

used both for static and dynamic conditions (see also

Ref. [42]) when one is interested in a global estimation

of the muscle forces, joint moments and reactions;

. the muscle model based on MUs is more suitable for

detailed investigation of the distribution problem and

the control of the muscle activity, it is physiologically

based and more realistic; the developed HGA based

approach for finding the time moments of neural

activation of all MUs allows to test many different

optimization criteria and to trace how the muscle

activity is changed during training.
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APPENDIX

FIGURE A1 Elbow angle, angle velocity, angle acceleration and
external moment in the joint during the considered motion (a flexio from
08 to 1508 for 0.25 [s]). The angle is given in radians, the velocity, in rad/s,
the acceleration, in rad/s2 (for better illustration, the true acceleration is
divided by factor of 100), Mext in [Nm].

FIGURE A2 The muscle lever arms are calculated from the regression
equations reported in Pigeon et al. [27] and Lemay and Crago [26]. They
are given in centimeters. SYMBOLS: A - BIC; W - BRA; X - BRD; B -
TRI; * - ANC.
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FIGURE A3 The muscle lengths are calculated from the regression
equations given in Pigeon et al. [27] and Lemay and Crago [26]. They are
normalized to the “optimal muscle lengths” L0i. It is supposed that L0i is
the length of the i-th muscle at 758 flexed forearm, i.e. nearly to the
middle of the anatomically admissible range of motions. The minimal
shortening is 0.6384 of the optimal length and the maximal lengthening is
1.2918 of the optimal length. The symbols are the same as in Fig. A2.

FIGURE A4 The contraction velocities of the muscles during the
motions are calculated from the same regression equations and are again
normalized to L0i. Since the flexor muscles shorten during the whole
motion, their velocities are negative, the opposite is true for the extensor
muscles. The symbols are the same as in Fig. A2.
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