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Abstract

The fact that muscles are composed of different Motor Units (MUs) is often neglected when investigating motor control by
macro models of human musculo-skeletal-joint systems. Each muscle is associated with one control signal. This simplification leads
to difficulties when mechanical and electrical manifestations of the muscle activity are juxtaposed. That is why a new approach
for muscle modelling was recently proposed (Journal of Biomechanics 2002;35:1123–1135). It is based on MUs twitches and a
Hierarchical Genetic Algorithm (HGA) is implemented for choosing the moments of activation of the individual MUs, thus simulat-
ing the control of the nervous system. Its basic benefit is obtaining the complete information about the mechanical and activation
behaviour of all MUs, respectively muscles, during the whole motion. Its possibilities are demonstrated when simulating fast elbow
flexion. Three flexor and two extensor muscles, each consisting of approximately real number of different types of MUs, are
modelled. The task is highly indeterminate and the optimization is performed according to a fitness function that is an assessed
combination of criteria (minimal deviation from the given joint moment, minimal total muscle force and minimal MUs activation).
The influence of the weight of the first criterion (the one that reflects the importance of the movement accuracy on the predicted
results), is investigated. Two variants concerning the muscle MUs structure are also compared: each muscle is composed of four
distinct types MUs and the MUs twitch parameters are uniformly distributed.
 2003 Elsevier Ltd. All rights reserved.

Keywords: Motor control; Simulation; Elbow flexion; Motor units; Hierarchical genetic algorithm

1. Introduction

The control of the human limb motions has been
investigated by using macro-biomechanical models, pay-
ing attention to the muscle synergy and total individual
muscle forces[31,32]. It is accepted that the muscles
performing motions are single force generators (i.e. mus-
cle is a functional unit) and it is supposed that the human
nervous system controls each muscle by one control sig-
nal (neural input)[18,44]. Since the number of the
unknown muscle forces exceeds the number of the
moment equations, different optimization techniques are
used (for review see[33]). Whatever design variables
(i.e. muscle forces[34] or muscle activation signals[36])
have been used in various optimization tasks (under
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dynamic or static conditions), the fact that the muscles
are composed of different motor units (MUs), which are
actually subjects of control, has been neglected. The
great number of MUs in the muscles (e.g. the biceps
brachii has 774 MUs ([37], see also[2])) makes the
usage of conventional optimization techniques very dif-
ficult. The macro-biomechanical models can not give an
image of how the individual MUs work and how are
they controlled. The nervous system controls the muscle
force by including/excluding MUs and by changing their
discharge pattern, i.e. through recruitment and rate
coding [40]. The force developed by an MU due to a
single impulse (twitch) is a non-linear, bell-shaped time
function. The repetitive impulses cause an increase of
the mechanical output of the MU reaching unfused or
fused tetanus[5], and this force is a very complex time
function. That is why it is impossible to reconstruct the
forces of individual MUs from the total muscle force,
predicted by optimization methods. On the other hand,
the usage of processed surface electromyographic signal
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(EMGs) as a control signal [25] over the whole muscle
is also questionable, since this signal is not linearly pro-
portional to the percent of active MUs. In addition, a
demarcation between different MUs types is hard to be
made with EMGs, while their mechanical properties are
very different. An experimental validation of the pre-
dicted muscle forces by static optimization is often per-
formed through processed surface EMGs. Generally,
such a validation is doomed to failure not only for well
known problems [1,16,27,30,38,39,43] with suitable
registration and processing of these signals and question-
able relationship “muscle force—EMGs” , but also
because the summations of the twitches into the total
muscle force and the summation of the action potentials
into the surface EMGs are two very different processes.
The result of the second process depends essentially on
the position of the electrode, and hence on the dispo-
sition of the MUs within the muscle [6].

Experimental methods based on surface or intramus-
cular EMGs can give information for discharge patterns
of individual MUs, however the simultaneous precise
registration of the human MUs individual forces in vivo
is difficult. The decomposition of surface EMGs [23]
meets problems concerning the identification of individ-
ual MUs. The usage of intramuscular electrodes faces
the problem of selectivity and gives information about
a limited number of MUs. Using only electrical evi-
dences for the MUs activity, it is difficult to separate the
MUs into the three main types: slow, fast-twitch fatigue
resistant and fast-twitch fatiguable MUs. Thus, the role
of this differentiation during various motions can not be
investigated. As to the force developed by an MU, much
has been done by Celichowski [5], but only by per-
forming animal experiments with artificial stimulation
with constant frequencies. The “ twitch interpolation”
method [11] does not assure that an individual MU
twitch is registered. As for the spike-triggered averaging
method for twitch parameters registering in vivo, its
restrictions are discussed in [8,20].

The approach, which was recently proposed by the
authors [35] and implemented in MotCo software pack-
age (http://motco.dir.bg), combines the merits of the
methods discussed above and can supply us with broad
information about the functioning and control of MUs.
Here, the muscle is not considered a single force gener-
ator, but a mixture of MUs with different peculiarities.
The aim is to find such control of all MUs, so that a
given motion is performed. Independently of the simu-
lative nature of the approach, comparing the simulation
results with experimental ones, the parameters of the
model can be justified, so that the model approximates
reality well enough. Simulations can give information
unattainable by means of natural experiments. For
example, the time moments of inervation and the
respective mechanical responses of all MUs are software
outputs, MUs can be classified as slow, intermediate and

fast, different muscle diseases can be modelled, and the
movements with different purposes can be compared.
Like other models, the results of simulations with MotCo
software package can not be directly associated with
particular physiological cases, especially bearing in mind
the lack of information about MUs in living human
muscles and the dependence of simulation results on
many model parameters. It is, however, a useful tool for
teaching, demonstration purposes and sensitivity analy-
sis. The previously reported simulations [35] were made
aiming to compare the new approach with static optimiz-
ation and were performed with a small number of MUs
composing the muscles. Increasing this number to a real
one increases the computational cost greatly and this is
the main disadvantage of the approach. Modelling the
muscles with a real number of MUs, however, can give
more correct images about MUs functioning and more
suitable parameters for comparison with experimental
data.

The aim of the paper is to show the possibilities of
MotCo package for simulation of elbow flexion in the
sagittal plane with a duration of 350 ms modelling all
muscles participating in this motion by a real number of
MUs. The motor task is represented by a fitness function,
that is a weighted sum of three criteria: minimal devi-
ation from the given joint moment, minimal total muscle
force and minimal MUs activation. The weight coef-
ficient at each criterion determines its importance and
adjusts the measurement units. The differences between
the predicted results for the following two cases are
investigated: (1) each modelled muscle consists of 25%
fast-fatiguable, fast-fatigue resistant, intermediate and
slow MUs; (2) the parameters of the MUs twitches are
continuously distributed. Also studied is the influence
of different movement purposes by varying the weight
coefficient at the joint moment goal, thus emphasising
on the greater accuracy of the motion performance
(increasing this weight coefficient) or on the smaller total
muscle force and MU activation (decreasing this
weight coefficient).

2. Methods

2.1. Elbow model

A fast elbow flexion in the sagittal plane is simulated.
The model has one degree of freedom. The arm is fixed
vertically. The forearm and hand are modelled as one
rigid body [35] that performs a fast flexion from 0° (full
extended forearm) to 150° (full flexed forearm) with a
duration of 350 ms. A symmetrical sinusoidal law for
the angle velocity and acceleration has been accepted in
good agreement with data reported for ballistic motions
(for details see [35]). It is supposed that three muscles
take part in the elbow flexion—BIC (m.biceps brachii),

http://motco.dir.bg
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BRA (m. brachialis) and BRD (m. brachioradialis) and
two muscles perform extension—TRI (m.triceps brachii)
and ANC (m. anconeus). The lever arms of the muscles
depend on the joint angle and are calculated using litera-
ture regression equations [24,28]. The moment equation
with respect to the axis of flexio/extensio in the elbow
has the form:

�5

i � 1

diFi � Mext Mext � Izzj̈ � GlGsin(j), (1)

where Fi are the muscle forces; di are the moment arms
of these forces;Mext is the external joint moment; G and
Izz are the gravity force and the inertial moment of the
hand and forearm;j̈ is the angular acceleration; lG is the
distance from the axis of rotation in the joint to the appli-
cation point of G. The used data for the present calcu-
lations are average values: lG = 0.18 m, Izz = 0.01087
[kg.m2 and G = 13.72 N (http://motco.dir.bg/Data/
index.html).

2.2. MUs modeling

It is supposed at first that all muscles consist of four
basic types of MUs, namely: fast-twitch fatiguable (FF),
fast-twitch fatigue resistant (FR), intermediate (IM) and
slow-twitch (S). The total number of MUs of the
modelled muscles has been chosen proportionally to the
physiological cross-sectional areas (PCSA) (the basic
value is 774 MUs for BIC [37]). Hence, the number of
MUs of BRA is 804, of BRD is 193, of TRI is 685 and
of ANC is 180. It is supposed that all muscles have a
nearly equal percentage of MUs from all types. The
basic parameters of the twitches of MUs (see Figs. 1 and
2) are given in Table 1. It is supposed then that the time
parameters of the twitches of the MUs within a muscle
are uniformly distributed from the minimal value (first
row of Table 1) to the maximal value (last row of Table
1) with the increments given in Table 2. The increment
of the maximal twitch amplitudes (�FMU) is calculated
in accordance with the maximal forces of the modelled
muscles that are calculated by their PCSA.

2.3. Hierarchical genetic algorithm (HGA) for
simulation of the MUs activity

The approach and the algorithm are presented else-
where [35]. A brief, simplified description is given
below. The MU twitch (the mechanical response of a
MU to one neural impulse) has a specific bell-shaped
form that depends on the MU type (Figs. 1 and 2). It
has been approximated by an exponential function (see
[35]). Repetitive neural stimuli with interpulse time
interval greater than the absolute refractory period1 (Tref)

1 All temporal parameters in the text are connected with the mech-
anical manifestation of the MU, but not with the electrical one.

Fig. 1. MU twitch shape and parameters. FMU
max—maximal force of

the MU caused by one neural impulse; Tlead—”lead time” : the time
between the neural activation of the MU and the start of the mechanical
activity; Tc—”contraction time” : time interval between the start of the
MU contraction and the time for which the MU force reaches its
maximum; Tref—”absolute refractory period” : during this time the MU
is unable to response to new neural impulses, for the present simula-
tions Tref = Tc; Thr—”half-relaxation time” : time from the start of the
MU mechanical response to the time when the MU force becomes
twice lower than FMU

max. Note that in the literature this term is usually
related to the time interval Thr-Tc; Ttw—duration of the twitch.

Fig. 2. The twitches of the MUs from the four distinct types: fast-
twitch fatiguable (FF), fast-twitch fatigue resistant (FR), intermediate
(IM), slow-twitch (S).

Table 1
Parameters of the four types MUs considered

MU type Twitch parameters

Tlead [ms] Tc [ms] Thr [ms] Ttw [ms] FMU
max [N]

FF 20 30 60 120 0.3288
FR 30 40 100 240 0.191
IM 60 70 175 420 0.0764
S 70 80 200 480 0.0382

http://motco.dir.bg/Data/index.html
http://motco.dir.bg/Data/index.html
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Table 2
Increments for calculation of the twitch parameters of the MUs when they are uniformly distributed. Each temporal characteristic of the ith MU
of the respective muscle is calculated by the equation T(∗)(i) = T(∗) + i.�T(∗), where T(∗) are the time parameters from the first row of the Table
1, i = 0,1,2,..., Num-1 and Num is the number of the MUs of the respective muscle. The maximal amplitude of the i-th MU twitch is calculated
in a similar way, but the increment �FMU is computed so that the sum of the tetanus forces of all MUs of a muscle is equal to the maximal
possible force of this muscle. The maximal forces of the modelled muscles are calculated by multiplying their PCSA by the value of 50 N/cm2

and they are as follows: 268.5 N for BIC, 277.5 N for BRA, 66.5 N for BRD, 236.5 N for TRI and 62 N for ANC

Muscle �Tlead �Tc �Thr �Ttw �FMU number of MUs

BIC 0.0647 0.0647 0.181 0.466 �0.00028701 774
BRA 0.0623 0.0623 0.174 0.448 �0.00027489 804
BRD 0.260 0.260 0.729 1.875 �0.00114833 193
TRI 0.07299 0.07299 0.204 0.526 �0.00032188 685
ANC 0.279 0.2793 0.782 2.011 �0.00123138 180

cause superposition of the twitches up to unfused or
fused tetanus [5,29]. The total muscle force can be
determined from the time moments of neural activation
of its MUs. That is why these moments have been
chosen as design variables of the model. These variables
are called “genes” of the “ individual” in the terms of the
genetic algorithm. They represent a potential solution of
the optimization task. The HGA is inspired by the natu-
ral evolution where only the fittest individuals survive.
The algorithm uses genetic operations (mutation and
crossover) that modify and combine separate solutions
(individuals). Then, a set of better solutions is chosen
(i.e. fittest individuals survive) according to some fitness
function, and genetic operations are applied again. The
fitness function, FitFun, measures to what extent the cur-
rent solution satisfies a set of criteria. In the present
paper the used fitness function is an assessed combi-
nation of the following criteria: �J—minimal total error
between the desired (computed from eq. (1)) joint
moment and the joint moment computed as sum of the
muscle forces (obtained by the predicted mechanical
activity of the MUs) multiplied by their lever arms;
Sum—minimal sum of all predicted muscle forces; Act—
minimal muscle activation, i.e. minimal total number of
impulses. Hence:

FitFun � k1�J � k2Sum � k3Act, (2)

where k1, k2 and k3 are constants.

3. Results

Three simulations were performed:

� flexion with duration 350 ms with the basic four types
of MUs and coefficients in the fitness function k1 =
100, k2 = 1 and k3 = 1;

� flexion with duration 350 ms with coefficients in the
fitness function k1 = 100, k2 = 1 and k3 = 1, but with
uniformly distributed MUs;

� flexion with duration 350 ms with the basic four types

of MUs, but with different coefficients in the fitness
function, namely k1 = 20, k2 = 1 and k3 = 1; k1 =
30, k2 = 1 and k3 = 1; k1 = 40, k2 = 1 and k3 = 1;
k1 = 50, k2 = 1 and k3 = 1; k1 = 60, k2 = 1 and k3

= 1.

Some results from the first simulation (performed with
the four basic types MUs (see Fig. 2 and Table 1)) are
shown in Figs. 3–6. The coefficient k1 in the fitness func-
tion (eq. (2)) is a hundred times greater than the other
two coefficients. As a result, the required elbow joint
moment (bold line in Fig. 3a) is satisfied well within the
time interval [0, 350 ms]. A preceding period of 80 ms
and a subsequent period of 50 ms are also included in
all figures, aiming to show the muscle behaviour before
the start and after the end of the motion (see the dis-
cussion in [35]). The calculated joint moment (grey line
in Fig. 3a) is the sum of the moments of all predicted
muscle forces. These moments are obtained by multiply-
ing the predicted forces of all modelled muscles (Fig.
3b) by their lever arms. The contribution of the four
MUs groups in formation of the total force of m.BRA
is shown in Fig. 3c. The force of each muscle is the sum
of the mechanical responses of all its MUs (Fig. 4a) to
the activation chosen by HGA (Fig. 4b). Samples of the
mechanical responses of three MUs from each type are
given in Fig. 4c–f. Having the time moments of impul-
sation of all MUs (Fig. 4b) different activation character-
istics can be calculated. The so-called “simulated EMG
activity” is presented in Fig. 5a–e. These graphics show
the number of impulses received by all MUs of the
respective muscle within a given time interval (in the
present example this interval is one millisecond). In
order to separate the participation of different groups of
MUs, all characteristics can be obtained individually for
each group (see Fig. 5f–i). Other MUs characteristic,
often used in experiments in vivo, is the interpulse inter-
val. In Fig. 6 the histograms of the interpulse intervals
(the time intervals between two consecutive discharges
of a MU) of all modelled muscles are presented.

Most results from the second simulation, where the
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Fig. 3. The results from the simulation, when four distinct types of MUs are considered and the weights in the fitness function are k1 = 100,
k2 = 1 and k3 = 1. a) required (bold line) and calculated (grey line) joint moment; b) calculated muscle forces; c) the contribution of the four MUs
types to the formation of the total force of muscle BRD.

parameters of the MUs were uniformly distributed, were
very similar to those obtained in the previous case. The
main difference was found in the distribution of the
interpulse intervals (Fig. 7). The predicted muscle forces
were smoother (not shown by a figure), but not pro-
nounced.

Changes in the weights of the fitness function con-
siderably influence the predicted muscle forces’ distri-
bution (Fig. 8). When k1 = 20 an antagonistic activity is
not predicted, when k1 = 30 a little force appears in
m.TRI, when k1 = 100 besides m.TRI an appreciable
activity in m.ANC is predicted. We shall note that for
k1�30 the force of the m.BRD is greater than the force
of m.BRA, while for k1�40 this order changes. This fact
can be explained by the greater moment arm of m.BRD
compared with m.BRA during the whole range of
elbow angle.

4. Discussion

The main purpose of the paper is to show the possi-
bilities of the authors’ approach to motor control study.
The previously reported simulations [35] were perfor-
med with about ten times less MUs composing the
muscles. Increasing this number to a realistic one, the
computational cost increases greatly but, the benefit is a
more realistic image about functioning of the MUs and

the whole muscles. Knowing the motor task (i.e. defining
it by the required joint moment (Fig. 3a)) and the aim
of the motion (represented by the fitness function) the
total forces of all modelled muscles are predicted (Fig.
3b). So, the force-sharing problem is solved. Since the
mechanical responses of all MUs are known (Fig. 4a),
the contribution of the different MUs groups in forming
the total muscle force can be distinguished (Fig. 3c).
Since the exact time moments of firing of each MU are
known (predicted by HGA—Fig. 4b), different acti-
vation characteristics can be derived. The number of
impulses applied over all muscle MUs during a given
time interval (Fig. 5a–e) shows its total activity during
the motion. When the number of MUs is a realistic one
(for a comparison see Fig. 6 in [35] where this number
was about ten times less), these graphics are more suit-
able for comparison with experimentally measured
EMGs than the predicted muscle forces (Fig. 3b), since
they are closer in nature to the electrical manifestation
of the muscle activity. Actually, the “simulated EMG
activity” is proportional to the number of neural
impulses, it does not depend on the mechanical
properties of the MUs and it is not delayed time as in
the mechanical activity does. The histograms of the
interpulse intervals (Figs. 6 and 7) give information
about the average and the temporal frequencies of MUs
discharging. They can be separately derived for different
MUs types, which implies the existence of a possibility
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Fig. 4. Mechanical responses of MUs of muscle brachioradialis during the whole motion and the corresponding time moments at which each MU
receives its impulses. a). mechanical responses of all MUs which are arranged in the following order: slow (S), intermediate (IM), fast-twitch
fatigue resistant (FR) and fast-twitch fatiguable (FF); b). time moments at which each MU is activated. Two MUs are presented within each row
(a little up and a little down). Each point corresponds to one neural impulse. The bars in the right correspond to the total number of impulses of
the respective MU; c–d). mechanical responses of some FF, FR, IM and S MUs of the same muscle.
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Fig. 5. “Simulated EMG activity” . (a)–(e) the number of the neural impulses received by the MUs of the respective muscles within each time
interval of one millisecond; (f)–(i) the number of neural impulses received separately by the four distinct types of MUs composing the muscle BIC.

for investigating the differences in their control during
various motions.

The main question is to what extent do the simulation
results resemble reality. It is difficult to give an answer
to this question because of insufficient data from real
experiments and because of many model parameters
which can vary. The total mechanical effect of all
muscles acting in the elbow joint can register, yet not the
individual muscle forces (and this hampers the suitable
choice of the weight coefficients in the fitness function—
Fig. 8). Moreover this refers to the MUs twitches and

the choice of their suitable number and parameters. As
discussed in the Introduction, there are problems with
the usage of experimentally measured surface or intra-
muscular EMGs for validation of the predicted muscle
forces and for assessment of the activity of separate
MUs. Surface EMGs depend on the distance between
the electrode and the signal source, and signals coming
from neighbouring muscles can not be precisely separ-
ated, i.e. the cross-talk effect exists. Intramuscular elec-
trodes can not register all muscle MUs during the
motion. However, independently of the simulative nature
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Fig. 6. Distribution of the interpulse intervals for all five modelled muscles during the whole movement when muscles consist of four types of
MUs. Each bar represents the number of interpulse intervals with the corespondent duration (for example the last bar in the right for m.ANC
means that only one interpulse interval between 270 ms and 280 ms is found among the activation of all MUs of this muscle).

of our approach, the predicted results suggest some
general conclusions. The given joint moment is well
described with the predicted by HGA MUs activation for
all numerical experiments, except a small time interval
around the start of the motion, and another one after the
end of the motion. We shall mention that the
implemented HGA produces highly consistent results
during multiple runs and it is able to provide solutions
independently of the model parameter changes. The
reasons for the differences between the desired and cal-
culated joint moment between 0 and 20 ms (note that
the optimization has been performed only within the
time interval 0–350 ms) is probably the unrealistically
modelled abrupt start of the motion (see also discussion
in [35]). The predicted total muscle forces show a behav-
iour that is typical for ballistic motion [12]—first appar-
ent burst of the flexors, increasing extensors’ activity
during the deceleration phase of the motion and final
flexors’ activity (Fig. 3b, see for comparison [10]). There
exists a significant overlapping of the forces of the
muscles from the antagonistic groups and apparent syn-
ergistic actions (note that the behaviour of the extensors

is different when the aim of the motion is changed, see
Fig. 8 and discussion below). The observed initial appar-
ent burst of m.TRI in Fig. 8b–f can be due to the analyti-
cal model of the considered joint moment, again. The
rather steep increase of the joint moment can not be
obtained only by summing the fast MUs twitches of the
flexor muscles. Such an initial burst of all muscle forces
(see Fig. 8f) can also be due to the preparation for the
motion.

As expected, the contribution of the fast MUs is pre-
dominant (Fig. 3c), since the simulated motion is rather
fast. As for the MUs mechanical responses, a force simi-
lar to unfused tetanus is observed for some fast MUs
(Fig. 4c and d). The duration of the simulated motion is
too short for making more conclusions about any tetanic
behaviour and fatigue investigation. The same refers to
the “size principle” . The modelled joint moment is non-
linear, with steep acceleration and deceleration phases.
This necessitates the participation of all fast MUs inde-
pendently of their maximal forces. The most frequently
observed interspike intervals have been about 50 ms
(Figs. 6 and 7) for all muscles, which means an average
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Fig. 7. Distribution of the interpulse intervals for all five modelled muscles during the whole movement in case when the parameters of the MUs
are uniformly distributed.

frequency of 20 Hz. Milner-Brown et al. [26] report that
normal interpulse intervals for a human finger muscle is
between 140 and 50 ms and the normal physiological
range of frequency is 8–20 imp/s. Carpentier et al. [4],
investigating voluntary contractions of a small muscle in
a human finger report maximal firing rate of 30 Hz.
Gydikov et al. [15], investigating maximal voluntary
contraction at elbow joint report a value of 22 imp/s for
m. biceps brachii. The maximal firing rates of MUs of
m. brachialis during rapid cyclic elbow movements
reported in [41] are around 30 Hz. Some authors report
shorter inter-spike intervals [13,14,20], even less than 20
ms. We did not predict inter-spike intervals less than 30
ms because of the accepted values of the twitch para-
meters, namely Tref = Tc�30 ms (see Table 1). These
parameters can be easily changed through the program
interface if the actual ones are known. The distribution
of the inter-spike intervals (respectively the average fir-
ing frequencies) does not differ essentially among the
muscles from a synergistic group (Figs. 6 and 7). This
finding differs from the observations of van Groeningen

et al. [42], who found differences in MUs activation of
m. BIC and m. BRD. Le Bozec and Maton [22] also
reported essential differences between the firing rates of
m. TRI and m. ANC. These differences can be due to
various proportions between fast and slow MUs in these
muscles, while in the present simulations they were
chosen equally. According to Le Bozec and Maton [22]
m. ANC has about 62.9% slow fibres and m. TRI about
36.2%. Muscle BRA also seems to be faster than m.
BIC [17]. However, we shall emphasize that these data
concern the muscle fibres, but not the MUs. That is why
in this paper we proposed that the MUs composition of
all muscles was the same. Further simulations will con-
sider cases with different muscle compositions. Lacking
information about both the composition of the living
human muscles from different MUs [3] and about the
characteristics of their twitches in vivo, we only tested
the hypothesis of some authors [19] that the twitch para-
meters of different MUs are distributed continuously.
The contraction times and half-relaxation times reported
for some human hand muscles [4,7,9,21] are widely dis-
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Fig. 8. Predicted muscle forces for different weights in the fitness function when muscles consist of four types of MUs. a) k1 = 20, k2 = 1 and
k3 = 1; b) k1 = 30, k2 = 1 and k3 = 1; c) k1 = 40, k2 = 1 and k3 = 1; d) k1 = 50, k2 = 1 and k3 = 1; e) k1 = 60, k2 = 1 and k3 = 1; f) k1 = 100,
k2 = 1 and k3 = 1 (this figure is the same as Fig. 3b, but is plotted for comparison).

tributed among average values. Our parameters (Table
1) fitted well with these average values. In order to
investigate whether the MUs twitch parameters have a
significant influence on the predicted results, numerical
experiment was held, supposing that the muscle MUs
are not strictly distributed among four distinct MUs
groups, but are uniformly distributed. The results were
very similar to those obtained with the four distinct types
of MUs, with the sole difference of the smoother distri-
bution of the interpulse intervals (Fig. 7) and smoother
predicted muscle forces. The great number of the MUs
in a real muscle and the relatively small influence of an
individual MU force over the behaviour of the whole
muscle provide an adequate explanation of this result.
The greater smoothness can be due to the wider diversity
of the MUs twitch forms, which prevents local bulges
that can be obtained by the superposition of twitches
with identical parameters.

The basic control mechanism in the simulations is the
fitness function (see eq. (2) and Fig. 8). It is a combi-

nation of different criteria with clear physiological
meaning. The relative importance of each criterion can
be tuned up changing the weight coefficient ki of the
respective criterion. In the present paper it has been
investigated how the predicted muscle forces change
when the accuracy demands of the movement vary. The
results show that the motion may be performed without
antagonistic co-contraction (Fig. 8a), with little partici-
pation of m. TRI (Fig. 8b), or with participation of both
extensors, m. TRI and the small m. ANC (Fig. 8f). The
greater is coefficient k1, the more precisely is the motion
performed and the greater co-contraction is observed
(see also [35] for interpretation). These coefficients can
be justified according to the instructions given to the
subjects and comparing temporarily the EMGs of the
main muscles involved in the motion. The flexion move-
ment in the sagittal plane with a duration of 350 ms was
chosen intentionally. With chosen mass-inertial para-
meters, the external moment (Fig. 2a) is always positive,
but about 280 ms comes near zero. So, the action of the
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extensor muscles is not obligatory (Fig. 8a). Depending
on the requirements for preciseness of the motion, our
approach can predict antagonistic co-contraction in vari-
ous extents. Should the same motion be performed in
the horizontal plane, however, the joint moment will
have both positive and negative phases (because of the
absence of the moment of the gravitational force) and
nonzero forces of TRI and ANC will be strictly neces-
sary.

5. Conclusions

The proposed approach and the implemented software
are capable of supplying us with extensive information
about the individual muscle forces and the mechanical
responses of their motor units, as well as about the neural
control during a motor act, which is unattainable by
experimental methods. Thus it is a useful tool for teach-
ing, simulation and demonstration purposes. Indepen-
dently, on the simulative nature of the approach the
obtained results are in accordance with the data available
in literature. Since the parameters of the MUs twitches
are inputs in the software, they can be adjusted to the
experimental measured ones, so that the results are
closer to the reality. These parameters change during
fatigue, ageing, and different muscle diseases, and hence
these processes can also be investigated. Further simula-
tions with more degrees of freedom models are also
forthcoming.
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