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Abstract

There are different opinions in the literature on whether the cost functions: the sum of muscle stresses squared and the sum of
muscle stresses cubed, can reasonably predict muscle forces in humans. One potential reason for the discrepancy in the results could

be that different authors use different sets of model parameters which could substantially affect forces predicted by optimization-
based models. In this study, the sensitivity of the optimal solution obtained by minimizing the above cost functions for a planar
three degrees-of-freedom (DOF) model of the leg with nine muscles was investigated analytically for the quadratic function and

numerically for the cubic function. Analytical results revealed that, generally, the non-zero optimal force of each muscle depends in a
very complex non-linear way on moments at all three joints and moment arms and physiological cross-sectional areas (PCSAs) of all
muscles. Deviations of the model parameters (moment arms and PCSAs) from their nominal values within a physiologically feasible
range affected not only the magnitude of the forces predicted by both criteria, but also the number of non-zero forces in the optimal

solution and the combination of muscles with non-zero predicted forces. Muscle force magnitudes calculated by both criteria were
similar. They could change several times as model parameters changed, whereas patterns of muscle forces were typically not as
sensitive. It is concluded that different opinions in the literature about the behavior of optimization-based models can be potentially

explained by differences in employed model parameters. r 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Individual muscle forces produced by humans in
every-day tasks and occupational and athletic activities
are important quantities; the knowledge of which has
numerous applications in human biology, orthopedics,
and motor control. Methods of mathematical modeling,
including static optimization, are used to estimate
individual muscle forces in the human body because
their direct measurements are difficult to make. The
accuracy of muscle force predictions depends upon the
objective function employed in static optimization and
model parameters as well as other factors (model
assumptions, number of degrees-of-freedom (DOF)
and modeled muscles, etc.).

Two particular objective functions, the sum of muscle
stresses squared and the sum of muscle stresses cubed,
have often been employed in recent years and, according
to some authors, predict muscle forces that correlate
reasonably well with muscle activation in selected tasks
(Crowninshield and Brand, 1981; Hughes et al., 1994;
Prilutsky et al., 1998; van Bolhuis and Gielen, 1999; van
Dieen, 1997). Other authors, however, report that these
or similar criteria do not predict magnitudes and
patterns of muscle forces satisfactorily (Buchanan and
Shreeve, 1996; Dul et al., 1984; Glitsch and Baumann,
1997; Karlsson and Peterson, 1992; van Der Helm,
1994). Possible reasons for these contradictions are that
(i) calculated muscle forces are very sensitive to model
parameters (moment arms and physiological cross-
sectional areas (PCSAs)) (Brand et al., 1986; Dul et al.,
1984; Nussbaum et al., 1995; Raikova, 1996, 2000b) and
(ii) different authors use different sets of model para-
meters.
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To resolve this issue, the sensitivity of the optimal
solution to model parameters should be investigated for
the model of interest and, preferably, analytical relation-
ships between predicted muscle forces and model
parameters should be obtained so that the effect of
model parameters can be clearly seen. Analytical
relationships between optimal forces and model para-
meters have mainly been obtained for simplified 1DOF
models (Challis and Kerwin, 1993; Dul et al., 1984;
Raikova, 1996; Zatsiorsky et al., 1998). Analytical
solutions for 2DOF or 3DOF models were reported by
Herzog and Binding (1992, 1993) and Raikova (2000a).
The models of Herzog and Binding, however, were
considerably simplified by assuming equal moment arms
and PCSAs of all muscles. Raikova (2000a) did not
examine the two objective functions that are of interest
in the present study. The sensitivity analyses of optimal
muscle forces, for more realistic multi-DOF models of
the spine (Nussbaum et al., 1995) and the arm (Hughes
and An, 1997; Raikova, 2000b), were conducted,
primarily, numerically and demonstrated a pronounced
effect of model parameters. The influence of variations
in PCSAs on predicted forces of the lower limb has also
been studied (Brand et al., 1986), but not systematically.

Therefore, the purposes of this study were (i) to
attempt to find analytical relationships between model
parameters and muscle forces minimizing the sum of
muscle stresses squared and the sum of muscle stresses
cubed for a rather realistic 3DOF planar model of the
human leg, and (ii) to investigate systematically the
sensitivity of the optimal solution to model parameters
using the analytical approach and numerical optimiza-
tion.

2. Methods

2.1. Optimization problem formulation and solution

Consider a planar 3DOF model of the human lower
limb with nine major muscles (Fig. 1a). The limb
posture resembles the subjects’ posture in the experi-
ments of Wells and Evans (1987), a description of which
is given later in the text. The individual muscle forces
that produce given joint moments can be found by
solving the following static optimization problem:

minimize Z ¼
X9

i¼1

Fi

Ai

� �n

n ¼ 2; 3; ð1Þ

subject to:

f1 ¼ d1F1 � d2F2 � d3aF3 �M1 ¼ 0; ð2:1Þ

f2 ¼ �d3kF3 þ d4F4 þ d5kF5 � d6F6 � d7kF7 �M2 ¼ 0;
ð2:2Þ

f3 ¼ d5hF5 � d7hF7 þ d8F8 � d9F9 �M3 ¼ 0; ð2:3Þ

FiX0 ði ¼ 1; 2; y; 9Þ; ð2:4Þ

where Z is the objective function, f1; f2; and f3 are
constraint functions, Fi the unknown force of the ith
muscle (for specification of the indexes i see Fig. 1), Ai

the PCSA of the ith muscle, di the moment arm of the

Fig. 1. A schematic representation (view from above) of the employed

two-dimensional model of the lower limb. (a) The limb posture

resembles that of the experiments of Wells and Evans (1987) (their

Fig. 4). The model has three joints (hip, knee and ankle) which are

crossed by muscles exerting forces Fi (i ¼ 1; 2; y; 9): 1, tibialis

anterior (TA, ankle flexor); 2, soleus (SO, ankle extensor); 3,

gastrocnemius (GA, ankle extensor, knee flexor); 4, vastii (VA, knee

extensor); 5, rectus femoris (RF, knee extensor, hip flexor); 6, short

head of biceps femoris (BFS, knee flexor); 7, long head of biceps

femoris (BFL, knee flexor, hip extensor); 8, iliacus (IL, hip flexor); and

9, gluteus maximum (GLM, hip extensor). Joint moments (M1;M2 and

M3; the chosen positive directions are shown in the figure), PCSAs, and

muscle moment arms with respect to the joint centers were assumed

known. The nominal values of the muscle moment arms (in m) were:

d1 ¼ 0:0298; d2 ¼ 0:0440; d3a ¼ 0:044; d3k ¼ 0:0138; d4 ¼ 0:0329; d5k ¼
0:0329; d5h ¼ 0:0279; d6 ¼ 0:0250; d7k ¼ 0:0250; d7h ¼ 0:0619; d8 ¼
0:0317; d9 ¼ 0:0368; where subscripts a; k; and h designate the ankle,

knee, and hip joints, respectively. The PCSA nominal values (in cm2)

were: A1 ¼ 11:5; A2 ¼ 92:5; A3 ¼ 44:3; A4 ¼ 98:1; A5 ¼ 20:1; A6 ¼ 6:1;
A7 ¼ 45:5; A8 ¼ 31:0; A9 ¼ 44:3: (b) Twelve directions of exerted

forces and corresponding joint moments. Joint moments (in N m)

corresponding to a force of 63N exerted isometrically on the force

platform (indicated by the vertical rectangle) were taken from Table 5

of Wells and Evans (1987) (moment values are shown in the figure).
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ith muscle and di > 0 by definition (moment arms of the
two-joint muscles gastrocnemius (GA, i ¼ 3), rectus
femoris (RF, i ¼ 5), and long head of biceps femoris
(BFL, i ¼ 7) with respect to the adjacent joints are
denoted by subscripts a; k; and h; corresponding to the
ankle, knee, and hip joints, respectively), M1; M2; and
M3 are the resultant moments at the ankle, knee, and
hip joints, respectively. Resultant joint moments at the
three joints, muscle moment arms and PCSAs are
assumed known. The objective function (1) was
proposed by Crowninshield and Brand (1981) based
on the experimental relationship ‘endurance time-
Fmuscle stress’ in humans and has the meaning of
muscle fatigue. According to Crowninshield and Brand,
values of power n in that relationship range between
2.54 and 3.14. The values 2 and 3 were chosen for the
power n in this study. The equality constraint Eqs. (2.1)–
(2.3) require the optimal muscle forces to produce the
known joint moments. The inequality constraint
Eq. (2.4) requires muscles to produce force in pulling
direction.

To obtain analytical relationships between the opti-
mal forces and model parameters, the Lagrange multi-
pliers method was employed (Challis and Kerwin, 1993;
Dul et al., 1984; Raikova, 1992). For the above problem
(1)–(2.3) the Lagrange function is: L ¼ Z � l1f1 �
l2f2 � l3f3 (where l1; l2 and l3 are unknown Lagrange
multipliers associated with the constraint functions f1;
f2; and f3; respectively). The necessary conditions for the
existence of an extremum of the Lagrange function, and
hence of the objective function Z; are that all first partial
derivatives of L with respect to the design variables Fi

are zero at the optimal point:

qL
qF1

¼
nFn�1

1

An
1

� l1d1 ¼ 0-Fn�1
1 ¼

l1d1A
n
1

n
; ð3:1Þ

qL
qF2

¼
nFn�1

2

An
2

þ l1d2 ¼ 0-Fn�1
2 ¼ �

l1d2A
n
2

n
; ð3:2Þ

qL
qF3

¼
nFn�1

3

An
3

þ l1d3a þ l2d3k ¼ 0

-Fn�1
3 ¼ �

ðl1d3a þ l2d3kÞAn
3

n
; ð3:3Þ

qL
qF4

¼
nFn�1

4

An
4

� l2d4 ¼ 0-Fn�1
4 ¼

l2d4A
n
4

n
; ð3:4Þ

qL
qF5

¼
nFn�1

5

An
5

� l2d5k � l3d5h ¼ 0

-Fn�1
5 ¼

ðl2d5k þ l3d5hÞAn
5

n
; ð3:5Þ

qL
qF6

¼
nFn�1

6

An
6

þ l2d6 ¼ 0-Fn�1
6 ¼ �

l2d6A
n
6

n
; ð3:6Þ

qL
qF7

¼
nFn�1

7

An
7

þ l2d7k þ l3d7h ¼ 0

-Fn�1
7 ¼ �

ðl2d7k þ l3d7hÞAn
7

n
; ð3:7Þ

qL
qF8

¼
nFn�1

8

An
8

� l3d8 ¼ 0-Fn�1
8 ¼

l3d8A
n
8

n
; ð3:8Þ

qL
qF9

¼
nFn�1

9

An
9

þ l3d9 ¼ 0-Fn�1
9 ¼ �

l3d9A
n
9

n
: ð3:9Þ

From Eqs. (3.1)–(3.9) and the requirements FiX0
(Eq. (2.4)), di > 0; n > 0; and Ai > 0; it is easy to see that
some muscle forces in the optimal solution cannot have
non-zero values without violating the above require-
ments. Some forces must be zero. Which one is zero
depends on lj signs. The signs of lj (j ¼ 1; 2; 3) are not
known in general because they depend on current values
of input (joint moments) and model parameters (muscle
moment arms and PCSAs; see Eqs. (5.1)–(5.3) below).
In general, there may be eight sign combinations of lj as
demonstrated in Table 1, top row (trivial cases where
some of lj equal zero are not considered here). The
corresponding muscle active/silent state combinations
(Table 1) can be easily derived from given lj signs,
Eqs. (3.1)–(3.9), and the conditions di > 0; Ai > 0; FiX0
(i ¼ 1; 2; y; 9). The force combinations in Table 1 hold
for n > 1:

Table 1

Possible sign combinations of lj (j ¼ 1; 2; 3) and the corresponding

muscle active/silent states for the optimal solutions of the problem (1)–

(2.4) with n > 1a

A B C D E F G H

l1 > 0 l1o0 l1 > 0 l1 > 0 l1o0 l1 > 0 l1o0 l1o0

l2 > 0 l2o0 l2 > 0 l2o0 l2 > 0 l2o0 l2 > 0 l2o0

l3 > 0 l3o0 l3o0 l3 > 0 l3 > 0 l3o0 l3o0 l3 > 0

F1; TA 3 + 3 3 + 3 + +
F2; SO + 3 + + 3 + 3 3
F3; GA + 3 + * * * * 3
F4; VA 3 + 3 + 3 + 3 +
F5; RF 3 + * * 3 + * *
F6; BFS + 3 + 3 + 3 + 3
F7; BFL + 3 * * + 3 * *
F8; IL 3 + + 3 3 + + 3
F9; GLM + 3 3 + + 3 3 +

aMuscle names are given in Fig. 1; li are Lagrange multipliers; 3
and + indicate active and silent muscle states, respectively; * indicates

that the corresponding two-joint muscle may be active or silent

depending, in particular, on the relation between its moment arms at

the two joints (see Eqs. (3.1)–(3.9)). For example in Column C, if

l2d5k þ l3d5hp0; RF has silent state. The number of muscles with

active state is between three (columns C, D and G) and six (columns D,

G and H). One-joint antagonists (TA vs. SO, VA vs. BFS, and IL vs.

GLM) cannot have active states simultaneously, but two-joint

antagonists (RF vs. BFL; columns C, D, G and H) and one-joint

muscles with their two-joint antagonists (e.g., TA vs. GA, columns D

and F) can have active states simultaneously.
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Consider n ¼ 2: Substituting the expressions for Fi

from Eqs. (3.1)–(3.9) in the joint moment equations
fiðFiÞ ¼ 0 (Eqs. (2.1)–(2.3)) the following system for lj is
obtained:

c11l1 þ c12l2 ¼ 2M1; ð4:1Þ

c12l1 þ c22l2 þ c23l3 ¼ 2M2; ð4:2Þ

c23l2 þ c33l3 ¼ 2M3; ð4:3Þ

where c11 ¼ d2
1A

2
1 þ d2

2A
2
2 þ d2

3aA
2
3; c12 ¼ d3ad3kA

2
3; c22 ¼

d2
3kA

2
3 þ d2

4A
2
4 þ d2

5kA
2
5 þ d2

6A
2
6 þ d2

7kA
2
7; c23 ¼ d5kd5hA

2
5

þd7kd7hA
2
7; c33 ¼ d2

5hA
2
5 þ d2

7hA
2
7 þ d2

8A
2
8 þ d2

9A
2
9: Solving

system (4.1)–(4.3) for lj (j ¼ 1; 2; 3) we obtain:

l1 ¼
2ðM1c33c22 �M1c

2
23 �M2c12c33 þM3c12c23Þ

c11c22c33 � c2
12c33 � c2

23c11

; ð5:1Þ

l2 ¼
2ð�M1c12c33 þM2c11c33 �M3c23c11Þ

c11c22c33 � c2
12c33 � c2

23c11

; ð5:2Þ

l3 ¼
2ðM1c12c23 �M2c11c23 þM3c11c22 �M3c

2
12Þ

c11c22c33 � c2
12c33 � c2

23c11

; ð5:3Þ

where it is supposed that c11c22c33 � c2
12c33 � c2

23c11a0:
Thus, lj are expressed through known model and input
parameters di; Ai and Mj : Combining the Eqs. (5.1)–
(5.3) and (3.1)–(3.9) yields analytical expressions relat-
ing muscle forces Fi to di; Ai and Mj ; which are given in
detail in Prilutsky (2000, pp. 109–110). It must be
emphasized that the above relationships satisfy only the
necessary conditions for the existence of an extremum of
the objective function Z; but the requirements for non-
negativity of the muscle forces are not taken into
account. Nevertheless, since the non-zero optimal
muscle forces for the problem (1)–(2.4) must satisfy
the Eqs. (3.1)–(3.9) and (5.1)–(5.3) (or the equations in
Prilutsky, 2000), these equations show how the non-zero
optimal forces depend on input and model parameters.

In the optimal solution some of the forces must be
zero (see Table 1). Which of them are zero depends on
the signs of lj ; hence, on parameters di; Ai and Mj (see
Eqs. (5.1)–(5.3)). The fact that some forces are zero in
the optimal solution can be used to find the optimal
solution from Eqs. (3.1)–(3.9) and (5.1)–(5.3) by setting
values of moment arms for muscles with the silent state
to zero. An example of the analytical solution of the
problem (1)–(2.4) for n ¼ 2 and lj > 0 (column A in
Table 1) is given in Appendix. This solution is realized
for the first five force directions (or joint moment
combinations; Fig. 1b) and nominal values of the model
parameters (see the caption of Fig. 1).

A similar approach was used in an algorithm to
calculate the optimal forces for n ¼ 2 and for arbitrary
values of the model parameters. The algorithm was
based on the fact that all sign combinations of lj shown
in Table 1 (and, therefore, all muscle force combinations
satisfying the Eqs. (3.1)–(3.9) and the inequality con-

straints (2.4)) could be obtained by setting consecutively
all di (hence the moment of Fi) to zero. Values of lj were
calculated from Eqs. (5.1)–(5.3) and the muscle forces
from Eqs. (3.1)–(3.9). Solutions that either did not
satisfy moment constraints (2.1)–(2.3) or in which at
least one muscle force was found negative were rejected.
From the remaining solutions, the one with the
minimum value of the objective function was selected.
Since the Hessian matrix of the Lagrange function is
positive-definite for n > 1; the objective function (1)
reaches its minimum, so the selected solution is the
solution of the optimization problem (1)–(2.4) (see, for
example, Bertsekas, 1996).

Pure analytical expressions relating optimal muscle
forces Fi to joint moments and model parameters for the
case n ¼ 3 (Eq. (1)) were impossible to derive because
the corresponding system for lj could not be solved
analytically. For solving the optimization problem for
n ¼ 3 and for cross-validating the solutions obtained for
n ¼ 2; the routine constr of the optimization toolbox of
MATLAB (the MathWorks Inc., Natick, MA, USA)
was used.

To cross-validate the numerical solutions for n ¼ 3;
the same optimization problem was solved for nominal
values of the model parameters and all combinations of
joint moments (Fig. 1b) using a semi-analytical ap-
proach. All muscle force combinations corresponding to
the eight sign variants of lj from Table 1 were
considered separately. The constrained optimization
problem was reduced to an unconstrained one by
expressing some of the muscle forces from the moment
equations and substituting those expressions in the
objective function. All local minima of the obtained
function, for which FiX0; were calculated and the
muscle force combination with the lowest cost function
value (the optimal solution) was selected. The detailed
description of this algorithm is not presented here
because of space limitation.

2.2. Sensitivity analysis

A sensitivity analysis of the optimal solution of the
problem (1)–(2.4) was performed analytically for n ¼ 2
and numerically for n ¼ 3: Combinations of joint
moments necessary for this analysis were taken from
the study of Wells and Evans (1987). In their study,
female subjects were laying on their left side with the
right hip and knee angles at 1051 and 901, respectively,
and their ankle angle at about 1201 (Fig. 4 in Wells and
Evans and Fig. 1a in this paper). The right leg was
supported by suspending it with cords from the ceiling.
The subjects were instructed to use their right leg to
exert a force of 63 N in the horizontal plane in twelve
different directions (Fig. 1b) using visual feedback on
the magnitude and direction of the force. The force was
measured by a force platform mounted vertically and
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connected to the subject’s foot by a Nordic ski boot. The
resultant moments at the ankle, knee, and hip joints
were calculated (they are listed in Fig. 1b). Surface
electromyographic activity (EMG) of major leg muscles
was recorded, full-wave rectified, low-pass filtered at
6Hz, averaged over 1 s, and expressed as a fraction of
maximum EMG recorded in maximal isometric con-
tractions at the same leg position. In the present study,
EMG data from Wells and Evans’ paper (their Fig. 6)
were magnified and the EMG magnitude of each muscle
was estimated for each force direction.

The sensitivity analysis of the present study was
performed by calculating the optimal muscle forces for
the joint moments given in Fig. 1B by changing only one
parameter (muscle moment arm or PCSA of one muscle)
while keeping the remaining parameters unchanged. The
nominal values of the muscle moment arms (doi) were
calculated from the joint angles using the equations
reported by Prilutsky and Gregor (1997, their Table 2).
The nominal values of PCSAs (Aoi) were taken from
Table 1 of Prilutsky and Gregor (1997). These nominal
values are listed in the captions of Fig. 1. Each moment
arm was changed from 0 to 2:0doi with an increment of
0:02doi: Each PCSA was changed from 0:05 to 2Aoi with
an increment of 0:01Aoi:

3. Results

It is evident from the analytical relationships between
optimal muscle forces and model parameters obtained
for n ¼ 2 that each non-zero muscle force generally
depends in a very complex non-linear way on moments
at all three joints and moment arms and PCSAs of all
nine muscles (see Eqs. (3.1)–(3.9) and (5.1)–(5.3), Ap-
pendix, or the formulas in Prilutsky, 2000). The number
of non-zero optimal forces for the problem (1)–(2.4),
with n > 1 and lja0; depends on the signs of lj (hence,
on model parameters and joint moments), but cannot
exceed six (Table 1, columns D, G, H) or be smaller than
three (Table 1, columns C, D and G). It also follows
from Table 1 that one-joint anatomical antagonists (i.e.,
tibialis anterior (TA) and soleus (SO), vastii (VA) and
short head of biceps femoris (BFS), iliacus (IL) and
gluteus maximum (GLM)) cannot produce non-zero
forces simultaneously, whereas simultaneous force
production by two-joint antagonists (RF and BFL, see
Table 1 C, D, G and H) and by one-joint muscles
and their two-joint anatomical antagonists (e.g., TA
and GA, IL and BFL, etc., see Table 1 D, F and H)
could be predicted for specific input and model
parameters.

The results of the sensitivity analysis are summarized
in Figs. 2–5. Variations in both muscle moment arms
(Figs. 2, 4b and 5b) and PCSAs (Figs. 3, 4a and 5a)
modified optimal forces calculated using the two

investigated cost functions with generally more pro-
nounced effects from the moment arms than PCSAs.
For example, peak forces of TA, GA, VA, BFS, GLM,
and RF increased or decreased several times when
muscle moment arms were changed from their nominal
values (Fig. 2; see also the influence of d7h on the GLM
force, Figs. 4b and 5b). Although the sensitivity of the
optimal forces to changes in PCSAs was smaller, in
general, than the sensitivity to moment arms (with one
exception: RF, Figs. 2 and 3), the effects of the PCSAs
variation was also rather large for some muscles (VA,
RF, BFS, Fig. 3; see also the influence of A7 and A9 on
muscle forces, Figs. 4a and 5a). Force of BFL predicted
by both criteria was not very sensitive to values of PCSAs
in the physiologically feasible range (Fig. 3).

Deviations of the model parameters from their
nominal values also affected patterns of predicted forces
(e.g., positions of their peaks and zero values with respect
to the external force direction; Fig. 2: TA, directions 9–
11; SO and GLM, directions 7–11; VA, directions 3–6
and 9–11; BFS, directions 9–12; IL, directions 8–11; see
also Fig. 3). Model parameter variations could change
the set and the number of muscles with non-zero forces in
the optimal solution. For example, at force direction 11
(Fig. 4b) when d7k varied from 0 to 3.75 cm, four diff-
erent combinations of non-zero muscle forces constituted
the optimal solution for the quadratic criterion: TA, GA,
BFS, BFL, GLM if d7kA½0; 0:14� or d7kA½1:13; 1:38�;
TA, GA, BFS, BFL, IL if d7kA½0:15; 1:12�; SO, GA,
BFS, BFL, GLM if d7kA½1:39; 2:46�; and SO, GA, VA,
BFL, GLM if d7kA½2:47; 3:75�: Similar results were
obtained for n ¼ 3 (Fig. 5b).

Criteria with powers n ¼ 2 and n ¼ 3 predicted
similar optimal forces for nominal and changed model
parameters (Fig. 2 vs. Fig. 3, Fig. 4a vs. Fig. 5a,
Fig. 4b vs. Fig. 5b). Virtually, at all force directions
(joint moment combinations) the criteria with n ¼ 2 and
n ¼ 3 predicted the same muscles to have non-zero
forces. Only at force direction 11, the muscle sets with
active states obtained for nominal values of the model
parameters were different between the two criteria: SO,
GA, VA, BFL and GLM for n ¼ 2 and SO, GA, BFS,
BFL and GLM for n ¼ 3:

The increase in PCSA of a given muscle, typically, led
to an increase of the predicted force in the same muscle,
whereas predicted forces of other muscles might in-
crease, decrease or remain unchanged (Figs. 4a and 5a).
The relationship between the moment arm of a given
muscle and its predicted force was more complex. For
example, increasing the TA moment arm caused its force
to decrease at force direction 6, but to increase at force
direction 7. Furthermore, increasing moment arms of a
two-joint muscle at each joint it spans might cause
opposite changes in its force: for example, at force
direction 7, GA force decreased with increasing d3a; but
increased with increasing d3k:
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The Pearson correlation coefficients calculated be-
tween estimated EMG and forces predicted using
nominal values of model parameters ranged between
0.85 and 0.99 for both criteria and seven muscles. For
two muscles, SO and GLM, the correlation coefficients
were low.

4. Discussion

The aims of this study were (i) to attempt to find
analytical relationships between model parameters and
muscle forces minimizing the sum of muscle stresses
squared and the sum of muscle stresses cubed for a

Fig. 2. Muscle forces predicted by minimizing quadratic (dotted lines) and cubic (continuous lines) objective functions (see Eq. (1)) for 12 force

directions while changing moment arms. Thick lines correspond to forces obtained with nominal values of the muscle moment arms doi; thin lines

correspond to maximal and minimal values of the predicted forces obtained through changing all moment arms consecutively from 0:05 to 2doi with a

step of 0:05doi; dashed lines are normalized EMG values estimated from Fig. 6 of Wells and Evans (1987). For muscle abbreviations see Fig. 1.

Maximal and minimal values of the predicted forces of a given muscle were often predicted when the moment arm of another muscle was altered.

Changing muscle moment arms within a physiologically feasible range (0:0522doi) might alter muscle forces predicted by the two criteria by several

times. Patterns of muscle forces as functions of force direction were less sensitive to variation in moment arms: the Pearson correlation coefficients

calculated between nominal and maximal and also between nominal and minimal muscle forces were typically 0.9 and higher. However, variations in

moment arms could change muscles’ active/silent states and the number of non-zero forces in the optimal solution. Muscle forces corresponding to

the quadratic and cubic criteria were similar.
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realistic 3DOF model of the human leg, and (ii) to
investigate systematically the sensitivity of the optimal
solution to model parameters (muscle moment arms and
PCSAs). It was possible to obtain the sought analytical
relationships only for the quadratic optimization criter-
ion. They were much more complex than those for
1DOF systems (Challis and Kerwin, 1993; Dul et al.,

1984; Raikova, 1996; Zatsiorsky et al., 1998). In
particular, the non-zero optimal force of each muscle
was generally found to be a very complex non-linear
function of moments at all three joints and moment
arms and PCSAs of all muscles. As a result, variation in
one model parameter (moment arm or PCSA of one
muscle) within a physiologically feasible range can

Fig. 3. Muscle forces predicted by minimizing quadratic (dotted lines) and cubic (continuous lines) objective functions (see Eq. (1)) for 12 force

directions while changing PCSAs. Thick lines correspond to forces obtained with nominal values of PCSAs Aoi; thin lines correspond to maximal and

minimal values of the predicted forces obtained through changing all PCSAs consecutively from 0:05 to 2Aoi with a step of 0:05Aoi; dashed lines are

normalized EMG values estimated from Fig. 6 of Wells and Evans (1987). For muscle abbreviations, see Fig. 1. Maximal and minimal values of the

predicted forces of a given muscle were often predicted when PCSA of another muscle was altered. Sensitivity of the predicted muscle force

magnitude to variations in PCSAs within a physiologically feasible range (0:0522Aoi) was smaller compared to similar variations in moment arms

(Fig. 2). However, variations in PCSAs also could change muscles’ active/silent states and the number of non-zero forces in the optimal solution.
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profoundly change not only force magnitude of this and
other muscles (Figs. 2–4) but also the number of active
muscles in the optimal solution and the set of muscles
with active/silent states (Fig. 4). Similar results were also
obtained numerically for n ¼ 3 in the present study
(Figs. 2, 3 and 5) and in Nussbaum et al. (1995) who
investigated a spine model. Several conclusions, which
were derived analytically for criterion (1) using 1DOF
models (Hughes and Chaffin, 1988) or simplified multi-
degree-of-freedom models (where all moment arms and

PCSAs were assumed equal; Herzog and Binding, 1992,
1993), were confirmed in the present study for a more
complex model: one-joint anatomical antagonists can-
not produce force simultaneously; two-joint anatomical
antagonists can have non-zero predicted forces simulta-
neously; and one-joint muscles and their two-joint
antagonists can also have non-zero forces at the same
time (see Table 1).

Muscle force sensitivity to moment arm variations
was very substantial for all muscles and both criteria

Fig. 4. Predicted muscle forces as functions of PCSAs (a) and moment arms (b) of muscles that influence the optimal solution: quadratic criterion.

The plots for the remaining muscles (whose PCSAs and moment arms do not change the optimal solution) are not shown. Force direction 11; the

corresponding joint moments are M1 ¼ �15N m, M2 ¼ �13Nm, and M3 ¼ �41N m. In each panel, only forces that have non-zero values within

the range of the changing parameter are shown. (a) Predicted muscle forces as functions of PCSAs (Ai). Each Ai was changed within the range of

0:4Aoi21:4Aoi with a step of 0:01Aoi; while all other parameters had their nominal values. (b) Predicted muscle forces as functions of moment arms.

Each di was changed from 0 to 1:5doi with a step of 0:02doi: Both force-PCSA and force-moment arm relationships are non-linear in general.

Variation in a parameter of one muscle could affect optimal forces of several other muscles and could change the number and set of muscles with

active/silent states. Typically, the increase of muscle PCSA led to an increase in the force of the same muscle.
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Fthe difference between the lowest and highest
predicted forces were several fold (Figs. 2, 4b and 5b).
The sensitivity to PCSA variations was much smaller
compared to the effect of variations in moment arms
especially for TA, GA, and BFL, but was also
substantial (Figs. 3, 4a and 5a). According to van
Bolhuis and Gielen (1999), the optimal solutions of the
problem (1)–(2.4) with n ¼ 2 and 3 were not very

sensitive to 25%-variations in moment arms and PCSA
of the human arm muscles. These authors, however, did
not compare magnitudes of the muscle forces corre-
sponding to different model parameters, but rather
compared force patterns (i.e., the correlation coefficients
between the predicted muscle forces and the measured
EMGs). Likewise, in the present study, force patterns
were not substantially affected by changing model

Fig. 4. (Continued).
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parameters between 5% and 200% of their nominal
values (Figs. 2 and 3): the correlation coefficients
calculated, for example, between the maximum and
nominal forces typically exceeded 0.9 for all muscles
except GLM (Fig. 2). Comparable results were reported
by Brand et al. (1986) who employed criterion (1) with
n ¼ 3: They found qualitatively similar muscle force
patterns in walking for three sets of PCSA values which
differed for some muscles by a factor of 10 or more.
According to their results, the magnitude of the
corresponding predicted forces also varied substantial-
lyFup to eight times. Note that an increase of PCSA of
a given muscle typically leads to force increase of this

muscle (Figs. 4a and 5a; see also Raikova, 2000b). Thus,
it is important to use accurate estimates of model
parameters if one is interested in accurate quantitative
predictions of muscle force magnitudes. Qualitative
pattern comparisons between optimum forces and
EMG using correlation coefficients seem less affected
by uncertainties in model parameters.

Although optimal forces corresponding to the criteria
with powers n ¼ 2 and n ¼ 3 were very similar in terms
of both magnitudes and patterns in general (Figs. 2 and
3, Fig. 4 vs. Fig. 5), a small difference in power (2 vs. 3)
can change the set of active muscles in the optimum
solution. For example, at force direction 11 and nominal

Fig. 5. Predicted muscle forces as functions of PCSAs (a) and moment arms (b) of muscles that influence the optimal solution: cubic criterion. The

plots for the remaining muscles (whose PCSAs and moment arms do not change the optimal solution) are not shown. Force direction 11; the

corresponding joint moments are M1 ¼ �15N m, M2 ¼ �13Nm, and M3 ¼ �41N m. In each panel, only forces that have non-zero values within

the range of the changing parameter are shown. (a) Predicted muscle forces as functions of PCSAs (Ai). Each Ai was changed within the range of

0:4Aoi21:4Aoi with a step of 0:01Aoi; while all other parameters had their nominal values. (b) Predicted muscle forces as functions of moment arms.

Each di was changed from 0 to 1:5doi with a step of 0:02doi : Patterns of force-PCSA and force-moment arm relationships obtained for n ¼ 3 were

similar in general to those for n ¼ 2 (Fig. 4), however, force magnitudes differed. Also, the set of muscles, whose parameters influenced the optimal

solution, was changed from {SO, GA, VA, BFL, GLM} at n ¼ 2 to {SO, GA, BFS, BFL, GLM} at n ¼ 3:
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values of model parameters, the optimal solutions were
(in N): for n ¼ 2; F1 ¼ F5 ¼ F6 ¼ F8 ¼ 0; F2 ¼ 277:9;
F3 ¼ 63:04; F4 ¼ 8:1; F7 ¼ 495:8; and F9 ¼ 280:2; for
n ¼ 3; F1 ¼ F4 ¼ F5 ¼ F8 ¼ 0; F2 ¼ 242:7; F3 ¼ 98:2;
F6 ¼ 3:9; F7 ¼ 461:9; and F9 ¼ 337:2: The relatively
small difference between solutions obtained with n ¼ 2
and n ¼ 3 is more consistent with the results of
Crowninshield and Brand (1981) than with those of
van Bolhuis and Gielen (1999). The latter authors

reported a substantial difference in force patterns
calculated by the two criteria, although correlation
coefficients between the predicted forces and the EMGs
were similar for both criteria.

The results of the present study have important
implications for validating muscle forces predicted by
the optimization-based models. The quantitative valida-
tion of predicted muscle forces by comparing them with
the measured EMG or even forces (Arndt et al., 1998;

Fig. 5. (Continued).
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Schuind et al., 1992) is warranted only if model
parameters, especially, moment arms of each muscle,
are accurately estimated. While qualitative validations
using correlation coefficients are less sensitive to
variations in model parameters in general (see the above
discussion), some muscles can be predicted to have
distinctly different force patterns at specific combina-
tions of joint moments and different values of model
parameters (see, for example, Fig. 2, SO and GLM).
Therefore, the correlation between predicted forces and
the measured EMG or force patterns may be affected by
model parameters. Both the quantitative and qualitative
validations can also be affected by artifacts of EMG and
force recordings, by muscle physiological and mechan-
ical properties, by a motor task, and the level of skill
acquisition.

In conclusion, this study demonstrated using a rather
realistic 3DOF model that, generally, the non-zero
optimal force of each muscle depends, in a very complex
non-linear way, on moments at all joints and moment
arms and PCSAs of all muscles; changes in model
parameters of one muscle can change predicted forces in
the same and other muscles by several times and can also
change the number of non-zero forces in the optimal
solution and the set of muscles with active states;
predicted muscle forces are more sensitive to changes in
moment arms than to changes in PCSA; and changes in
model parameters have a much stronger effect on the
magnitude of predicted forces than on their patterns.
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Appendix. Optimal solution of the problem (1)–(2.4) for

n=2 and kj sign combinations in column A of Table 1

Since lj > 0 (j ¼ 1; 2; 3; Table 1, column A), then
F2 ¼ F3 ¼ F6 ¼ F7 ¼ F9 ¼ 0:

Substituting d2 ¼ d3a ¼ d3k ¼ d6 ¼ d7k ¼ d7h ¼ d9 ¼
0 in the Eqs. (5.1)–(5.3) and (3.1)–(3.9), the following
expressions are obtained:

c11 ¼ d2
1A

2
1; c12 ¼ 0; c22 ¼ d2

4A
2
4 þ d2

5kA
2
5;

c23 ¼ d5kd5hA
2
5; c33 ¼ d2

5hA
2
5 þ d2

8A
2
8;

l1 ¼
2M1

d2
1A

2
1

;

l2 ¼
2½M2ðd2

5hA
2
5 þ d2

8A
2
8Þ �M3d5kd5hA

2
5�

ðd2
4A

2
4 þ d2

5kA
2
5Þðd

2
5hA

2
5 þ d2

8A
2
8Þ � d2

5kd
2
5hA

4
5

;

l3 ¼
2½M3ðd2

5kA
2
5 þ d2

4A
2
4Þ �M2d5kd5hA

2
5�

ðd2
4A

2
4 þ d2

5kA
2
5Þðd

2
5hA

2
5 þ d2

8A
2
8Þ � d2

5kd
2
5hA

4
5

;

F1 ¼
M1

d1
;

F4 ¼ d4A
2
4

M2ðd2
5hA

2
5 þ d2

8A
2
8Þ �M3d5kd5hA

2
5

ðd2
4A

2
4 þ d2

5kA
2
5Þðd

2
5hA

2
5 þ d2

8A
2
8Þ � d2

5kd
2
5hA

4
5

;

F5 ¼ A2
5

M2d5kd
2
8A

2
8 þM3d5hd

2
4A

2
4

ðd2
4A

2
4 þ d2

5kA
2
5Þðd

2
5hA

2
5 þ d2

8A
2
8Þ � d2

5kd
2
5hA

4
5

;

F8 ¼ d8A
2
8

M3ðd2
5kA

2
5 þ d2

4A
2
4Þ �M2d5kd5hA

2
5

ðd2
4A
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5kA
2
5Þðd

2
5hA

2
5 þ d2

8A
2
8Þ � d2

5kd
2
5hA

4
5

:

This solution is realized for the first five force directions
(or combinations of joint moments; see Fig. 1b) and
nominal values of the model parameters (di [m] and Ai

[cm2], see the caption of Fig. 1). In particular, if
M1 ¼ 4 N m, M2 ¼ 33 N m, and M3 ¼ 31 N m (direction
1, Fig. 1b), then c11 ¼ 0:1174; c12 ¼ 0; c22 ¼ 10:85; c23 ¼
0:3709; c33 ¼ 1:2802; l1 ¼ 68:12; l2 ¼ 4:47; l3 ¼ 47:14;
F2 ¼ F3 ¼ F6 ¼ F7 ¼ F9 ¼ 0;F1 ¼ 134:2; F4 ¼ 707:7;
F5 ¼ 295:4; F8 ¼ 718:0; Z ¼ 940:6 (Z is the objective
function).

References

Arndt, A.N., Komi, P.V., Bruggemann, G.P., Lukkariniemi, J., 1998.

Individual muscle contributions to the in vivo Achilles tendon

force. Clinical Biomechanics 13, 532–541.

Bertsekas, D.P., 1996. Constrained Optimization and Lagrange

Multipliers Methods. Athena Scientific, Belmont, MA.

Brand, R.A., Pedersen, D.R., Friederich, J.A., 1986. The sensitivity of

muscle force predictions to changes in physiologic cross-sectional

area. Journal of Biomechanics 19, 589–596.

Buchanan, T.S., Shreeve, D.A., 1996. An evaluation of optimization

techniques for the prediction of muscle activation patterns during

isometric tasks. Journal of Biomedical Engineering 118, 565–574.

Challis, J.H., Kerwin, D.G., 1993. An analytical examination of

muscle force estimations using optimization techniques. Proceed-

ings of Institute of Mechanical Engineering 207, 139–148.

Crowninshield, R.D., Brand, R.A., 1981. A physiologically based

criterion of muscle force prediction in locomotion. Journal of

Biomechanics 14, 793–801.

Dul, J., Townsend, M.A., Shiavi, R., Johnson, G.E., 1984. Muscular

synergismFI. On criteria for load sharing between synergistic

muscles. Journal of Biomechanics 17, 663–673.

Glitsch, U., Baumann, W., 1997. The three-dimensional determination

of internal loads in the lower extremity. Journal of Biomechanics

30, 1123–1131.

Herzog, W., Binding, P., 1992. Predictions of antagonistic muscular

activity using nonlinear optimization. Mathematical Biosciences

111, 217–229.

R.T. Raikova, B.I. Prilutsky / Journal of Biomechanics 34 (2001) 1243–12551254



Herzog, W., Binding, P., 1993. Cocontraction of pairs of antagonistic

muscles: analytical solution for planar static nonlinear optimiza-

tion approaches. Mathematical Biosciences 118, 83–95.

Hughes, R.E., An, K.N., 1997. Monte Carlo simulation of a planar

shoulder model. Medical and Biological Engineering and Comput-

ing 35, 544–548.

Hughes, R.E., Chaffin, D.B., 1988. Conditions under which optimiza-

tion models will not predict coactivation of antagonist muscles.

Proceedings of the 12th Annual Meeting of American Society of

Biomechanics, pp. 69–70.

Hughes, R.E., Chaffin, D.B., Lavender, S.A., Andersson, G.B.J., 1994.

Evaluation of muscle force prediction models of the lumbar trunk

using surface electromyography. Journal of Orthopaedic Research

12, 689–698.

Karlsson, D., Peterson, B., 1992. Towards a model for force predi-

ctions in the human shoulder. Journal of Biomechanics 25, 189–199.

Nussbaum, M.A., Chaffin, D.B., Rechtien, C.J., 1995. Muscle lines-of-

action affect predicted forces in optimization-based spine muscle

modeling. Journal of Biomechanics 28, 401–409.

Prilutsky, B.I., 2000. Muscle coordination. The discussion continues.

Motor Control 4, 97–116.

Prilutsky, B.I., Gregor, R.J., 1997. Strategy of coordination of two-

and one-joint leg muscles in controlling an external force. Motor

Control 1, 92–116.

Prilutsky, B.I., Isaka, T., Albrecht, A.M., Gregor, R.J., 1998. Is

coordination of two-joint leg muscles during load lifting consistent

with the strategy of minimum fatigue? Journal of Biomechanics 31,

1025–1034.

Raikova, R., 1992. A general approach for modelling and mathema-

tical investigation of the human upper limb. Journal of Biomecha-

nics 25, 857–867.

Raikova, R., 1996. A model of the flexion-extension motion in the

elbow jointFsome problems concerning muscle force modelling

and computation. Journal of Biomechanics 29, 763–772.

Raikova, R., 2000a. Prediction of individual muscle forces using

Lag-range multipliers methodFa model of the upper human limb

in the sagittal plane: I. Theoretical considerations. Computer

Methods in Biomechanics and Biomechanical Engineering 3,

95–107.

Raikova, R., 2000b. Prediction of individual muscle forces using

Lagrange multipliers methodFa model of the upper human limb

in the sagittal plane: II. Numerical experiments and sensitivity

analysis. Computer Methods in Biomechanics and Biomechanical

Engineering 3, 167–182.

Schuind, F., Carcia-Elias, M., Cooney, W.P., An, K.N., 1992. Flexor

tendon forces: in vivo measurements. Journal of Hand Surgery

17A, 291–298.

van Bolhuis, B.M., Gielen, C.C., 1999. A comparison of models

explaining muscle activation patterns for isometric contractions.

Biological Cybernetics 81, 249–261.

van der Helm, F.C.T., 1994. A finite element musculoskeletal

model of the shoulder mechanism. Journal of Biomechanics 27,

551–569.

van Dieen, J.H., 1997. Are recruitment patterns of the trunk

musculature compatible with a synergy based on the maximization

of endurance? Journal of Biomechanics 30, 1095–1100.

Wells, R., Evans, N., 1987. Functions and recruitment patterns of one-

and two-joint muscles under isometric and walking conditions.

Human Movement Science 6, 349–372.

Zatsiorsky, V.M., Li, Z.-M., Latash, M.L., 1998. Coordinated force

production in multi-finger tasks: finger interaction and network

modeling. Biological Cybernetics 79, 139–150.

R.T. Raikova, B.I. Prilutsky / Journal of Biomechanics 34 (2001) 1243–1255 1255


