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Abstract

The applicability of static optimization (and, respectively, frequently used objective functions) for prediction of individual muscle

forces for dynamic conditions has often been discussed. Some of the problems are whether time-independent objective functions are

suitable, and how to incorporate muscle physiology in models. The present paper deals with a twofold task: (1) implementation of

hierarchical genetic algorithm (HGA) based on the properties of the motor units (MUs) twitches, and using multi-objective, time-

dependent optimization functions; and (2) comparison of the results of the HGA application with those obtained through static

optimization with a criterion ‘‘minimum of a weighted sum of the muscle forces raised to the power of n’’. HGA and its software

implementation are presented. The moments of neural stimulation of all MUs are design variables coding the problem in the terms

of HGA. The main idea is in using genetic operations to find these moments, so that the sum of MUs twitches satisfies the imposed

goals (required joint moments, minimal sum of muscle forces, etc.). Elbow flexion and extension movements with different velocities

are considered as proper illustration. It is supposed that they are performed by two extensor muscles and three flexor muscles. The

results show that HGA is a suitable means for precise investigation of motor control. Many experimentally observed phenomena

(such as antagonistic co-contraction, three-phasic behavior of the muscles during fast movements) can find their explanation by the

properties of the MUs twitches. Static optimization is also able to predict three-phasic behavior and could be used as practicable and

computationally inexpensive method for total estimation of the muscle forces. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Different approaches are applied for the investigation
of motor control strategies used by human nervous
system during various motor activities. The main idea of
the frequently used static optimization is to calculate the
individual muscle forces according to their contributions
in the formation of previously known (computed or
measured) joint moments. Different objective criteria
are proposed and tested (for review see Raikova, 1999;
Tsirakos et al., 1997). Functions that minimize the sum
of the muscle stresses raised to the power of two or three
are most frequently used (Brook et al., 1995; Crownin-
shield and Brand, 1981; Prilutsky et al., 1998). Probably,
more complex objective criteria have to be applied for
motor tasks for which the endurance time or muscle

fatigue are not so important (Nieminen et al., 1995;
Raikova, 2000). Such new propositions (Raikova, 1998)
are scarcely due to the difficulties with the physiological
interpretation of the optimization functions. Using
static optimization and time-independent functions,
the fast (dynamic) and the very slow (quasistatic)
movements cannot be distinguished from each other,
since the optimization is performed independently for
every discrete time moment. Well-known dependences
between the force developed by a muscle and its current
length and the contraction velocity are not considered in
the optimization process. In spite of this, static
optimization is used for locomotion (Crowninshield
and Brand, 1981; Prilutsky et al., 1997) and human
cycling (Prilutsky and Gregor, 2000) and the authors
report a good correlation between the predicted muscle
forces and the corresponding processed EMG data.

As an alternative, ‘‘phenomenological’’ models have
been used. They describe a muscle by constitutive
equations as viscoelastic-contractile material with
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specific behavior during passive loading and neural
stimulation. Such models consist of different passive and
contractile components (Cheng et al., 2000; Hatze, 1977;
Rosen et al., 1999; Zajac, 1989). In order to use them,
however, many specific muscle constants and real
electrical stimulation of muscles should be known. For
modeling purposes, usually processed EMG signals are
used as neural inputs. A combined approach is used in
Pedotti et al. (1978) and Happee and Van der Helm
(1995). In objective functions, they incorporate the
maximal forces of the muscles, being computed from
force–length and force–velocity relationships, and add
dynamic constraints based on a non-linear model of
muscular dynamics. Investigations of the force-sharing
problem that render an account for the properties of
motor units (MU) twitches are scarce. Dul et al. (1984)
proposed an objective criterion depending on the
percentage of slow-twitch muscle fibers, but this led
only to another way for distribution of the muscle
forces.

Another approach widely used in biomechanics
recently is the so-called ‘‘black box’’ method, which is
most often implemented by means of artificial neural
network (NN) (for review see Su and Wu, 2000). For an
input, NNs use processed EMG signals, joint angles or
joint torques, ground reactions, and they calculate the
muscle forces as an output (Jonic et al., 1999; Koike and
Kawato, 1995; Liu et al., 1999; Rosen et al., 1999;
Savelberg and Herzog, 1997). The role of the ‘‘black
box’’ layers is to approximate unknown, complex
relationships between input and output parameters.
These layers have no clear physiological meaning and
that is why such an approach cannot help much in
understanding the motor control strategies and the
process of training and teaching. Genetic algorithms are
more appropriate for the latter purposes (Schaal and
Sternad, 1992). They deal only with the evolutionary
nature of obtaining optimal solution and they do not
impose restrictions on the model description. A genetic
algorithm (GA) is an open structure where different
objects can be defined by conventional means and the
state of the object is being changed by natural genetic
operations.

In order to combine the advantages of the various
approaches, it seems expedient to refine the muscle
model by including its MUs structure and the peculia-
rities of the mechanical response of MUs (twitches) to
neural stimulation, i.e. not considering a muscle as a
single force unit.

The aims of the paper are: (1) to present an
implementation of hierarchical genetic algorithm
(HGA) based on MUs twitch properties where the
control variables are the time moments of neural
stimulation of MUs and the software realization of the
algorithm for motor control investigation; (2) to
illustrate their potential possibilities investigating fast

and slow elbow flexion and extension movements; and
(3) to compare the results with those obtained by using
static optimization with the objective function

PN
i¼1 ciF

n
i

(Raikova, 1996).

2. Methods

2.1. Hierarchical genetic algorithm (HGA)

GA has been inspired by the natural evolution where
the fittest individuals survive (for basic concepts and
theory see Man et al., 1999; Vose, 1999). GA presumes
that each object can be described by a set of parameters
named ‘‘individual’’ and its transition from state to state
occurs by changing these parameters. In GA they are
regarded as genes of a chromosome and can be
structured as a string of values. The changes (next
generations or populations) are performed by means of
genetic operations (mutations and crossover). The
obtained new sets of parameters (offspring individuals)
together with the initial ones (parent individuals) are
evaluated using some criteria combined into a fitness
function. Only the best individuals (set of parameters)
survive and the genetic operations are performed over
them again. This process continues until a particular
number of steps or a given error threshold is reached
(see Fig. 1a). The algorithm reflects the process of
evolution where the ‘‘better’’ chromosomes generate a
larger number of offsprings and thus they have higher
chances of survival. In the present model, genes encode
the moments of neural stimulation of MUs (see Fig. 1b).
Thus, a string of genes corresponds to a MU and the
concatenation1 of the strings of all MUs in a muscle
represents the whole muscle. Then a single genome is
obtained by concatenating the muscles’ strings. It
corresponds to the overall neural activity of a muscle
system. This activity is modified by applying genetic
operations (Fig. 1c) over selected individuals of the
current population. The new individuals obtained by
these modifications are the new solutions of the task.
The hierarchy level of the operations determines the
object of influence of their applications—the genes of
separate MUs, the genes of MUs of a given muscle or
the whole muscle system genome. Given the moments of
neural stimulation of each MU during the whole
movement, its mechanical response can be calculated
(Fig. 1b). If only one stimulus is being applied, then the
form of the developed force (Fig. 2) is approximated by
an analytical function (see Appendix A). The parameters
of the twitch (Tlead;TC;Thr;Ttw;Tref and Fmax

MU ) can be
arbitrarily set, thus modeling different MU types (slow,
fast, intermediate—see Tables 1 and 2). A parameter

1Concatenation: operation by means of which two or more strings

are combined into one longer string.
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Fig. 1. Description of HGA. (a) General schematic representation: (1) Population with random gene values is created. (2) The termination condition

for the algorithm is evaluated. It can be based on reaching a given number of steps or reaching a given error threshold. (3) The individuals who will

participate in crossover and mutation operations are selected from the population. Usually, these individuals are chosen on the roulette wheel

principle, which gives a higher priority to the fitter individuals. (4) By means of genetic operations, offspring individuals are obtained from the parent

individuals. (5) The entire population, including new offspring individuals, is estimated for its fitness. On the basis of the estimation results, certain

number of individuals are chosen to survive. (b) Coding of the current problem. ti are the moments of neural stimulation of the MUs that are coded

as genes of the individual. For a set of ti the MU force is calculated as a function of time using MU twitch form (see Fig. 2). If the time interval

between two successive impulses is oTref ; then mechanical response of the MU remains the same, although if it is longer than Tref ; the twitches are
superimposed. It is supposed for current computations that Tref ¼ Tc: Summing up the forces of all MUs of a muscle, the developed muscle force and

its moment are calculated. (c) Genetic operations: examples of crossover and mutation operations (adding an impulse, removing an impulse, shifting

an impulse) being applied over the time moments (given as numbers in the boxes) at which some of the MUs are stimulated. On the upper level of the

hierarchy these operations may be applied over the activity of a muscle or the activity of the whole muscle system.
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that accounts for MU fatigue during prolonged motor
activities is also provided. It is defined as a non-linear
decrease of Fmax

MU ; depending on the stimulation rate
(MU activity) during the preceding time period. If a new
neural stimulus reaches the MU after the absolute

refractory period Tref ; the mechanical responses are
superimposed (Ruegg, 1989; Wallinga-de Jonge et al.,
1981)—see Fig. 1b. If a new stimulus appears before the
Tref ; the MU force does not change. Summing up the
forces of all the MUs of a muscle, the forces developed
by the modeled muscles are being calculated during the
whole movement. Their moments and the total joint
moments are also being calculated. Then the values of
the imposed criteria and the fitness function (it is a
weighted combination of these criteria) are evaluated.
According to this evaluation, the best solutions are
taken, which are the subjects of the genetic operations.
For the purposes of the present paper, the following
criteria were implemented and used: min(DJ)–—the
minimal error for the whole movement between the
desired external joint moment Mext (see Eq. (1) below)
and the muscles’ moment calculated by the mechanical
responses of the MUs to the current neural stimulation;
min(Sum)—the minimal sum of all muscle forces
calculated by the mechanical responses of the MUs to
the current neural stimulation for the whole movement;
minðStressÞn–—the minimal sum of the calculated
muscle stresses (forces divided to the physiological
cross-sectional areas (PCSA) of the respective muscles)
raised to the power of n; and min(MUAct)–—the
minimal activation of all MUs, i.e. minimum of
the total number of neural stimuli. Hence, the
fitness function is k1 minðDJÞ þ k2 minðSumÞ þ
k3 minðStressÞn þ k4minðMUActÞ; where ki are constant
‘‘weights’’.

2.2. Elbow model

Flexion and extension movements of the elbow with
different velocities are considered for illustration. 1DOF
model of the elbow joint (Fig. 3a) in the sagittal plane
with five muscles, three flexors (BIC, BRA and BRD)
and two extensors (TRI and ANC) (for abbreviations
see the caption of Fig. 3), has been used. The moment
equation has the form (Raikova, 1996):

X5
i¼1

diFi ¼ Izz .jþ Gl sinðjÞ ¼ Mext; ð1Þ

where Fi is the ith muscle force (i ¼ 1: BIC; i ¼ 2: BRA;
i ¼ 3: BRD; i ¼ 4: TRI; i ¼ 5: ANC), di is the moment
arm of the ith force, Izz is the inertial moment of the
hand and forearm, .j is the angular acceleration and G is
the gravity force of the hand and forearm, l is the
distance from O to the application point of G; and Mext

denotes the total external moment in the joint. It is
accepted that di ði ¼ 1; 2;y; 5Þ depend on elbow angle
j: They are calculated using regression equations (for
BIC, BRA and TRI the equations are taken from Pigeon
et al. (1996), for ANC and BRD—from Lemay and
Crago (1996)). di > 0 for BIC, BRA and BRD, dio0 for

F MU (t)

time

F MU
max

F MU
max /2

T lead
T c

T hr Ttw

neural 
stimulus

t=0

T ref

Fig. 2. MU twitch shape and parameters. Fmax
MU—maximal force of the

MU caused by one neural stimulus; Tlead—‘‘lead time’’: the time

between neural stimulation and beginning of the force development;

Tc—‘‘contraction time’’: time from the start of the MU mechanical

contraction to the time where MU force reaches its maximum; Tref —

‘‘absolute refractory period’’: during this time the MU is unable to

respond to new neural stimulation (it is accepted for current

computations that values of Tref are equal to that of Tc), Thr—‘‘half-

relaxation time’’: time from the start of the MU mechanical response

to the time when the MU force becomes twice lower than Fmax
MU ; Ttw—

duration of the twitch (for the accepted terminology see Thomas et al.,

1990; Wallinga-de Jonge et al., 1981).

Table 1

Number and type of MUs of the modeled muscles used for current

simulations

Muscle Total number I type II type III type IV type

BIC 78 20 19 19 20

BRA 80 20 20 20 20

BRD 19 5 5 4 5

TRI 69 18 17 17 17

ANC 18 5 4 4 5

These four MU types can be termed as follows: I—fast-twitch fatigue

resistant (FR); II—fast-twitch fatiguable (FF); III—intermediate (IM);

and IV—slow twitch (S) (see Loeb, 1987).

Table 2

Parameters of the considered four types of MUs

MU type Parameters

Tlead (ms) Tc (ms) Thr (ms) Ttw (ms) Fmax
MU (N)

I type 20 30 60 120 3.288

II type 30 40 100 240 1.910

III type 60 70 175 420 0.764

IV type 70 80 200 480 0.382

Tlead—lead time; Tc—contraction time; Thr—half-relaxation time;

Ttw—duration of the twitch; and Fmax
MU—maximal force (see Fig. 2).
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TRI and ANC (the counterclockwise direction is the
positive one).

For the purposes of the modeling investigation the
following law for angle displacement is assumed:

jðtÞ ¼ jint7 �A
T2

4p2
sin

2pt
T

� �
þ Bt

� �
;

A ¼
2 pjran

T2
; B ¼ A

T

2p
; ð2Þ

where t is time, T is the duration of the motion, jint is
the initial angle, jran is the amplitude of the angle
change, (+) stands for flexion and (�) stands for
extension. It is suitable to use such an approximation
because this equation provides a good accordance with
experimental data reported in the literature for angle
displacement, velocity and acceleration for different
slow and fast elbow motions (see Fig. 3b and the data
reported in Gonzalez et al., 1996, 1999; Gottlieb, 1998;
Yamazaki et al., 1994).

2.3. Static optimization

Static optimization is performed in order to compare
the results obtained through HGA. The objective
criterion used in the present paper is f ¼

P5
i¼1 ciF

n
i ;

where ci is a weight factor of the ith muscle force. The
analytical solution of the optimization problem (Raiko-
va, 1996) gives the following expressions for the muscle

forces:

Fi ¼
Mext

S

di

ci

� �1=n�1

ði ¼ 1; 2;y; 5Þ; where S ¼
X5
j¼1

dj
dj

cj

� �1=n�1

ð3Þ

and the signs of ci are different for flexors and extensors
(hence, they can be positive as well as negative
numbers—see Raikova, 1999).

3. Results

Elbow flexions and extensions with different velocities
can be modeled by altering T in Eq. (2). All flexions
shown in the figures in this paper are with an initial
angle 01 and final one 1501. The extensions are
performed from 1501 to 01. The arm is fixed in a vertical
position (see Fig. 3a).

3.1. Static optimization

It is shown in the first three plots in Fig. 4 how the
predicted muscle forces change if the duration of the
movement increases. The corresponding external joint
moments (Mext) for these three cases are shown in
Fig. 3c. Three-phasic behavior of the muscles (flexors–
extensors–flexors) can be predicted for very fast move-
ment (Fig. 4a). For T ¼ 200m s, the first flexors’ burst
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Fig. 3. Elbow model and movement parameters: (a) Main flexors and extensors included in the model: BIC (F1)—m. biceps brachii, BRA (F2)—m.

brachialis, BRD (F3)—m. brachioradialis, TRI (F4)—m. triceps brachii, ANC (F5)—m. anconeus. O is the rotation center of the elbow joint, j is

flexion/extension angle, G is the gravity force of the forearm and hand, l is the distance from O to the application point of G: The following

parameters are used for present computations: G ¼ 13:72 (N), m ¼ 1:4 kg, l ¼ 0:215m, Izz ¼ 0:01087 kgm2 PCSA: BIC—5.37 cm2; BRA—5.55 cm2,

BRD—1.33 cm2, TRI—4.73 cm2, ANC—1.24 cm2. (b) General shape of angle displacement, velocity and acceleration obtained for a flexion motion

using the Eq. (2). (c) External joint moments for different durations of an elbow flexion from 01 to 1501 calculated using Eq. (1).
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corresponds to the first positive part of the joint moment
(see Fig. 3c), extensors’ activity is predicted when this
moment becomes negative, and the second flexors’ burst
appears during deceleration phase, just before finishing
the movement. For the intermediate case (T ¼ 300ms,
Fig. 4b), only flexors have non-zero predicted forces,
because Mext is always positive, the same refers to
T > 300ms (Fig. 4c). From the point of view of the
predicted muscle forces, a flexion motion from 01 to
1501 for more than 700ms may be considered a
quasistatic one, since the influence of the inertial
moment is negligible. Of course, the latter value depends
strongly on the used model parameters, i.e. on the
interrelation between gravity force moment and inertial
moment. Fig. 4d is an example for the extension
movement. It has to be noted that the predicted muscle
forces for an extension are mirror images with respect to
the vertical axis to those obtained for a flexion with the
same duration. The ratio between the predicted muscle
forces in one synergistic group remains the same,
independent of T ; since the weight coefficients in the
objective function and n are constants and the influence

of the muscle arms’ change with changing elbow angle is
negligible with respect to other parameters (see Eq. (3)).
A possibility for the prediction of antagonistic co-
contraction using a different set of weight coefficients in
the objective function is shown in Fig. 4e (see
tA½120; 180�ms, where TRI, ANC and BRD have
simultaneously non-zero predicted forces). This co-
contraction increases the total sum of all the muscle
forces (see for comparison Fig. 4a). It is artificially
predicted using specific weight coefficients and the
reason for its appearance could not be currently related
to some physiological fact.

3.2. Hierarchical genetic algorithm and its software

implementation

On the basis of the approaches described in Method
section, a software package2 was implemented. More
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Fig. 4. Predicted muscle forces using static optimization. Fig. 4a–c correspond to different durations of an elbow flexion (T ¼ 200m s, T ¼ 300m s

and T ¼ 700m s). Fig. 4d presents the results for an extension from 1501 to 01 for 400m s. The used objective function is f ¼
P5

i¼1 ciF
n
i ; where n ¼ 2;

ci¼ ð1=PCSAiÞ
2 for i=1, 2 and 3 and ci ¼ �1500 for i ¼ 4 and 5 if the joint moment Mext is positive (see Eq. (1)), ci ¼ 1500 for i ¼ 1; 2 and 3 and

ci¼ �ð1=PCSAiÞ
2 for i ¼ 4 and 5 if the joint moment Mext is negative. Fig. 4e is similar to Fig. 4a, but other weight coefficients are used in order to

show the possibilities for the prediction of antagonistic muscle co-contraction, namely n ¼ 2; ci ¼ ð1=PCSAiÞ
2 for i ¼ 1; 2 and 3 and ci ¼ �ðPCSAiÞ

2

for i ¼ 4 and 5 if the joint moment Mext is positive, ci ¼ ðPCSAiÞ
2 for i ¼ 1;2 and 3 and ci ¼ �ð1=PCSAiÞ

2 for i=4 and 5 if the joint moment Mext is

negative. The following notations are used: (J) BIC; (’) BRA; (&) BRD; (* ) TRI; (K) ANC.

2 It is a stand-alone Microsoft Windows application. A pilot version

is available on the web address http://motco.dir.bg. The user interface

provides full control over the structure and properties of the motor
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details can be found in Aladjov and Raikova (2001).
Different planar elbow movements were investigated.
Some of them are currently presented for illustration.
The aim is to show the capabilities of HGA algorithm as
well as to compare the results with those obtained by
static optimization.

For fast motions, three-phasic muscle behavior is
naturally predicted (Fig. 5a). It is also shown in this
figure that if the muscles do not have fast enough MUs
(Fig. 5b), it is not possible to satisfy the required joint
moment (see for comparison Fig. 5d versus Fig. 5c) and
to perform the movement with required acceleration.
When the number of fast MUs was increased, which
changed the MUs-type composition, it became possible.

Because of the short time for movement completion,
preferably fast MUs were activated (Fig. 6a). No MU is
tetanically stimulated, but doublets (Bawa and Calancie,
1983; Gurfinkel et al., 1992) were encountered. It is also
shown in this figure as to how individual twitches
(Fig. 6a) form the force of the whole muscle (Fig. 6b and
c) and the influence of the lead-time (Fig. 6b versus
Fig. 6d). To form the shape of the required joint
moment (see Fig. 5c), and hence the shapes of the
muscle forces (Fig. 5a), sufficiently fast MUs have to be
activated about 50m s before the start of movement
(Fig. 6c). The latter value depends of course on the
chosen Tlead of MUs. The muscle force patterns are
similar to those obtained by static optimization (Fig. 4a
versus Fig. 5a) notwithstanding that the muscle PCSAs
are not accounted in the used fitness function and that
the criterion min(Sum) is a linear one (see the caption of
Fig. 5). The reason is that the number of MUs of each
muscle was chosen to be proportional to the respective
PCSA (see Table 1). Fig. 7, where an extension with
duration 400m s is investigated (see for comparison the
results from static optimization shown in Fig. 4d),

Fig. 5. Influence of MUs-type composition of the muscles on the predicted results using HGA for investigation of 200m s elbow flexion and

subsequent 200m s posture support (the arrows show the start and the end of the movement). The used fitness function is 10 000.

min(DJ)+min(Sum)+min(MUAct). Fig. 5a. Predicted muscle forces when all the muscles have about 50% MUs of the Ist type, 25% of the IInd

type and 25% of the IVth type (hence the respective numbers in Table 1 are changed). Fig. 5b. Predicted muscle forces when all the muscles consist of

about 25% of all types of MUs (see Table 1). Symbols: BIC (black thin line); BRA (dark gray thin line); BRD (light gray thin line);

TRI (dark gray bold line); ANC (light gray thin line). Fig. 5c and d. The respective calculated (gray curves) and desired (black curves)

joint moments.

(footnote continued)

system. Models can be constructed by consecutively adding bones,

joints and muscles along with their properties. For example, lever

arms, angles, PCSA, the number and kind of MUs, etc., can be defined

for each muscle. New objective functions may be added to the default

ones. The user may see at run time different views of the obtained

results (force of a particular MU, predicted muscle forces, ‘‘simulated

EMG’’, error during satisfaction of different goals, etc.)
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confirms this finding. The predicted muscle forces were
similar when using min(Stress)2 (Fig. 7a) and min(Sum)
(Fig. 7b) as one of the optimization criterion in the
fitness function (note that the joint moment is satisfied
well for both cases—Fig. 7c and d). This can be
explained by the fact that all the muscles consist of the
same MU types and proportion of these types, but their
number differs from muscle to muscle (see Table 1). The
probability for HGA to activate more MUs in a muscle
with higher PCSA, respectively, with more MUs (for
example BRA versus BRD), is greater, independently
from that which criterion has been employed. The
results from HGA application for different motions
showed the presence of significant antagonistic co-
contraction. In our opinion it is inherent to human
movements because of the specific form of the MU
twitch. It was greater when the requirement for
smoothness of the motion was higher. This is illustrated
in Fig. 8, where a longer flexion is investigated. The
weight of the criterion min(DJ) was hundred times
larger for Fig. 8a than that for Fig. 8b, while the
remaining criteria have the same weights. As it can be

seen while comparing these two plots, the predicted
muscle forces are higher and coarser and the degree of
co-activation is bigger when the aim is to achieve greater
accuracy in holding the joint moment. Independently,
the apparent differences between Fig. 8c and d cannot
be seen, the total error between the desired and
computed joint moment for the whole period of
1200m s is 0.0284 and 0.0321Nm, respectively. More
coarse profile of the muscle force could be partially
explained as a visual effect from a longer duration of the
movement, but the main reason is the form of the twitch
(see discussion).

4. Discussion

The paper presents an implementation of HGA based
on MUs twitch properties. The capabilities of its
software implementation are illustrated investigating
elbow motions. The results are compared with those
obtained by using static optimization. Elbow flexions
and extensions in the sagittal plane with different

Fig. 6. Formation of the force of the whole muscle brachioradialis from twitches of its MUs. (a) The individual twitches—only FR (I), FF (II) and S

(IV) MUs are chosen by HGA to be active. (b) The formation of the force from these twitches. (c) The total force of m. BRD. (d) The number of

neural stimuli for the whole muscle calculated for every time period Dt ¼ 1m s (the so-called ‘‘simulated EMG’’ by the authors). This time period can

be arbitrarily set. Note that the time scale for Fig. 6d originates before the start of the movement aiming to show the influence of the lead time. The

arrows show the start and the end of the movement.
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velocities were chosen for illustration because one can
clearly see the influence of dynamic properties of MUs
and separate the influence of gravity and inertial forces
by varying the movement duration. Furthermore, many
authors have investigated these motions using different
approaches (Gonzalez et al., 1996, 1999; Gottlieb et al.,
1995a, b; Latash, 1994; Virji-Babul and Cooke, 1995;
Yamazaki et al., 1994). An exact differentiation of MUs
is not firmly experimentally established (Burke, 1999).
Some authors (Gordon et al., 1997; Kernell, 1986) even
raise the question as to whether the slow, fast, fast-
fatigue-resistant and fast-fatiguable MUs are distinct
types or they are descriptive categories from a contin-
uous distribution of MU properties. In the literature,
there are also evidences that the type of MUs and their
presence in muscle depend on age, sex, training, etc.
(Johnson et al., 1973; Thompson, 1994). So, in the
present study, with no claims for comprehensiveness, it
was decided to have four different types of MUs (see
Tables 1 and 2). Certainly, there is no problem in
applying the model and the software with a continuous
distribution of MU properties. The number of MUs of

each muscle during the presented computations was
comparatively less than the actual number. For exam-
ple, literature reports that m. BIC has 774 MUs (Ruegg,
1989), but we use only 78, i.e. an MU in our model
represents a group of actual MUs of the same type (see
Table 1). This simplification does not significantly affect
the general conclusions made in the paper, since the
maximal force of each MU of a muscle is calculated in
such a way that the sum of tetanus forces of all MUs is
equal to the maximal force of the whole corresponding
muscle (see Table 2). More so, in the literature, there are
different opinions concerning the smallest muscle part
(MU or a pool of MUs) that could be voluntarily
controlled (Kosarov et al., 1978; De Luca and Erim,
1994). The computational cost increases rapidly with the
increase of the number of controlled MUs, while
precision does not improve significantly. A compromise
between reality, accuracy and computational time
should be made.

Contrary to static optimization, it was difficult to
trace constant joint moments or movements that consist
of linear segments by summing up MUs twitches (see

Fig. 7. Influence of different criteria in the fitness function on the predicted results using HGA for investigation of 400m s elbow extension with

preceding and subsequent 200m s posture support. (a) Predicted muscle forces using the fitness function 100. min(DJ)+min(Stress)2+min(MUAct).

(b) Predicted muscle forces using the fitness function 100. min(DJ)+min(Sum)+min(MUAct). All the muscles consist of 25% of each type of MUs.

Symbols: BIC (black thin line); BRA (dark gray thin line); BRD (light gray thin line); TRI (dark gray bold line); ANC

(light gray thin line). (c) and (d) Calculated (gray curves) and desired (black curves) joint moments for the respective fitness functions. The arrows

show start and end of the movement.
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Fig. 7, tA½0; 200�ms and Fig. 8, tA½800; 1200�ms). Our
model curves of joint angle and moment are rather
smooth that might not be the real case. Other reasons
could be insufficient number of steps (computational
time); little number of MUs used in the present
calculations; step, uneven distribution of the maximal
forces of individual MUs; and high smoothness of the
analytical curve of the joint moment. It is most likely,
however, that even if the above-mentioned problems are
overcome, smoothness would not become sufficiently
high, because of the discrete character of the MUs
twitches. It is naturally difficult to approximate a linear
function (joint moment) with a limited number of high
non-linear ones (i.e. twitches, Fig. 2)—see Fig. 6a and b.
The muscle co-contraction could also be connected
with the latter. To some extent it is also useful to achieve
a smoother movement since the moments of the forces
of the MUs of the antagonistic muscles are with
opposite signs. Some profiles of target joint moment
cannot be fitted by mere summing up of the MUs
twitches displaced in time, but by a simultaneous
subtraction of antagonistic MUs twitches from that
sum.

In general, the patterns of the predicted muscle forces
were similar using HGA and static optimization with
n ¼ 2 and weight coefficients based on the muscle stress
(Fig. 5a versus Fig. 4a; Fig. 7a versus Fig. 4d.). The
main differences were in the predicted essential antag-
onistic co-contraction with HGA and apparent over-
lapping of the predicted forces of the muscles from the
two antagonistic groups around the moments when the
sign of the joint moment changes (see tA½80; 140�ms
and tA½80; 200�ms in Fig. 5a. Such a prediction is closer
to the experimental EMG data (Gonzalez et al., 1999;
Gottlieb et al., 1992, 1995a; Latash, 1994) than the
results from static optimization where all the predicted
muscle forces are necessarily zero if the joint moment is
zero according to Eq. (3)). The antagonistic co-contrac-
tion shown in Fig. 4e is artificially predicted, using
specific weight coefficients in the objective function,
whereas such an overlapping of the forces of antag-
onistic muscles, as the one in Fig. 5a, cannot be
predicted. The results from the HGA could be related
to the MU twitch profile and the ‘‘trace effect’’ named
thus by the authors of the current paper. The force of an
MU cannot decrease to zero at once, but with some

Fig. 8. Influence of different weights of the criteria in the fitness function on the predicted results using HGA for investigation of 700m s elbow

flexion and subsequent 500m s posture support. (a) The fitness function is 10 000min(DJ)+min(Sum)+min(MUAct). (b) The fitness function is

100minDJ)+min(Sum)+min(MUAct). All the muscles consist of 25% of each type of MU, Symbols: BIC (black thin line); BRA (dark

gray thin line); BRD (light gray thin line); TRI (dark gray bold line); ANC (light gray thin line). (c) and (d) The calculated (gray

curves) and the desired (black curves) joint moments for the respective fitness functions. The arrows show the start and the end of the movement.
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particular speed determined by Thr and Ttw (see Fig. 2).
So, when the joint moment quickly decreases (increases),
what is obviously necessary is the antagonistic activity
to compensate the moment caused by previously
activated MUs that still develop some force. For
example, see Fig. 5a, tA½80; 150�ms, where the joint
moment quickly decreases (Fig. 5c), changing its sign
from positive to negative. The essential residual forces of
the previously activated MUs of m. BIC, BRA and BRA
cause an essential positive joint moment. Hence, the
antagonistic muscles ANC and TRI must be activated
fairly before the joint moment becomes zero, so that this
‘‘trace effect’’ is compensated.

The greater is the weight factor of criterion minðDJÞ in
the fitness function compared to the weight factors of
other criteria, the greater are the muscle forces and
antagonistic co-activation (Fig. 8). This observation
resembles the findings of Yamazaki et al. (1994) who
reports about the dependence of EMG activity of major
elbow flexors and extensors on the instructions given to
the subjects. When the instruction for a rapid goal-
directed movement is ‘‘strongly fix the upper arm at the
target’’ the co-activation increases, but when the subject
is free to relax arm this co-activation almost disappears.

Additional intervals (subsequently, and preceding the
posture support) have been considered apart from the
movement duration for all the figures showing the
results from the HGA. Small sinusoidal oscillations to
the angle displacement (hence of posture support) are
added immediately after or (and) before the movement
itself and are subsequently considered in the optimiza-
tion process. These intervals have been added in order to
be closer to natural movements, where fluctuations
around the target point are commonly observed (Got-
tlieb, 1994), and because of the above-discussed
problems with the tracing constant joint moment.
Another reason is the lead-time (Fig. 6d versus Fig. 6b)
as well as the necessity inherent to HGA to render an
account for the previous state of MUs. Here, the
estimation of the fitness function is performed for a
time period including the whole movement and this is
the evaluation of the current solution.

At this stage, our model does not account for well-
known force–length and force–velocity relationships for
a muscle. It is possible to account the first one assuming
that the shape of the twitch depends on the current
muscle length (Brown and Loeb, 1999). As to the force–
velocity relationship, it can be supposed that it is
someway hidden in the properties of the MUs that
constitute the muscle. The maximal contraction velocity
of a muscle is connected with the slope of the twitch
profile (hence with the value of Tc which is definitely
limited from a physiological point of view—see Fig. 2)
of the fastest MUs of this muscle and their number. This
is why when the number of fast MUs is insufficient, it is
impossible to perform very fast movements (see Fig. 5).

Using HGA, the interrelation between forces pre-
dicted in the muscles from a synergistic group is similar
in all the studied motions, even in the case when
different criteria have been used (see Fig. 7). For
example, the predicted forces of BIC and BRA have
always been greater than that of BRD, regardless of the
fact that the latter has a bigger lever arm for all the
possible values of j: This is due to the lesser number of
MUs of m. BRD (because of its less PCSA) in
comparison with BIC and BRA (Table 1). The prob-
ability for HGA to activate more MUs from a muscle
arises with the increase in the number of MUs that
constitute that muscle. This probability also depends on
the type of MUs. The interrelation between predicted
muscle forces could be changed if the MUs composition
of the muscles is different, i.e. some of the muscles are
fast and others are slow, but such numerical experiments
are not presented in the current paper. On the basis of
our experience with the developed software, a general
conclusion could be drawn: the probability of activating
a particular MU depends strongly on the properties of
its twitch (i.e. not only on its maximal force which is
related to its size, but also on all other characteristics:
contraction time, fatiguability, etc.). Certainly, there
exist other factors that influence the muscle activity
such as moment arms, injuries, etc. Since the different
muscles are mixtures of MUs with different properties,
it can be expected that they will play different roles
in different movements. If some muscle consists mainly
of fast MUs, then it can be expected to participate
in satisfying the faster changes of the movement, if
it consists of small MUs (with small maximal force) it
will participate in precise movements or fine adjust-
ments.

For static optimization ci are allowed to have both
positive and negative values. This is a mathematical
convenience since all the muscles can be included in the
computational algorithm and choosing different ci;
different interrelations between the predicted muscle
forces can be modeled. Design variables in HGA are the
time moments of neural stimulation of MUs. Their
number is considerably higher than the fifth muscle
forces used as design variables in static optimization.
This leads to a large-scale optimization problem and a
much longer computational time.

5. Conclusion

The main conclusion from the present paper is that
static optimization can be used for dynamic conditions
when investigating the basic features of the bone–joint–
muscle complex (see also Hughes, 2000; Anderson and
Pandy, 2001), but models based on the properties of
MUs and their twitches allow to gain an insight into the
human motor control. It is a very complex task to
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control all the MUs for sufficiently realistic limb model.
The proposed HGA presents a suitable means for its
solution. Unlike NNs, the algorithm described in the
paper is not a ‘‘black box’’ method and new knowledge
about functioning of motor systems can be extracted.
Possibilities for performing multi-objective, time-depen-
dent optimization make the HGA a suitable means even
for the investigation of dynamic tasks. It also allows
further investigations of the dependence between the
predicted muscle force and EMG signals, since one of
the outputs of the program realization is time moments
for neural stimulation of all MUs (Fig. 6d). The process
of training and teaching a motor task can be researched
as well, following the consecutive solutions of HGA or
tracing how a solution of a task is modified when
considering a newly defined task, but with similar aims.
The proposed approach may further integrate the
knowledge from different scientific areas and consoli-
date the efforts of different specialists for a better
understanding of human motions and their control.

Appendix A

The analytical function describing the twitch shown in
Fig. 2 has the following general form (see also Kosterin
and Burdyga, 1990; Piotrkiewicz, 1982; Romanov,
1992):

FMUðtÞ ¼ ptme�kt:

From the boundary conditions

FMUð0Þ ¼ 0; FMUðTcÞ ¼ Fmax
MU ;

FMUðThrÞ ¼
Fmax
MU

2
; F 0

MUð0Þ ¼ 0; F 00
MUð0Þ ¼ 0;

the unknown parameters p;m and k are obtained

k ¼
ln 2

�Tcln ðThr=TcÞ þ Thr � Tc
; m ¼ kTc;

p ¼ Fmax
MU e�kTcðln Tc�1Þ:
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