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Abstract

Changes in the kinematic and electromyographic characteristics that occur while learning to move as fast as possible have been

studied experimentally. Experimental investigation of what happens to the individual motor units (MUs) is more difficult. Access to

each MU is impossible, and the recruitment and force developing properties of all individual MUs cannot be known. Thus, what is

currently known about MU firing is based on experiments that have recorded relatively few MUs compared to what exists in the

entire muscle. A recently developed muscle model (Raikova and Aladjov, 2002, J. Biomechanics, 35, 1123–1135) composed of MUs

with different properties can be used for such investigation. The process of learning fast elbow flexion in the horizontal plane was

simulated and the results were compared with experimentally measured data. Comparing the simulation results of the very first trial

of a particular subject with those of the last trail (at the end of the learning process), it can be concluded that the speed of limb

motion and muscle forces increase initially as a result of the more synchronous MUs activation and the increase of firing rate of

active MUs. Further improvement necessitated an appreciable reduction in the motor task requirements (i.e. less muscle force and

less MUs’ activity) set in the computational algorithm by optimization criteria. This forced the next process—inclusion of additional

MUs.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Motor learning can involve a novel task or familiar
skills wherein the different performance aspects are
refined during the teaching and learning process. In the
first case, new muscle activation patterns must be
established, while in the latter instance existing patterns
are modified (Gottlieb et al., 1995b). To understand
what happens during teaching and learning, movement
parameters such as angles, velocities and accelerations
are observed as well as surface electromyographic
(SEMG) signals from different muscles. It has been
observed that changes in these quantities depend on the
e front matter r 2004 Elsevier Ltd. All rights reserved.
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aim of the movement and on the instruction given to the
subjects (Gottlieb et al., 1990; Yamazaki et al., 1994).
However, there are a few generalizations that can be
made thus far. Muscle co-contraction plays significant
role in movement precision (Gribble et al., 2003), and an
increase in limb speed is a result of an increase in neural
drive as measured by an increase in the amplitude
SEMG activity from both the agonist and antagonist
muscles (Gabriel and Boucher, 2000; Gabriel, 2002).
Maximal effort training is a very important aspect of

sport, rehabilitation, and for some ergonomic applica-
tions. This paper focuses on training-related changes in
motor units’ (MUs) activity. Using the SEMG signal it
is very difficult to identify MUs, and the intramuscular
recordings are from a limited volume of muscle tissue.
What happens with MUs’ activity during training is still
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unclear. There is a limited amount of data obtained
during isometric strength training that demonstrates an
increase in MUs’ firing rates (Van Cutsem et al., 1998;
Patten and Kamen, 2000), but similar data on dynamic
contractions do not exist, partly due to the methodolo-
gical difficulties. The recently developed muscle model
and MotCo software (Raikova and Aladjov, 2002) are
capable of predicting individual MUs’ firing rates and
forces generated by the MUs, for all of the modelled
muscles during a specified movement.
The software implementation is based on a hierarch-

ical genetic algorithm (HGA) which iteratively, by a
trail-and-error manner, refines the solution. It can be
argued that this process can serve as a simple model of
the natural learning process. During the execution of the
HGA, a set of possible solutions (time moments for
firing of all the MUs) is obtained. These solutions are
then modified and combined between themselves (by
means of genetic operations) and thus a new set of
solutions is obtained. The best solutions are selected
from both old and new solutions, according to criteria
defined a priori, and the genetic operations are applied
again.
The aim of the paper is to study the process of

learning a fast elbow flexion in the horizontal plane by
means of modelling and experimental validation, to
provide insight into the learning process at the MUs
level.
1Twitch is the mechanical response of a MU to one single neural

impulse.
2. Methods

2.1. Experimental investigations

The experimental procedure has been described in
detail in Gabriel (2002). Subjects performed fast elbow
flexions in the horizontal plane. The instruction for the
task was to move the limb ‘‘as fast as possible’’ to the
required target. The motion started with the elbow in
full extension (01) and was supposed to end at 801
(71.51) of elbow flexion. The measured and recorded
parameters were angular displacement and SEMG
signals of the biceps and triceps brachii muscles. One
hundred trials were completed, each with 4 days of
testing, for a total of four hundred trials. There was 15 s
of rest between each trial and 5min of rest after every 25
trials. Data were collected for the first five and last five
trials of each test day. For example, on test day 1 data
were collected for trials 1–5 and for trials 96–100, while
on test day 4 trials 301–305 and 395–400 were recorded.
Thus, there were a total of 40 records for each subject
available for analysis. The displacement and SEMG
signals were sampled at 2 kHz. Displacement was low-
pass filtered (10Hz, 3 dB) and numerically differentiated
to obtain angular velocity and acceleration, while the
SEMG data were linear envelop detected (60Hz, 3 dB).
All signals were filtered with a zero-phase lag second-
order Butterworth digital filter. Only the data of two
subjects (subjects 1 and 2) were used for the present
study.

2.2. Model

It was assumed that three flexors and two extensors
participated in the elbow motion, namely biceps brachii
(BIC), brachialis (BRA), brachioradialis (BRD) and
triceps brachii (TRI) and anconeus (ANC). The
numbers of MUs composing these muscles were BIC-
774, BRA-804, BRD-193, TRI-686 and ANC-180.
These numbers were proportional to the physiological
cross-sectional areas of the respective muscles (Raikova
and Aladjov, 2004). Ruegg (1989) observed that the BIC
had 774 MUs, so the numbers used in the current work
seem reasonable.
The parameters of the twitches1 of these MUs were

uniformly distributed in three main groups: fast-fatigu-
able, fast-fatigue-resistant, and slow MUs (Burke,
1999). The fastest MU had a contraction time of 30ms
and a half-relaxation time of 60ms. The slowest MU
had a contraction time of 70ms and a half-relaxation
time of 175ms (Raikova and Aladjov, 2003; 2004). The
values of the lead time were between 20 and 60ms. The
maximal amplitudes of the twitches were calculated
using the maximal forces of the modelled muscles. The
maximal amplitudes of the twitches were therefore
between 0.371 and 1.837N. The muscle moment arms
were dependent upon joint angle and were calculated
using linear regression equations (for details see
Raikova and Aladjov, 2003). The external joint moment
(M ) was calculated by multiplying angular acceleration
( €j) by the inertial moment (Izz) of the subjects’ forearm
and hand (for subject 1 it was estimated that
Izz=0.0581512 kgm2), hence M ¼ Izz €j: This moment
was an input parameter for the software. Other input
parameters were the moment arms of the muscles and
the number and type of MUs for each muscle.
The aim of the simulations was to find the appropriate

firing rate for each MU within muscles so that the
motion can be completed. Hence, the muscle forces were
obtained as sums of the mechanical responses of the
individual MUs. However, the predicted activation of
MUs, and hence muscle forces, must satisfy the
following equation for the experimentally obtained
external joint moment:

M ¼ dBICFBIC þ dBRAFBRA þ dBRDFBRD

þ dTRIFTRI þ dANCFANC;

where d is the moment arm of the respective muscle
force. For the flexors they were positive and for
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extensors they were negative numbers, and F was the
respective muscle force calculated as sum of the forces of
all MUs that compose this muscle. In addition to
minimizing the error between calculated and experimen-
tally obtained joint moments, the software also sought
to minimize both the sum of the muscle forces and the
MUs’ firing (i.e. the total number of impulses of all
MUs). Together, these criteria comprised a ‘‘fitness
function’’, which has been detailed in Raikova and
Aladjov (2003).

2.3. Simulations

Two trials of subject 1 were simulated: the first trial
(the slowest) and the last trial (the fastest, after
learning). Thus, the two different joint moments were
goals in the fitness function. The number and the type of
MUs remained unchanged during all simulations. The
weight of the criterion connected with the joint moment
in the fitness function was 100 for the first trial, but was
changed to 200 for the last trial (see the discussion). The
weights of the other two criteria were 1. After a good
First trial
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Fig. 1. Comparison between modelled and experimental results for the first an

in the elbow joint (the vertical arrows show the time moments of reaching

simulated EMG activity of the biceps brachii; A4 and B4—experimental me

activity of triceps brachii; A6 and B6—experimental measured SEMG signa
agreement between the experimental and simulated joint
moments, an additional simulation was performed to see
how the HGA learned the movement. The time
moments for firing of all MUs predicted by the MotCo
software for the first trial were set as a solution of the
last trial, but the required joint moment was changed to
that for the last trial. Changes in the output parameters
were then observed while HGA learned how to achieve
the faster movement.
3. Results

The simulations of the first and the last trials for
subject 1 showed that the required elbow joint moments
(Fig. 1, A1 and B1) were achieved with a high degree of
accuracy. The two curves for each joint moment
completely overlap. During the learning process, subject
1 decreased the movement time required to reach the
target area from 382 to 310ms for the first and last
trials, respectively (see arrows in Fig. 1, A1 and B1). To
perform the movement more quickly, the predicted
Last trial 
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muscle forces changed (Fig. 1, A2 vs. B2). Except for the
BRD, the maximal values of other muscle forces
increased considerably. The force of the TRI increased
from 357.74N to 487.11N. The force of BIC increased
from 142.55 to 273.75N, while that of BRA increased
from 110.50 to 227.93N. Activation of the ANC was
minimal during the first trial (maximal value 2.8N),
while during the last trial its force increased consider-
ably (maximal value 109.97N).
There was a poor match between the simulated

electromyographic (EMG) activity2 and experimentally
obtained SEMG signals of the biceps and triceps
muscles (Fig. 1, A3 vs A4; A5 vs. A6; B3 vs. B4; and
B5 vs. B6). The same was true for the predicted muscle
forces (Fig. 1, A2 vs. A4 and A6; B2 vs. B4 and B6). The
simulated EMG activity exhibited the classic triphasic
pattern (BIC-TRI-BIC) observed for rapid movements
(Gottlieb et al., 1992), but the real SEMG signals did
not. Other participants such as subject 2 did, however,
demonstrate the triphasic pattern (Gabriel, 2002).
The comparison of subjects 1 and 2 shown in Fig. 2

illustrates the problems with subject comparisons of
experimental SEMG signals. The patterns of the joint
moments during the slowest and the fastest trials of
subject 2 did not differ markedly from those of subject 1.
Although subject 2 was faster and stronger than subject
1, he altered angular acceleration during training in a
similar manner. The maximal and minimal values of the
joint moment during the fastest trial of subject 2,
however, were significantly greater. Thus, only the last
trial of subject 2 was simulated, as it required a great
deal of computational time (thousands of steps) due to
the large number of MUs. We observed that the weight
coefficient for the function that minimized the deviation
between the experimental and calculated joint moments
had to be increased considerably. To increase the speed
of limb movement further, there needs to be an
additional decrease in the criteria minimizing muscle
forces and MUs’ activity. This process does not change,
however, the three-phasic behaviour of the simulated
EMG activity. It only results in the inclusion of new
MUs.
The simulations showed that fast-twitch MUs domi-

nated the task (Fig. 3). Note that the MU with number 1
was the fastest. The first third of the MUs of a muscle
were fast-fatiguable, the second third were fast-fatigue-
resistant, and the last third were slow-twitch. Compar-
ing the first and the last trial of subject 1, it can be seen
that the total number of impulses to the MUs of each
muscle increases (except the BRD in which the force
decreased during the last trial), the number of MUs that
are activated more than one time increases, and the
2The number of impulses received by all MUs of a muscle within a

given time interval; this time interval is currently chosen as 3ms.
synchronization between MUs within a muscle in-
creases.
The data in Table 1 for the MUs firing rates

(impulses) for all five muscles support these visual
observations. The main finding from this table is that
the increase in the total muscle force during the last trial
is due mainly to an increase in the firing rate of active
MUs (the number of active MUs in all flexors even
decreased). The number of MUs that received more than
one impulse also increased considerably. This number
for flexors increased from 48 to 209, while for extensors
it increased from 46 to 207. The numbers in the last row
of Table 1 show that the mean value of activation time
of the MUs within each muscle (except for the BRD)
decreased, indicating an increase of the mean firing rate
as well as an earlier onset of MUs (see Fig. 3).
Fig. 4 illustrates the training process for the experi-

mental movement for subject 1 (Fig. 4A) and for the
HGA implemented in MotCo software (Fig. 4B). These
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figures present the changes in joint moment
during different stages of training. The joint moments
for subject 1 for the means of the first five and last
five trials of each test day are shown in Fig. 4A.
The calculated joint moments for different (but not
equal) number of steps of the simulation are illustrated
in Fig. 4B.
Both subjects 1 and 2 exhibited similar patterns of
change in the joint moment profile during training. The
simulations closely matched these training-related al-
terations (Fig. 4). To quantify these changes,
the maximal and minimal values of the joint
moments, and times at which the positive and negative
phases occurred were investigated. These parameters are
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illustrated in Fig. 5. Comparing them for subjects 1 and
2 and for the simulation, it can be concluded that phase
I always decreased and phase III always increased
during training. Interestingly, the early trials lacked a
phase III. The parameters tmin, tmax, t1 and t2 also had a
tendency to decrease, while phase II increased for
subject 1 and the MotCo simulation, but for subject 2
it decreased. The peak values of the joint moment (Mmax

and absolute value of Mmin) increased during training,
but for the first subject Mmin was quite variable.
4. Discussion

The purpose of this paper was to investigate how
training-related changes in joint moments are generated
at the level of the MUs. This is difficult to accomplish
using experimental methods alone and requires model-
ling and simulation to provide further insight. The task
we chose required maximal effort from each subject as
he flexed his elbow as fast as possible to a target in the
horizontal plane. The training process resulted in
significant changes in joint moments for the experi-
mental movement and these changes were matched by
the simulations. The training-related changes in SEMG
activity were poorly approximated by the simulated
EMG activity. In the following paragraphs, we will
discuss the theoretical and practical aspects of our
results.
There is debate on whether SEMG signals are suitable

for verification of predicted muscle forces. In the present
paper the muscle was modelled as a mixture of MUs,
and not as one simple musculo-tendon unit (one force-
one control signal). Since the modelled MUs’ firing
times are predicted, the impulses can be summated to
produce a simulated EMG activity. It is closer in nature
to the electrical manifestation of muscle activity since it
presents the number of impulses received by all MUs
within a given time interval (Raikova and Aladjov,
2004).
Differences in electromechanical delay, movement of

the muscle beneath the electrode, electrode type and
cross-talk are just a few reasons for a lack of
correspondence between simulated EMG activity and
experimental SEMG signals for subject 1. The simulated
EMG activity did, however, match the experimental
SEMG signals for subject 2. Unfortunately, tuning the
model is not a simple matter as the exact number and
type of MUs within an individual’s muscle cannot be
known. The simulation results are therefore a general
representation based on the joint moment.
The simulated EMG activity and experimental SEMG

signals for subject 2 both demonstrated the classic
triphasic activation pattern (Hannaford and Stark,
1985; Gottlieb, 1998; Gottlieb et al., 1995a). The trials
of subject 1 were not characterized by a triphasic
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Fig. 5. Motion parameters for quantifying learning: Mmax—global

maximal joint moment; Mmin—global minimal joint moment; T—

duration of the motion; tmax—time for which Mmax is reached; tmin—

time for which Mmin is reached; t1—time where the joint moment

crosses the zero line for the first time; t2—time where the joint moment

crosses the zero line for the second time.
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pattern. This can be easily explained based on move-
ment time. Subject 1 was the slowest participant. His
movement times were close to the critical movement
time of 400ms observed by Brown and Gilleard (1991)
necessary for the appearance of the triphasic SEMG
pattern during single-joint motions. Since the simula-
tions predicted the triphasic muscle activity, and because
the type of the MUs was not changed, we considered
that the conclusions about the change in the MUs’
activity during training were representative. It should be
noted that these conclusions are valid only for similar
rapid motions and for the fitness function and para-
meters used in the model.
The main conclusion from the simulations is that the

increase in the muscle forces related to training for rapid
limb movement was mainly due to an increase in the
firing rate of individual MUs and synchronization
between MUs. When MUs fire more than once, the
activity pattern is geared towards unfused tetanus,
which is more economical as compared to the individual
twitch. An increase of the number of active MUs is the
next mechanism for an increase in acceleration of the
limb. This strategy becomes important when faster
MUs, more suitable for fast movements, exhaust their
resources and slower MUs begin to participate too.
The influence of the weight factors in the fitness

function used in MotCo software was discussed in detail
in Raikova and Aladjov (2004). We acknowledged the
fact that a good agreement between simulated and
experimental joint moments could be obtained using a
weight factor of 100 (even 50) at the respective goal for
the first trial (the slowest motion) only. Independently
that more than four million steps of the algorithm were
performed, such good congruence between simulated
and experimental joint moments was impossible to reach
for the last trial (the fastest motion). To simulate it, the
weight factor was increased up to 200. Preliminary
simulations of the last trial of the second subject
showed that this weight factor had to be increased
further, which means an appreciable reduction of the
criteria requiring less muscle force and less MUs’
activity. The explanation of this is the following: these
two criteria allowed for different levels of antagonistic
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co-contraction and preferred these solutions for which
the number of all impulses (firing rate) during the whole
motion was lower. Therefore, increasing the weight of
the criterion requiring more preciseness in matching the
joint moment reduced the significance of the other two
criteria. We observed experimentally that an increase in
the speed of limb movement was associated with greater
co-contraction (Gabriel and Boucher, 2000). Another
reason is that for the HGA (and may be for humans), it
was impossible to activate all MUs in a very narrow
time period (see Fig. 3, TRI during the last trial for tA
(200ms, 300ms)). The latter can also explain the
considerable rise in ANC force. For the very fast, steep
changes in the joint moment, fast MUs are more suitable
because of their twitch form. Their number in the TRI is
insufficient and the fast MUs of ANC have to be
included too.
Finally, tracing the parameters defined in Fig. 5 for

consecutive trials, a similarity between humans and the
HGA in the way a motor task is learned can be
observed. This suggests that the algorithm mimics the
natural way of learning a motor task and that it was
suitable for present investigation.
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