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Experimental investigation of practicing a dynamic, goal-directed movement reveals significant
changes in kinematics. Modeling can provide insight into the alterations in muscle activity, associated
with the kinematic adaptations, and reveal the potential motor unit (MU) firing patterns that underlie
those changes. In this paper, a previously developed muscle model and software (Raikova and Aladjov,
Journal of Biomechanics, 35, 2002) have been used to investigate changes in MU control, while
practicing fast elbow flexion to a target in the horizontal plane. The first trial (before practice) and the
last trial (after extensive practice) of two subjects have been simulated. The inputs for the simulation
were the calculated external moments at the elbow joint. The external moments were countered by the
action of three flexor muscles and two extensor ones. The muscles have been modeled as a mixture of
MUs of different types. The software has chosen the MU firing times necessary to accomplish the
movement. The muscle forces and MUs firing statistics were then calculated. Three hypotheses were
tested and confirmed: (1) peak muscle forces and antagonist co-contraction increase during training; (2)
there is an increase in the firing frequency and the synchronization between MUs; and (3) the
recruitment of fast-twitch MUs dominates the action.
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1. Introduction

The demands of the task are a primary consideration while

learning to perform a discrete movement; it may require

an increased speed, strength, or precision. The training

methods used to make improvements in these criteria are

important issues in the area of motor behavior for sport

and rehabilitation. Training performed to increase the

speed of limb movement can significantly alter the

observed kinematics (Gabriel 2002). The measured

angular accelerations can then serve to calculate the

joint moments, and the individual muscle forces can be

computed by applying different optimization techniques

for solving the indeterminate problem (Raikova and

Prilutsky 2001). Musculoskeletal modeling and surface

electromyographic (SEMG) evidence suggest that antag-

onist co-activation plays a significant role during maximal

effort tasks. Training to improve maximal effort

performance can either increase or decrease the antagonist

co-contraction, depending on the objectives (strength or

speed) and the instructions (for example more accuracy)

given to the subject (Gottlieb et al. 1990, Bernardi et al.

1996, Patten and Kamen 2000, Croce and Miller 2003,

Gribble et al. 2003).

The SEMG signals and/or predicted muscle forces

can provide information about any alterations in motor

coordination during the training process. However, this

is insufficient for investigating the adaptations in the

underlying motor units (MUs) firing patterns. This is

important because MU firing patterns are the basic

mechanism by which the nervous system controls

the generation of skeletal muscle force. Unfortunately,

the activity of individual MUs is concealed by the

interference pattern recorded from the skin surface.

Additionally, SEMG recordings do not reflect under-

lying differences in muscle fibre composition (Taylor

et al. 1997). Indwelling recordings can be used to

monitor MUs activity directly but only a small number

can be studied due to the limited pick-up volume of

needle or wire electrodes. The resulting data do not
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provide a complete view of what the entire muscle is

doing.

Training has been shown to increase MU firing rates

(Taylor et al. 1997, van Cutsem et al. 1998, Patten et al.

2001). In addition, the number of fast-twitch MUs can

increase while a concomitant transition of slow-twitch

MUs to intermediate ones (Karageorgos, Gus 1998) is

present. MU synchronization is another phenomenon

responsible for an increase in muscle force as a result of

training (Milner-Brown et al. 1975, Connelly et al. 2000).

Which of these processes is more important is unclear

because SEMG signals and indwelling recordings of MU

potentials cannot distinguish between the different MU

types (Taylor et al. 1997, Chan et al. 2001). Moreover,

ethical principles do not allow the precise in vivo

registration of MU forces in humans as performed on

animals (Celichowski 2000).

Modeling can be used to circumvent the difficulties

associated with recording MUs and their individual force

contributions, to provide insight into training-related

adaptations in nervous control of skeletal muscle. For the

sake of this paper, a previously validated muscle model

and software (Raikova and Aladjov 2002, 2004, Raikova

et al. 2005) have been used to investigate changes in MU

control while learning to increase the maximal speed of

elbow flexion to a target in the horizontal plane. Three

hypotheses were tested: (1) peak muscle forces and

antagonist co-contraction increases during training; (2)

there is an increase in the firing frequency and

synchronization between MUs; and (3) the recruitment

of fast-twitch MUs dominates the action.

2. Methods

2.1 Model

The experimental procedure is described elsewhere

(Gabriel 2002, Raikova et al. 2005). The subjects

performed elbow flexion in the horizontal plane to a

target, as fast as possible (figure 1a). They have practiced

over a two-week period to increase the maximal speed of

limb movement for the same degree of accuracy. Only the

first (before practice) and the last (after extensive practice)

trials of two subjects (the slowest and the fastest ones)

have been used in the present investigation. From now on,

the slowest subject will be designated as “Subject 1” and

the fastest one as “Subject 2”.

Angular acceleration was calculated by differentiating the

filtered joint angle data. The external joint moment was

calculated as a product of acceleration and the inertial

moment of the subject’s forearm and hand. The model had

one degree of freedom for flexion/extension at the elbow

joint in the horizontal plane. There were three flexor muscles

in the model: the biceps brachii (BIC), the brachialis (BRA),

and the brachioradialis (BRD). The two extensor muscles

were the triceps brachii (TRI) and anconeus (ANC).

Together, the flexor and extensor muscles balanced the

external moment at this joint (figure 1b). The lever arms for

the muscle forces were assumed to depend on the elbow

angle and were calculated using regression equations

reported in the literature (Raikova and Aladjov 2004).

Each muscle has been modeled as a mixture of different

MU types (Chan et al. 2001). The total number of MUs

was 774 for BIC, 804 for BRA, 193 for BRD, 686 for TRI

and 180 for ANC. The MUs within each muscle were

based on the conventional division into three types (Burke

1981): fast-fatigable (FF), fast-fatigue-resistant (FR) and

slow (S). Each muscle contained one third of each MU

type. The main feature that characterized the force

capability of the MU was the “twitch”. This is the

mechanical response of the MU to a single input stimulus.

The twitch form has been modeled using an analytical

function, as proposed in Raikova and Aladjov (2002).

Four twitch parameters served as inputs for the function:

lead time, contraction time, half-relaxation time and

maximal force (Raikova and Aladjov 2004). The twitches

associated with the different MU types were modeled by

changing these four parameters.

Assumption was made that the twitch parameters

specific to each MU type were within the realistic limits

for human skeletal muscles (Raikova and Aladjov 2004,

Figure 1. Schematic representation of the experiments and the model.
(a) The motion—elbow flexion—is performed in the horizontal plane and
starts at fully extended forearm (w ¼ 08) and stops at w < 808. The
external moment in the joint is calculated as M ¼ Izz €w, where
Izz ¼ 0.0581512 kg m2 is the inertial moment of the subject’s forearm
and hand and €w is the angular acceleration. (b) The external joint moment
is countered by the action of five muscles (two extensors—TRI and ANC
and three flexors—BIC, BRA and BRD). So, M ¼ dbicFBIC þ
dbraFBRA þ dbrdFBRD þ dtriFTRI þ dancFANC, where d(*) is the lever
arm of the respective muscle force F(*) and these arms are positive
numbers for flexors and negative numbers for extensors.
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Raikova et al. 2005). The fastest MU had a contraction

time of 30 ms and half-relaxation time of 60 ms. The

slowest MU had contraction time of 70 ms and half-

relaxation time of 175 ms. The values of the lead times

were between 20 and 60 ms. The maximal amplitudes of

the twitches were between 0.371 and 1.837 N and were

different for different muscles depending on their

maximal forces. The individual MUs’ mechanical

responses to the impulses were summed up to generate

the total muscle force. The only stipulation was that the

next impulse should fall after the contraction phase of the

previous twitch.

2.2 Simulation

The inputs for the simulations were: angular displacement

as a function of time; inertial moment Izz of the subjects’

forearm and hand, so the calculated external joint

moment; the muscle lever arms; the number and properties

(i.e. twitches) of the MUs for each muscle. The same set of

MUs was used to simulate the four joint moment profiles

with MotCo software (http://www.clbme.bas.bg/projects/

motco/). Recall, the four joint moment profiles correspond

to the trials before and after extensive practice for Subjects

1 and 2. The MotCo software is based on a hierarchical

genetic algorithm that mimics the “trial-and-error”

manner of learning. The algorithm chooses the MU

impulse times of all modeled muscles so that the required

motion gets performed. The whole muscle force is

constituted as the sum of the forces of all MUs of one

muscle, caused by these impulses. Then, the sum of all the

muscle force moments (flexor and extensors) has to be

equal to the given external joint moment.

The task was highly indeterminate, so three criteria were

enforced. The first requirement was to minimize the

deviation between the calculated and desired joint moment

(DJm). The other two criteria reflected the economy of the

movement: one minimized the sum of impulses received

from all MUs of all muscles (Simp) and the second one

minimized the sum of all predicted muscle forces (Sfor)

(Raikova and Aladjov 2003, Raikova and Aladjov 2004).

The aim was therefore to minimize the following fitness

function: FitFun ¼ k1DJm þ k2Simp þ k3Sfor, where ki

are weight factors.

The external joint moments for the four conditions are

presented in figure 2. Since the weight factors for the three

criteria in the fitness function had a large impact on the

predicted muscle forces (Raikova and Aladjov 2004), they

were changed during the simulation. For the first trials of

the two subjects, the weight factors were k1 ¼ 40; k2 ¼ 1;

k3 ¼ 1. For the last trial of Subject 1, k1 was increased to

60, and for Subject 2 it was increased to 100 (see

Discussion) while k2 and k3 remained unchanged.

The large number of MUs (2637 in total), which had to

be controlled by the algorithm, required a great deal of

computation time for each simulation, especially when the

required joint moment was close to the limit of the MUs’

ability to develop the desired level of force. Each

simulation finished when a good match between the

required and calculated joint moment was obtained, i.e.

when DJm reached a predetermined value. This value was

different for the four joint moment conditions, and was

chosen based on previous experience.

Upon completion of the simulation, one output of the

software was the predicted muscle forces during the time-

course of the entire motion. In order to estimate

antagonistic muscle co-contraction, an index, coI, was

introduced. It was calculated according to the formulas:

coI ¼

P2
i¼1 F

ext
iP3

j¼1 F
fl
j

if M . 0 and

coI ¼

P3
j¼1 F

fl
j

P2
i¼1 F

ext
i

if M . 0;

where M is the external joint moment, Fi is the ith

predicted muscle force and superscripts “fl” and “ext”

denote flexors and extensors, respectively. Osu et al.

(2002) introduced a similar co-contraction index based on

SEMG signal.

3. Results

The predicted muscle forces for the two subjects (figure 3)

increased considerably during their last trial, reflecting the

increase in the peak positive and negative joint moments

(figure 2). Subject 1 had maximal joint moments of 4.76

and 7.88 Nm for the first and last trials, respectively. The

minimal values changed from 26.66 Nm for the first trial

to 29.26 Nm for the last trial. Subject 2 had maximal joint

moments of 5.81 and 9.01 Nm for the first and last trials,

Figure 2. Calculated joint moments (the product of the inertia moment
of the hand and forearm and the angular acceleration calculated by
differentiation of the measured elbow angle) of the two subjects (Sub 1
and Sub 2) for their first trials (before practice) and last trials (after
practice) of the motion.
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respectively. The minimal values changed from

25.89 Nm for the first trial to 213.39 Nm for the last trial.

The predicted muscle forces for the first trials of both

subjects were similar, but for the last trials, evident were

different force distributions. The predicted force for the

muscle BRA became greater than that for the BIC for the

fastest subject (figure 3d). There was also a considerable

rise in the predicted force for the ANC for both subjects,

but for the Subject 2 this force was much bigger. The ANC

muscle force for both subjects was nearly zero during the

first trial. Also important were the changes in the patterns

of the joint moments. For the last trials (figure 2), a third

positive phase was observed and it was more prolonged for

the fastest subject (from 350 to 400 ms). The profile of the

joint moments is a reason to have two-phases behavior of

the muscles for the first trials (flexor–extensors) and three

phases one for the last trials (flexor–extensors–flexors).

The calculated index of antagonistic co-contraction,

coI, is shown in figure 4. In general, the co-contraction

was essential before the beginning of the motion

(from 0 to 100 ms) and around the time when the

direction of the joint moment changed. For both subjects,

coI was generally greater for their last trial than for their

first trial. It should be noted that Subject 2 also showed

considerable co-contraction during the last trial from 100

to 220 ms, where the respective joint moment had

considerable positive values. Such high positive values

suggest that only the flexor muscles had to be active. This

unexpected result is to be discussed below.

Another output of the software was the number of the

impulses received by all the MUs within the muscle for a

fixed time interval (here this interval was 3 ms) during the

Figure 3. Muscle forces for the first and the last trials of the two subjects predicted by using MOTCO software.

Figure 4. Calculated co-contraction index for the first and the last trial
of the motion of the two subjects.
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motion (figure 5), i.e. the so-called “simulated EMGs”

(Raikova and Aladjov 2004). It was close in nature to the

SEMG signal. Figure 5d shows that the co-contraction (i.e.

simultaneous activation of TRI and BIC MUs) during the

last trial for Subject 2 is quite large, especially during the

intervals between 0 and 150 ms and 250 and 400 ms.

MU synchronization during the last trial for both

subjects increased (figure 6a vs. b and c vs. d). After

extensive practice, the MU impulses occurred closer

together in time (figure 6b,d). Synchronization for Subject

2 was not so obvious (not shown in the figures) because

nearly all of the extensor MUs had to be active to achieve

the very high negative peak joint moment. However, the

statistics of the interpulse intervals (IPI) shown in figure 7,

indicated that synchronization has also increased for

Subject 2 (figure 7c vs. d), especially for the TRI MUs.

Nearly half of the intervals between the first and the

second impulse and between the second and the third

impulse for this muscle MUs were around 60 ms

(figure 7d).

There was no significant difference between the two

subjects with respect to the predicted muscle forces and

simulated EMGs for the first trial (figures 3a,c and 5a,c).

However, inspection of figure 7a,c indicates that the MUs

of the two subjects did indeed behave differently. This is

particularly true for the TRI of the Subject 2. The IPIs for

the Subject 2 were shorter than those for the Subject 1

(figure 7c vs. a). The smallest IPI was 31 ms. This was due

to the restriction imposed by the software: the force

developed by a MU can not increase if a new stimulus

comes within its contraction time. Hence, doublets were

not possible because the minimal IPI was limited by the

contraction times of the modeled MUs.

The fast MUs of the BIC and BRA dominated muscle

activity, especially for the last trials (figure 6a,b). The

difference between the MU types is summarized in

figure 8. The total number of active flexor MUs for Subject

1 decreased after training, but the participation of fast MU

types increased (figure 8a; S1 t1 fl vs. S1 t40 fl). Subject 2

used nearly all the extensor MUs during the last trial that

explains why the participation of the three MU types was

equal. The total number of impulses for the fast MU types

was always greater, and it increased after training

(figure 8b). Except for the flexors of Subject 2, the

number of MUs with only one impulse decreased after

training (figure 8c). The number of MUs with two, three

and four impulses increased after training (figure 8c,d,f).

This indicates an increase in firing rate.

4. Discussion and conclusion

The hypothesis that the antagonistic muscle co-contrac-

tion increases after training was confirmed (figures 3 and

4). Co-contraction usually relates to joint stability

(Solomonow et al. 1988). However reasonable this

explanation, we cannot use it because a criterion for

joint reaction forces was not included in the fitness

function. An alternative explanation is based on the

interaction between the form of the MU twitches and

Figure 5. “Simulated EMG” activity (the number of impulses received by all MUs of a muscle within a time interval of 3 ms) of the main flexor (BIC)
and the main extensor (TRI) for the two trials of the two subjects.
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Figure 6. Time moments of impulses of each MU of all modeled muscles for simulation of the first and the last trial of the slowest subject (Subject 1).
The MUs of each muscle are arranged from the fastest to the slowest one. Some MUs are activated only once, some twice, and some MUs receive even
six impulses during movement. The respective successive impulses of each MU are plotted vertically, appearing at different times and are labelled
differently. Figure 6a—flexors, first trial; figure 6b—flexors, last trial; figure 6c—extensors, first trial; figure 6d—extensors, last trial.
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dynamic motions with steep acceleration and deceleration

phases. The relaxation times of the modeled twitches were

between 110 and 270 ms, depending on the MU type. The

joint moments of the simulated movement increased and

decreased within a very short period, at a steep rate.

However, the decrease in force of the active agonist MUs

was slower, so more activity from the antagonistic MUs

was necessary. These results are consistent with the

findings of Ghez and Gordon (1987). These authors

showed that antagonist muscle activity was necessary to

actively terminate the rapid rate of increase in agonist

muscle forces for dynamic muscle actions occurring

within a short period of time.

The hypotheses about firing frequency and synchroni-

zation were also substantiated. The conclusions about the

increase in firing frequency and synchronization were

based on the impulse times of the modeled MUs. After

training, the IPIs decreased (figure 7), and the individual

impulses occurred within a very narrow region of time

(figure 6d). The firing frequency increased because the

number of MUs, which had received more than one

impulse, increased considerably (figure 8), and the IPIs

decreased from the first to last trial. The total number of

impulses also increased despite the decrease in number of

active MUs in some muscles.

We also observed the dominant participation of fast MU

types, most evident for the Subject 1 (figure 6b), but not

always evident for Subject 2, especially for the extensor

muscles. There are two possible explanations. The first

reason may be due to the large negative joint moment

achieved by Subject 2 during the last trial. The peak forces

required from the extensor muscles were nearly at the

limit that might be predicted by their physiological cross-

sectional area and maximal stress. Thus, to achieve the

large joint moments required by the task, nearly all MUs

of both extensors had to be active. To achieve this, the

weight coefficient k1 was increased up to 100 while

k2 ¼ k3 ¼ 1. This fact leads to the second possible

explanation. The influence of the criteria connected with

the minimal number of impulses and the minimal sum of

all the muscle forces was practically negligible, leaving

only the goal of matching the actual joint moment. As a

result, the efficiency and economy of the motion was no

longer important.

The genetic algorithm used to simulate the four joint

moment profiles mimics the “trial-and-error” basis of

Figure 7. Statistics of the interpulse intervals (IPIs) between the first and the second impulse, between the second and the third impulse, and between
the third and the fourth impulse for the muscles BIC and TRI during the first and the last trial of the two subjects. There are also MUs that receive five and
six impulses during the motion, but these interpulse intervals are not shown in the figure. The horizontal axis is scaled according to the maximal number
of interpulse intervals. IPIs are calculated on the base of the time moments of impulses (figure 6), predicted by the software, and are arranged in an
ascending order, but not using the number of the MUs. Each point indicates one IPI.
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learning in humans. The simulations, therefore, provide

insight to potential, realistic mechanisms for increasing

the maximal speed of limb movement. The first strategy

used by the nervous system was to increase the MU firing

frequency to increase force output of the muscles. There

was also a preferential utilization of fast MU types. When

this mechanism became insufficient, new MUs were

included. The simulation results were dependent on the

chosen fitness function, which reflected the aim of the

motion. For the first trial (before practice), the simulation

was performed with requirements for the efficiency of the

movement (minimal antagonistic co-contraction and

minimal number of impulses). For the last trial, especially

for Subject 2, the weight factors in the fitness function had

to be changed so that the joint moment could be well

described. This meant that the main goal of the algorithm

became to achieve the required motion without further

restrictions.

Figure 8. Statistics of the impulses during the motion (number of active MUs, total number of impulses, number of MUs receiving only one impulse,
number of MUs receiving two impulses, number of MUs receiving three impulses, number of MUs receiving four impulses) separately for all flexors
(hence BIC, BRA and BRD together) and for all extensors (hence TRI and ANC together). The data are given for all MUs (Total) and separately for
different groups: FF MUs, FR MUs and S MUs. S1 t1 fl—Subject 1, first trial, all flexors; S2 t1 fl—Subject 2, first trial, all flexors; S1 t40 fl—Subject 1,
last trial, all flexors; S2 t40 fl—Subject 2, last trial, all flexors; S1 t1 ex—Subject 1, first trial, all extensors; S2 t1 ex—Subject 2, first trial, all extensors;
S1 t40 ex—Subject 1, last trial, all extensors; S2 t40 ex—Subject 2, last trial, all extensors.
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