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Introduction

In this paper we describe some examples illustrating the Modal
Topological Structures (MTSs) in their particular case of Intuitionistic
Fuzzy MTSs (IFMTSs). These examples are related to the
Intuitionistic Fuzzy Sets (IFSs), to Index Matrices (IMs) in their
particular case of Intuitionistic Fuzzy IMs (IFIMs) and to
Intuitionistic Fuzzy Graphs (IFGs).



Preliminaries

Short remarks on IFSs
The concept of an IFS was introduced in 1983 with the following
definition.
Let us have a fixed universe E and its subset A. The set

A" = {(z, pa(z),va(z)) |z € EY,

where

0 < pa(r) +rva(z) <1
is called IFS and functions 14 : E — [0,1] and v4 : E — [0, 1]
represent the degree of membership (validity, etc.) and
non-membership (non-validity, etc.) of element x € E to a fixed set

A C E. Thus, we can also define function 74 : E — [0, 1] by means
of

m(#) =1 - p(z) —v(z)

and it corresponds to the degree of indeterminacy (uncertainty, etc.).
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One of the geometrical interpretations of an element x € E in the
Intuitionistic Fuzzy Interpretation Triangle (IFIT) is shown on Fig. 1.

(0,1)
va(2) o ,f”
<070> NA(CU) <170>

Fig. 1. Geometrical interpretation of an element z € E.



A lot of operations and relations are defined over two given IFSs.
Here, we use only the following of them:

ACB iff (Vae E)(ua(z) < up(x) & valz) > vp(z));
ADB iff BCA;
A=B iff (Vze€ E)(ua(z) =pup(z) &va(z) =vp(r));

-A = {(z,va(z),pa(z)) |z € EL;
ANB = {{(r,min(pa(z), up(x)), max(va(x),vp(z)))|z € E};
AUB = {{z,max(pa(z),pnp(r)), min(rva(x),vg(z)))z € E};



A lot of operators from modal, topological and level types are defined
over a given IFS. Here, we use only the two operators that represent
intuitionistic fuzzy analogues of the modal operators “necessity" and
“possibility":

0 A = ({2 pale), 1 - pa(@)) | 7 € B},
QA ={(x,1—va(z),va(x)) |z € E},

and the intuitionistic fuzzy analogues of the topological operators
“closure" and “interior":

C(A) = {<fﬂvzsllelgm(y),yig]§m(y)> |z € B},

I(A) = {<$731612HA(3/)>§1612VA(9)> |z € E}.



We must mention that for every IFS A:

OA=-0-A,

A =-0-A,
C(A) = ~(Z(=4)),
Z(A) = =(C(=4)).

Let everywhere below:
0" ={(z,0,1) |z € E},

E* = {{(2,1,0) | z € E}.

When for real numbers a, b € [0, 1] it holds true that a + b < 1, the
ordered pair (a, b) is called an Intuitionistic Fuzzy Pair (IFP).



Short remarks on MTSs and IFMTSs

After publishing the concept of a MTS has become an object of
numerous modifications and extensions. Each of these structures was
illustrated with examples from the area of the intuitionistic fuzziness.
As a result, different IFMTSs were constructed.

Let us have a fixed set ' and let

P(E)={X|X C E}.

Then,
P(O*) ={0"},
P(E") ={AJAC E*},
where A is an IFS.



Now, we will call that the operator C is a closure (cl)-topological
operator if for each A, B € P(E*):

Cl C(AUB) =C(A)UC(B),
C2 ACC(A),

C3 C(C(A)) =C(A),

C4 C(0%) = O,

and that the operator Z is an interior (¢n)-topological operator if for
each A, B € P:

Il Z(AN B) = I(A) N I(B),
12 I(A) C A,
13 I(Z(A)) = Z(A),

14 I(E*) = E*.



Now, following the definition of a topological structure and the
definition of a MTS, we define that the object

(P(E"),0,¢ %m)

is a xy-Modal y-Topological Structure (x-M-TS) over the set E*,
where O € {C,Z} is a topological operator from ¢-type related with
the operation ¢ € {U,N}, and x € {<, O } is a modal operator from
x-type related with the operation € {U, N}, where ¢, x € {cl,in}.
Therefore, each one of the both types of operators (the topological and
the modal) must satisfy the respective C- or the respective
I-conditions.
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For clarity, we will denote the conditions related to the topological
operators by Cts or Its, and these related to the modal operators by
Cms or Ims, for 1 < s < 4.

In addition, the topological and modal operators must satisfy the
following additional condition (*) for each A € P(E*):

*O(A) = O(%A) (%)

that will be used again below.



Short remarks on IMs

Let I be a fixed set of indices and X" be the set of some objects
(natural, real, etc. numbers, propositions, predicates, etc.). Let

nown

operations o : X x X — X be fixed. For example, it can be “+",
“max", “min", or others.
Let the sets K and L satisfy the condition: K, L C I. We call an

Index Matrix (IM) the object:

l1 Iy ln

S I P T P S
(K, L {ar i, Y = k2 | Gholy Gholy -0 Gkyl,
km | Gl s Qs - Gyl

where
K= {kl,kg, ,km} and L = {ll,lg, '--7ln}7

andfor1 <i <m,andforl <j<n:ag, €R.
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For the IMs A = [K, L, {ay, 1, }], B = [P, Q, {bp, 4. }|, operations
that are analogous to the usual matrix operations of addition and

multiplication are defined, as well as other, specific ones.

Addition
ADe) B =
where
' Qi 15
by, .qs»
Ctuvw =

Ak l; © pr7QS7

[KUPLUQ, {Ctu,vw 3,

iftu:k‘iEKand’Uw:leL—Q
ort, =k; € K—Pandv, =1; € L;

ift,=p- € Pandv, =¢s € Q— L
orty,=p- € P—Kandv, =qs € Q;

ift, =k =p. € KNP
andv, =1lj=¢; € LNQ

otherwise
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Termwise multiplication

ARy B=[KNP,LNQ,{ct,w,}]

where

Ctuavw = akhlj o bprvqs’

forty =ki=p,€ KNPandv, =1 =¢qs € LNQ.

A lot of other operations are defined over IMs, e.g., multiplication,
subtraction, etc.

When X is a set of IFPs, then the IM with elements from X’ is called
an Intuitionistic fuzzy IM (IFIM).

Let I be a fixed set. By IFIM with index sets K and L (K, L C I), we
denote the object:
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[, Ly {1k 5 Vies 1) ]

h . I . I
kv (kg s Vinn) o0 (ks Veel) oo (ks Vi)
ks <,“ki7llv’/ki,l1> e <lu’k’i7lj’l/kialj> ce <luk'i7ln7ykfi7ln> ’
B | (B> Vi 1a) (Bl Vkanoy) =+ (Bl s Vo )

where forevery 1 <: <m,1 <75 <n:
0 < fkes i Vi lys Bk l; + Vi1, < 1 and
K ={ky,kay....km}, L={ly,la,....1,}.
Here, we will mention that the two above operators now for the IFIMs
A= [K, L, {{ptk; 1, Vi, ;) },
B =[P,Q,{{pp,.q55 Tpr.q:)}]

have the following forms: L e



Addition-(V)

or Addition-(max,min)

A&y B=A®maxmin) B=[KUP,LUQ,{{¢t, v Vtuvu) ],

where
<90tuva’ wtuva> = </1/ki7lj v Ppr,gss Vki:lj A me‘]s)
</’Lki7lj?yki,l_j>7 ift, =k € K and v, = lj eL—-Q
ort,=ki€ K—P andv, =1[; € L;
(Pprgss Tprogs)» ifty=p, € P andv, =¢qs € Q — L

orty, =p- € P— K and v, = g5 € Q;

<maX(Mki,lj7ppqu) if tu = k'L = Dr ceKNP

min(vg, 15, 0p,.q.)) andv, =1l =¢; € LNQ

(0,1), otherwise
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Addition-(A) or Addition-(min,max)

A EB(min,rnax) B = [K UPLUQ, {(‘ptu7vw7¢tu7vw>}]7

where

<(10tu,vw717[}tu,vw> = <lu’kfi,lj /\ ppqu’ Vk'i,lj \/ O-p'rv‘Js>

(

</’Lki,lj7l/ki,lj>7 ift, =k; € K and v, = lj el — Q
ort, =k; € K—Pandv, =1; € L;

<ppr,QS>0-pr,QS>7 lftu = Dr S P and Vw = (s S Q - L
orty,=p € P— K andv, = ¢s € Q;

<min(uki7lj7ppr7QS)7 if tu = kl =Dr €eKnP
max(uki’lj,apﬁqs)), andv, =lj=¢; € LNQ

(0,1), otherwise
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Termwise multiplication-(\)

or Termwise multiplication-(max,min)
A® ) B=A®maxmin) B=[KNP,LNQ,{{®t,vu Vtuvw)};
where

(Ptusvws Vtuww) = Whil; V Pprges Vkidy N Oproga)

= <max(uki7lj ) ppr#ls)? min(Vki,lj 1y Opr,gs )>

Termwise multiplication-(A) or Termwise
multiplication-(min,max)

A ®(/\) B=A ®(min,max) B = [K NPLNQ, {<@tu,vw7wtu,vw>}]7
where
<g0tu7vw’ ,(/)tuva> = <:uki7lj A Ppr,qss Vkialj v Jpr»‘]s>

= <min(ﬂki,lj s Pprogs)s maX(Vki,lj s Oprgs))-
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Classical negation of an IFIM

—A = [K7 L7 {_'<:U/k‘i,lj7 Vh,lj)}] = [K7 L7 {(Vki,lj ) Mki,lj>}]7

A lot of other operations are defined over an extension of the IFIMs,
that in the particular case are valid for the IFIM, e.g., multiplication,
subtraction, etc.

Some relations are defined over IMs (that do not exist for standard
matrices). Below, we will use only the following one of them:

The non-strict relation “inclusion about value' is

AC, Biff (K* = P*) & (L* = Q*) & (Vk € K)(Vl € L)

((ak1, brp) < (Crpsdig))-



Intuitionistic fuzzy index matrices as modal topological

structures

Let us have two sets of objects Y and Z and let A € P(Y x Z).
Therefore, A = K x L for some sets X C Y and L C Y. In the
particular case, the sets Y and Z can be subsets of the set of indices 1.
The elements of the set Y can be interpreted as the indices of an IM
rows and the elements of the set Z can be interpreted as the indices of
the columns of the same IM. If the elements of the IM are IFPs, then
the set

AT = {{(k, 1), p(k, 1), v(k, D) | (K, 1) € A},
where p(k, 1), v(k,1), p(k,1) + v(k,1) € [0,1] is, obviously, an IFS
and

A* € P(E*) =P(Y x Z x L),

where
L£* = {{a,b) | a,b,a+be0,1]}.
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Now, we can construct the IFIM
A=K, L {{ulk,1),v(k,1) | k € K,l € L}].

Obviously, the IFIM A is another form of the IFS A*. Therefore, on it
we can define topological and modal operators as follows:

C(A)=[K,L,{( sup wu(k,0), inf wv(k1))|ke K,le€ L},

(k) EK XL (k)EK XL
I(A) = [K,L{( inf pu(k0), sup v(kl)|keK,leLl],
(kD) eKxL (kDYEK XL

OA=[K, L {{uk,0),1 - pulk,1) | k € K, € L}],
GA = [K,L,{(1—vlk,1),v(k1) | ke K,leL}]



Now, we can prove the following assertion.
Theorem 1. For every two sets Y and Z:

(1) (P(Y x Z),C, @y, <, ®y) is an [FMTS,
(2)
(3)
4)
(5)

(P(Y x Z),C, @y, <, @) is an IFMTS,
(P( ),
(P( );
(P( );
6) (P(Y x Z),C,®y,$, D) is an IFMTS,
(P( );
(P( );
(P( ),
(P( ),

P x Z),C, @y, O,Dy) is an IFMTS,
PY x Z),C, @y, O,Dn) is an IFMTS,

PY x Z),C,®y, <, ®y) is an IFMTS,

(7)
)
9)
(10)

P(Y x Z),C,®y, O,®y) is an [EMTS,
PY x Z),C,®y, O,Dn) is an IFMTS,
PY x Z),I, D, <, Dy) is an IFMTS,

PY x Z),Z,Bn, O, Dn) is an IFMTS,
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(1) (P(Y x Z),Z,®n, O,Dy) is an [FMTS,
(12) (P(Y x Z),Z,®n, O,DA) is an [FMTS,
(13) (P(Y x 2),Z,®n,<, ®yv) is an IFMTS,
(14) (P(Y x Z),Z,3n,<,Da) is an [IEMTS,
(15) (P(Y x Z),Z,®n, O,Dy) is an [EMTS,
(16) (P(Y X Z),Z,®x, O,®,) is an IFMTS.
Proof Let the sets Y and Z be given and let

A=K, L {{uk,),vk,)) |k e K,lc L} €Y x Z,

B =[P,Q,{{up,q),v(p,q) [p€E P,geQ} €Y x Z.

Then for example for (1) we can check the conditions that the object is
an IFMTS as follows
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[Ct1]

C(A®y B)

=C([KUP,LUQ,{{u(k,) vV u(p;q),v(k,l) Av(p,q)) |
k,pe KUP;l,qge LUQ}])

=[KUPLUQ{( sup (u(k,1)V u(p,q),
KUP,LUQ

inf (v(k,0) Av(p,q))) | k,p € KUP;l,g€ LUQ}]
KUP,LUQ

=[KUP,LUQ,{( sup pu(k,)v sup pu(p,q),
KUP,LUQ KUP,LUQ

' ke K,leL
(k)N inf  v(0.0) | }

inf v
KUP,LUQ

= [K, L, {{sup u(k, 1), inf v(k,1)) | k € K,l € L}]
K,L K,L

Ov[P, Q, {(sup u(p, q), inf v(p, q))) | p € P,q € Q}]
PQ PQ

=C(A4) &y C(B);

A



[Ct2]

C(C(A)) =C(K,L,{( sup p(kl), inf wvkl)|keKlel
(k)eKx L (k)EK XL

=|[K,L,{( sup sup  p(k,1),
(p,g) €K XL (kl)eK XL

inf inf  v(k,0)|keK,leL}
(p,@) €K XL (k1)EK X L

=[K,L,{( sup k), inf wv(kl))|keK,leL}
(kyeKxL (k)EK XL

= C(A);
[Ct3]
A =[K,L {{u(k1),v(k )| keK,1leL}

Co [K,L,{( sup p(k,0), inf w(k1))|keK,leL}])
(k) EK XL (k,)EK XL

=C(A);
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[Ct4]

c(0*) =IK,L, sup 0, inf 1)|keK,lcL
) | {<<k,l)erL (k)EK XL )| }]

= [K,L,{{(0,1) | k€ K,l € L}]
= O*;
[Cml]
O(Aoy B)
= QK UPLUQ, {(u(k, 1)V u(p,q), v(k, 1) ANv(p,q)) |
k,pe KUP;l,qge LUQ}])
=[KUPLUQ,{(1— (v(k,]) Av(p,q)),v(k,1) Av(p,q))) |
k,pe KUP;l,ge LUQ}]
=[KUPLUQ,{{(1-v(k 1)V —-vpaq)vkl) Avipaq)) |
ke K,l €L}
= K.L{1—v(kD.vk.D)) e K.1le LV



[Cm2]
OOA = O[K, L, {1 —v(k,1),v(k,])) | k € K,l € L}))
= [K,L,{(1 — v(k,D),v(k,])) | k € K,l € L}])
= Q4
[Cm3]
A =[K,L {{ulk,),v(k,1)) | ke K,l € L}
Cy [K, L, {1 — v(k,1),v(k,])) | k € K,l € L}])
= QA.

[Cm4]
OLE” :O[K’L7{<170>|k€K7l€L}]

= [K,L,{(1,0) |k € K,l € L}]
= E*.
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[()]
C(Q0A)) =C(K,L,1—v(kl),v(k]l)|keK,leL})
= [K’La{< sup (1_V(k7l))7

(k,l)eKXL

<k’l>ié1[f(XLu(k,l)> |k e K,l € L}])
= [ L (1= (k,l)iélzng(l —vikD),

<k,l)iglf(xLl/(k’l)> |k e K,l € L}|)

= OC(A).

The remaining 15 assertions are proved in the same manner.
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From these examples it is clear that while topological operators
determine the maximum and minimum values of the objects of K and
L, modal operators determine the maximum and minimum value of
any distinct pair of elements of K x L.
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Intuitionistic fuzzy graphs as IFMTSs

Let us have the following oriented graph C'
a b c

SN



For it, we can construct an IM with elements from the set {0, 1},
which is an adjacency matrix of the graph

QU

O O O O O O o o|c
O O O O R~ O Ol
O O O = O O O Ol
O O O OO O o>

T Q@ w0 a0 o9
O o0 oo oo o ol
O 0 o0 o oo o oo
c o oo oo oo

R R e R o S < S S S



Obviously, the IM in this form is more complex than the standard
(adjacency) matrix representing this graph, because both matrices
have 64 symbols O or 1, but the IM has additional 16 alphabetic
symbols — the indices of its rows and columns. But having in mind
that the columns indexed by a, b, ¢, d and the rows, indexed by g, h
contain only zeros and do not give any important information, we can
transform the adjacency IM to the form

e f g h
all 0 0 O
b1 0 0 O

D= ¢|1 0 0 0,
d{o 1 1 0
el 0 0 1 1
f10 0 0 1

in which the initial and final vertices are omitted. This new (0, 1)-IM
can be called “reduced adjacency EYI"'



Obviously, it contains only 34 symbols (24 symbols for O or 1 and 10
symbols for letters). Therefore the use of IMs for representation of
graph is useful. In previous research of the author, it is shown that the
IM representation of the graphs keep all possibilities of standard
matrix representation, but it also provides a number of additional
advantages. So, below we will use IMs.

Obviouly, this reduction is impossible for non-oriented graphs, but if
we have a graph with two or more compoments, then the
IM-representation again will be better. For example, if we have the

two-component graph

s ks )



d e

it again will have a standard adjacency matrix with dimension 8 X 8,
while its adjacency IM-representation will be

S = =0

— O O

— O Ol

[ S
(an)

a
Do
b [
g
c
i.e., in the first case the matrix will have again 64 elements (digits O or

1), while in the second one — only 23 elements (13 =9 + 4 digits and
10 = 6 + 4 letters).
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Therefore, when we have a set of vertices that can be interpreted as
indices of IMs, the the set of all graphs with some of these vertices
will generate a topological structure.

When degrees of existing and of non-existing in the form of IFPs are
given for the arcs, we obtain an IFG, which was originally introduced
in 1994. Formally, it has the form

G= {<<$7y>’/‘LG(x7y)7VG(xvy)> <5L‘,y> € Fq x E2}7

where F7 and E5 be two sets of vertices that are indices of the
respective IFIM.
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As we saw above, if the graph is an oriented one, then it is possible
that F'; # Es, while if the graph is not oriented, then E; = FE», but if
it has more than one component, F; = FEs will be the union of
vertices sets with empty intersections.

Now, there are a lot of research over IFGs and a lot of their
applications.

For the set G(V) of all IFGs with a fixed set of vertices V' we can
prove similarly to Theorem 1 that the objects

(PG(V)), 0, 4,% A),

where O € {C,Z},x € {¢, O}, A € {D(0), ® (o)} are IFMTSs.
More ptrecisely, if V = V; U V* U Vg, where V7, V* Vj are,
respective, the sets of input, inside and output vertices, this theorem
has the form

o V<



Theorem 2.

For every two set V:

~—_ — Y —  ~—  ~—  ~—  ~—

VU Vo
V*U Vo
VUV
VU Vo
VUV
VU Vo
VUV
VUV
VU Vo
VU Vo

,C, Dy, O, By ) is an IFMTS,
,C, Dy, O, D) is an IFMTS,
,C,®v, O,®y) is an IFMTS,
,C,®v, O,Dn) is an [IFMTS,

)
)
)
)
)),C, ®v, &, Dy) is an IFMTS,
),
)
)
)
)

C,®v, <, Da) is an IFMTS,

,C,®v, O, @\/> is an IFMTS,
,C,®v, O,Dn) is an [FMTS,
L, ®Dp, O, Dy) is an [IFMTS,

L, ®p, O, Ba) is an IFMTS,
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(1) (P(ViUV*))V*U V), T, @, O,y ) is an IFMTS,

(12) (P(ViUV*)s)V*UVp)), T, @, O, @) is an IFMTS,

( )

( )

(13) (P((VIUVH)x)V*UVp)),Z,®n, <, Dy) is an IFMTS,

(14) (P((V;UVH)x)V*UVp)),Z,®n, <, D) is an IFMTS,
( )

(15) (P(Vi UV*)x)V*UVp)),Z,®n, O,®y) is an IFMTS,

(16) (P((Vi UV*)x)V* UVp)),T,®n, O, &) is an IFMTS.

The proof is similar to the proof of Theorem 1.
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Conclusion

We will finish the present paper with short remarks for a future
research.

When the concept of an Extended IFIM (EIFIM) was introduced, we
obtained the possibility to represent by EIFIM the graphs whose sets
of vertices are IFSs of the form

V' ={(v,0(v),¥(v)) v eV},

where ¢(v),1(v), o(v) + 9 (v) € [0,1], and ¢(v), 1(v) are the
degrees of existing and of non-existing of the vertices.

When the set V'* is fixed, we again can construct IFMTSs, but they
will be essentially more complex. They will be objects of the next
research. In this future research, we will show that these structures
can be bi- or multi-MTSs.
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