

On a new expanding modal-like operator on intuitionistic fuzzy sets

Peter Vassilev and Vassia Atanassova

Department of Bioinformatics and Mathematical Modelling
Institute of Biophysics and Biomedical Engineering,
Bulgarian Academy of Sciences,

Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria

e-mails: peter.vassilev@gmail.com, vassia.atanassova@gmail.com

Preliminaries

Intuitionistic fuzzy sets (IFSs) introduced in 1983 by K. Atanassov extended fuzzy sets by adding a non-membership degree $\nu_A(x)$ which reflects the extent to which an element does not belong to the set. The complement of the sum of the membership and non-membership degrees to 1 ($\pi_A(x)$) is called *hesitancy degree* or *index of indeterminacy*. A formal definition is the following:

Definition (Atanassov, 1983)

Let X be a universe set, $A \subset X$. Then an intuitionistic fuzzy set generated by the set A is an object of the form:

$$A^* = \{\langle x, \mu_A(x), \nu_A(x) \rangle \mid x \in X\} \quad (1)$$

where $\mu_A : X \rightarrow [0, 1]$ and $\nu_A : X \rightarrow [0, 1]$ are mappings, such that for any $x \in X$,

$$0 \leq \mu_A(x) + \nu_A(x) \leq 1. \quad (2)$$

Motivation for defining the operator T_λ

Our point of departure in this investigation are the operators $G_{\alpha,\beta}$ and $F_{\alpha,\beta}$. First let us take a look at the operator $G_{\alpha,\beta}$.

Definition (Atanassov, 1999)

The operator $G_{\alpha,\beta}(A^*)$ for $\alpha, \beta \in [0, 1]$ is defined by

$$G_{\alpha,\beta}(A^*) = \{\langle x, \alpha\mu_A(x), \beta\nu_A(x) \rangle \mid x \in X\} \quad (3)$$

One can easily see, that in a sense this is a contracting operator as the consecutive sequence of $(\mu(x), \nu(x))$ arising from subsequent application of the result of the operator gradually tend to $(0, 0)$.

Motivation for defining the operator T_λ

Let us now consider the operator $F_{\alpha,\beta}$.

Definition (Atanassov, 1999)

The operator $F_{\alpha,\beta}(A^*)$ for $\alpha, \beta, \alpha + \beta \in [0, 1]$ is defined by

$$F_{\alpha,\beta}(A^*) = \{\langle x, \mu_A(x) + \alpha\pi_A(x), \nu_A(x) + \beta\pi_A(x) \rangle \mid x \in X\} \quad (4)$$

One can easily see, that in a sense this is an expanding operator as the consecutive sequence of points $(\mu(x), \nu(x))$ gradually tend to a point $(a, 1 - a)$, i.e. to a fuzzy set.

The main difference in the two operators is that G has multiplicative nature, while F has an additive nature (in the way they treat the membership and non-membership degrees).

Motivation for defining the operator T_λ and Main Results

A natural question that arises is the following:

Can we define an operator analogous to operator F in the sense that it tends to fuzzy set but is of multiplicative nature as G ?

The answer is positive:

Definition

The operator $T_\lambda(A^*)$ for $\lambda \geq 0$ is defined by

$$T_\lambda(A^*) = \{\langle x, \mu_A(x)z_{T_\lambda}(x), \nu_A(x)z_{T_\lambda}(x) \rangle \mid x \in X\}, \quad (5)$$

where $z_{T_\lambda}(x) = (1 - \mu_A(x))^{1+\lambda} + (1 - \nu_A(x))^{1+\lambda}$.

Let us assume that $\mu(x)\nu(x) > 0$ and $\mu(x) + \nu(x) < 1$. Then for $\lambda = 0$ from (2), and hence for λ sufficiently small, $z_{T_\lambda}(x) > 1$, and thus the sequences of consecutive $\mu(x)$ and $\nu(x)$ are both increasing.

Let us prove that the our operator is correctly defined.

Theorem

The operator $T_\lambda(A^)$ for $\lambda \geq 0$ always produces an IFS.*

Proof.

Further we will make use of the fact that for any non-negative two numbers a, b , we have $\max(a, b) \leq a + b$. Obviously,

$$\mu T_\lambda(A^*)(x) \geq 0 \text{ and } \nu T_\lambda(A^*)(x) \geq 0.$$

Also,

$$\mu_{T_{\lambda>0}(A^*)}(x) \leq \mu_{T_0(A^*)}(x), \text{ and } \nu_{T_{\lambda>0}(A^*)}(x) \leq \nu_{T_0(A^*)}(x).$$

Thus it suffices to show that $\max(\mu_{T_0(A^*)}(x), \nu_{T_0(A^*)}(x)) \leq 1$.

A direct check shows that

$$\mu_{T_0(A^*)}(x) + \nu_{T_0(A^*)}(x) = (1 - \pi_A(x))(1 + \pi_A(x)) = 1 - \pi_A(x)^2 \leq 1.$$

Hence, $\max(\mu_{T_0(A^*)}(x), \nu_{T_0(A^*)}(x)) \leq 1$, and (2) is fulfilled. □

Extending T_λ

Another question that arises naturally is can we in some sense extend T_λ ?

We give the following operator $T_{\lambda,\alpha,\beta}$

Definition

The operator $T_{\lambda,\alpha,\beta}(A^*)$ for $\lambda \geq 0$ and $\alpha, \beta \in [0, 1]$ is defined by

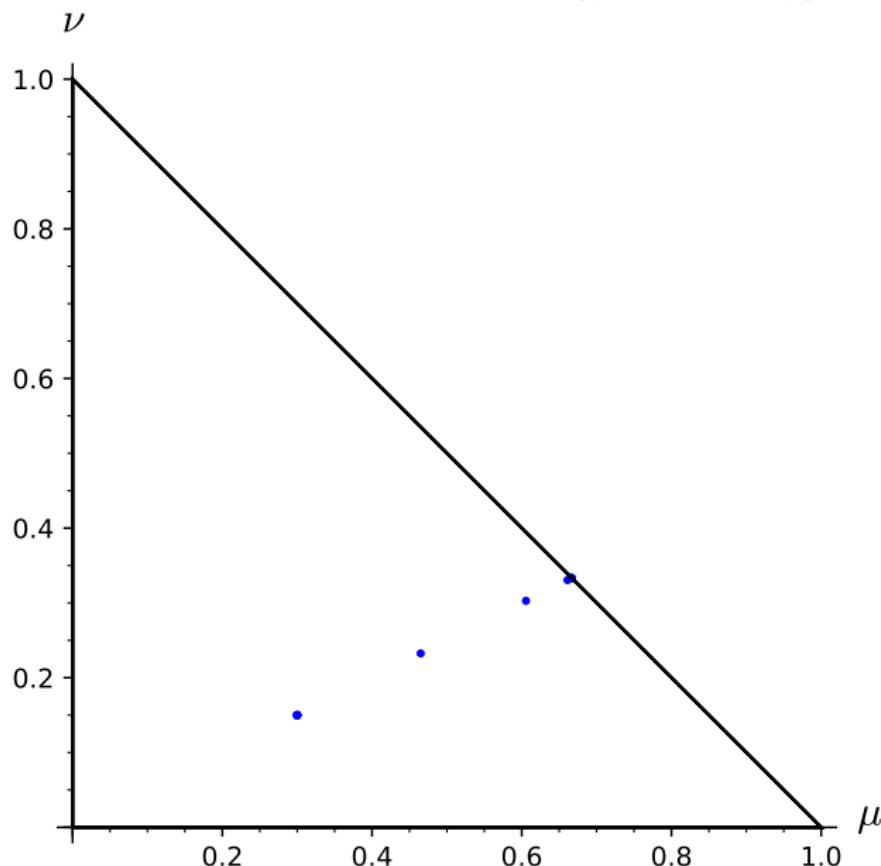
$$T_{\lambda,\alpha,\beta}(A^*) = \{ \langle x, \alpha \mu_A(x) z_{T_\lambda}(x), \beta \nu_A(x) z_{T_\lambda}(x) \rangle \mid x \in X \}, \quad (6)$$

where $z_{T_\lambda}(x) = (1 - \mu_A(x))^{1+\lambda} + (1 - \nu_A(x))^{1+\lambda}$.

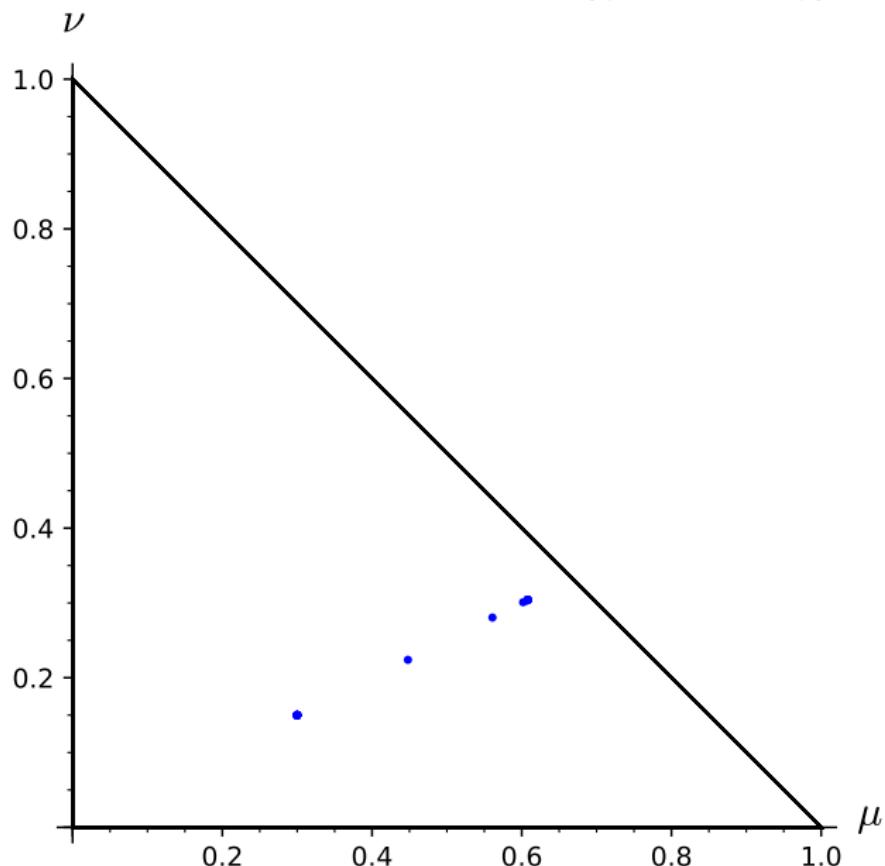
The proof of correctness may be done by analogy with the previous proof.

Here, we have two components fighting with each other - $z_{T_\lambda}(x)$ which pushes the point away from $(0, 0)$ towards the segment $(0, 1) - (1, 0)$ and the contracting constants α, β which compact towards the abscissa or the ordinate, or to $(0, 0)$.

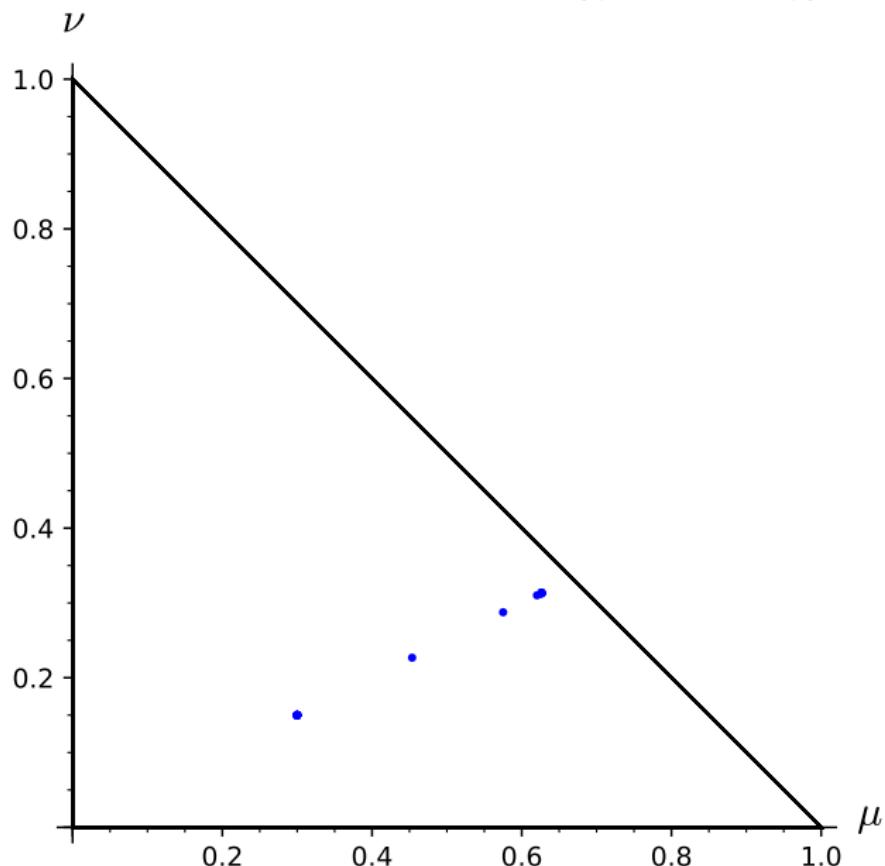
Result of application of T_0 to the IFS $\{\langle x, 0.3, 0.15 \rangle\}$ 6 times.



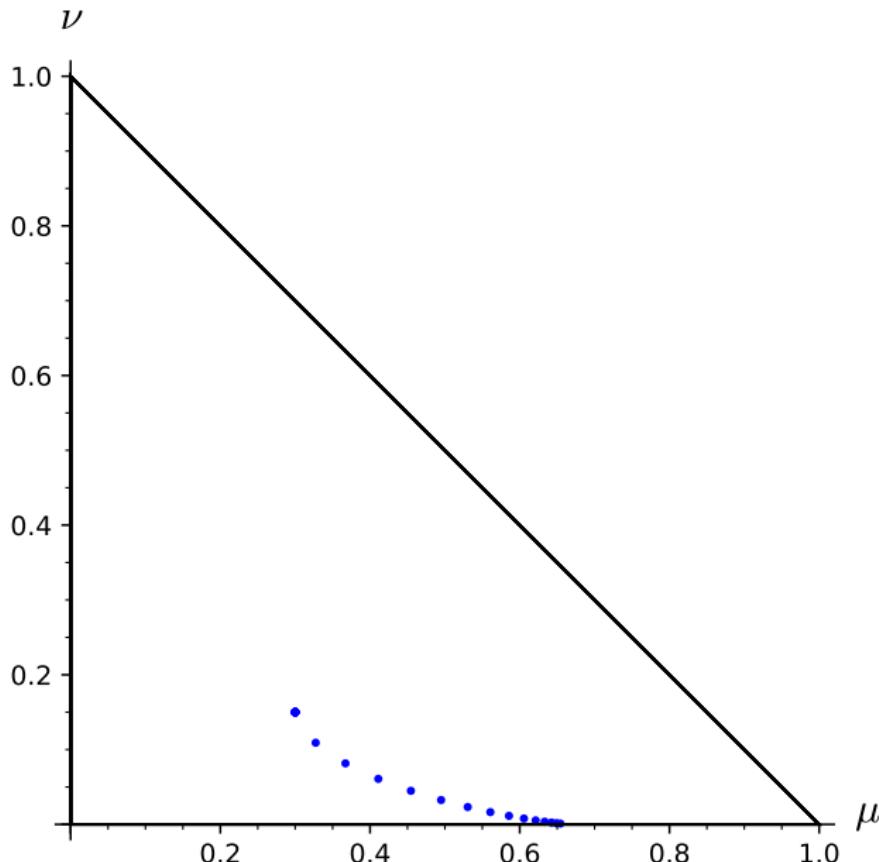
Result of application of $T_{0.15}$ to the IFS $\{\langle x, 0.3, 0.15 \rangle\}$ 14 times.



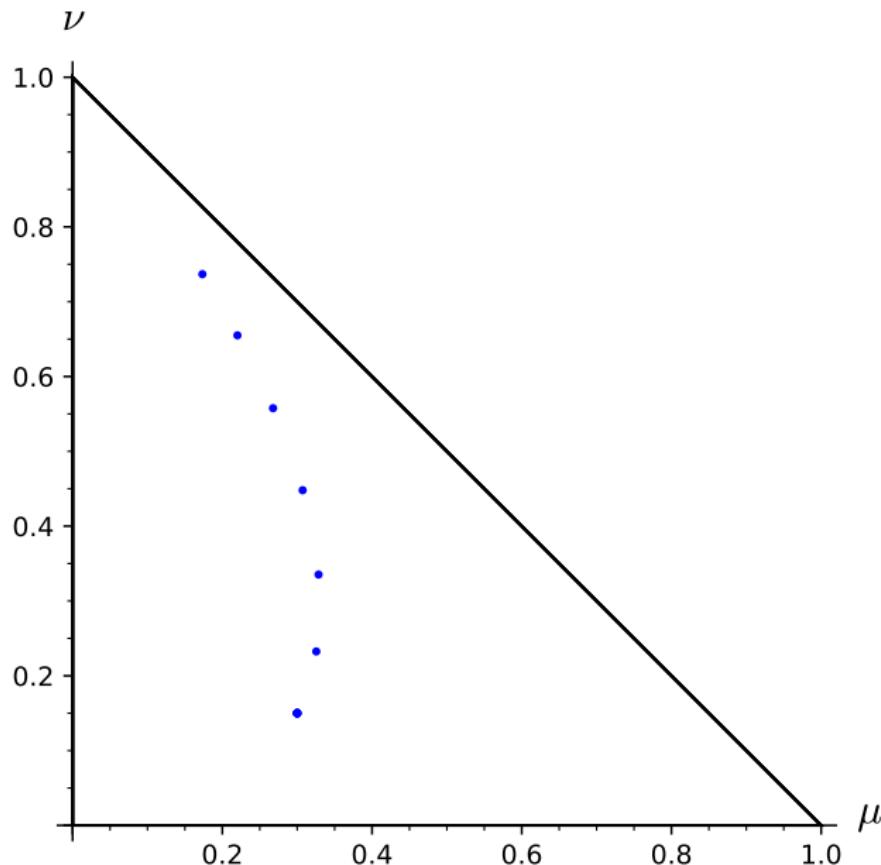
Result of application of $T_{0.1}$ to the IFS $\{\langle x, 0.3, 0.15 \rangle\}$ 14 times.



Application of $T_{1,0.9,0.6}$ to the IFS $\{\langle x, 0.3, 0.15 \rangle\}$ 14 times.



Application of $T_{0,0.7,1}$ to the IFS $\{\langle x, 0.3, 0.15 \rangle\}$ 14 times.



Some final comments: For any intuitionistic fuzzy point $\langle a, b \rangle$, such that $a + b < 1$, we can find a point $\langle a^*, b^* \rangle$, such that $T_0(\langle a^*, b^* \rangle) = \langle a, b \rangle$.

First let $a = 0$. Then we must have:

$$\begin{cases} a^*(2 - a^* - b^*) = 0 \\ b^*(2 - a^* - b^*) = b \end{cases}$$

This is only possible for $a^* = 0$. Solving further we obtain:

$$b^* = 1 - \sqrt{1 - b}$$

Further, we will assume both $a, b > 0$.

$$\begin{cases} a^*(2 - a^* - b^*) = a \\ b^*(2 - a^* - b^*) = b \end{cases}$$

Without loss of generality let us assume $\max(a, b) = a$. Then $a = tb$ for some $t = \frac{a}{b} > 1$, i.e.

$$\begin{cases} a^*(2 - a^* - b^*) = tb \\ b^*(2 - a^* - b^*) = b \end{cases}$$

Evidently, the same proportion must be present in the LHS, i.e.

$$\begin{cases} tb^*(2 - tb^* - b^*) = tb \\ b^*(2 - tb^* - b^*) = b \end{cases}$$

Solving it, after substituting back we finally obtain:

$$\begin{cases} a^* = \frac{a}{a+b}(1 - \sqrt{1-a-b}) \\ b^* = \frac{b}{a+b}(1 - \sqrt{1-a-b}) \end{cases}$$

Concluding remarks

From all the above it is evident, that for the operator $T_{\lambda,\alpha,\beta}$ we can also find at least one point (or perhaps an entire set of points) that is mapped by this operator to a given intuitionistic fuzzy point $\langle a, b \rangle$, with an appropriate choice of values for λ, α, β .

However, be that as it may, due to the limited time, our current investigation must stop here. In the future, we will study in more detail the properties of the proposed operator(s).

This research was supported by the Bulgarian National Science Fund under the Grant KP- 06-N72/8 from 14.12.2023
“Intuitionistic fuzzy methods for data analysis with an emphasis on the blood donation system in Bulgaria”.

Thank You for Your Attention!