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Introduction

In the middle of 2022, for a first time the concept of a Modal
Topological Structure (MTS) was introduced. During the last three
years, the author published a series of papers over MTSs illustrating
them with different examples from the area of the intuitionistic
fuzziness.
The concept of a MTS was extended to temporal MTS, level MTS,
bi-MTS, multi-MTS and others structures.
Now, a new direction for extension of the concept of a MTS, is
introduced and illustrated again with examples from the area of the
IFSs. In the Conclusion, a geometrical interpretation of the new
structures is given and some open problems are formulated.



Short remarks on IFSs

Let the (crisp) set E be fixed and let A ⊂ E be a fixed set. We define:
an IFS A∗ in E is an object of the form

A∗ = {⟨x, µA(x), νA(x)⟩|x ∈ E},

where functions µA : E → [0, 1] and νA : E → [0, 1] define the
degree of membership and the degree of non-membership of the
element x ∈ E to the set A, respectively, and for every x ∈ E

0 ≤ µA(x) + νA(x) ≤ 1.

Below, we will write A instead of A∗.



Over two IFSs a lot of operations and relations are defined, but here,
we will recall only the following:
A ⊆ B if and only if (∀x ∈ E)(µA(x) ≤ µB(x) & νA(x) ≥ νB(x));

A ⊇ B if and only if B ⊆ A;

A = B if and only if (∀x ∈ E)(µA(x) = µB(x) & νA(x) = νB(x));

A ∩B = {⟨x,min(µA(x), µB(x)),max(νA(x), νB(x))⟩ | x ∈ E};

A ∪B = {⟨x,max(µA(x), µB(x)),min(νA(x), νB(x))⟩ | x ∈ E};

A = {⟨x, µA(x), 1− µA(x)⟩|x ∈ E};

♢A = {⟨x, 1− νA(x), νA(x)⟩ | x ∈ E};

C(A) = {⟨x, sup
y∈E

µA(y), inf
y∈E

νA(y)⟩ | x ∈ E};

I(A) = {⟨x, inf
y∈E

µA(y), sup
y∈E

νA(y)⟩ | x ∈ E}.



Let everywhere below

P(X) = {Y |Y ⊆ X},

where X is an arbitrary set, and

O∗ = {⟨x, 0, 1⟩|x ∈ E},

U∗ = {⟨x, 0, 0⟩|x ∈ E},

E∗ = {⟨x, 1, 0⟩|x ∈ E}.

Then,
P(O∗) = {O∗},

P(E∗) = {A|A ⊆ E∗},

where A is a fixed IFS.



Definition of the Multi-Dimensional Modal Topological
Structures

Here, following, but modifying and extending the first paper on MTS,
we will define the concept of a Multi-Dimensional MTS (MDMTS),
or, when the number of the dimensions is fixed, e.g., as s ≥ 1 for
some natural number s – as s-dimensional MTS (s-DMTS).
Let us have the fixed sets X1, · · ·Xs, where the natural number s ≥ 1.
Let

⟨P(X1), E , ζ, ∗, η⟩

· · ·

⟨P(Xs), E , ζ, ∗, η⟩

where for each r (1 ≤ r ≤ s), the object ⟨P(Xr), E , ζ, ∗, η⟩ is a MTS.



Now, following the definition of a topological structure and the
definition for a MTS, we construct the object

⟨P(X1 × · · · ×Xs), E , ζs, ∗, ηs⟩

that will denote as an s-Dimensional(χ, ηs)-Modal(φ, ζs)-Topological
Structure (s-D(χ, ηs)-M(φ, ζs)-TS) or (more general)
multi-Dimensional(χ, ηs)-Modal(φ, ζs)-Topological Structure
(mD(χ, ηs)-M(φ, ζs)-TS), where for A,B ∈ P(X1 × · · · ×Xs):



• ζs : (X1 × · · · ×Xs)× (X1 × · · · ×Xs) → X1 × · · · ×Xs is an
associative operation, being a generator of the function ζ in the
following sense: if

ζ2(a1, a2) = ζ(a1, a2) = a1a2 =

2∏
i=1

ai,

then

ζs(a1, · · · as) =
s∏

i=1

ai;

• E is a topological operator. If it is from closure (cl) type, then it
must satisfy the conditions
Ct1 E(AζsB) = E(A)ζsE(B),
Ct2 A ⊆ E(A),

Ct3 E(E(A)) = E(A),
Ct4 E(O1 × · · · ×Os) = O1 × · · · ×Os,



where Or is the minimal element of P(Xr) for 1 ≤ r ≤ s,
O = O1 × · · · ×Os is the minimal element of the set
P(X1 × · · · ×Xs). If it is from interior (in) type, then it must satisfy
the conditions
It1 E(AζsB) = E(A)ζsE(B),

It2 E(A) ⊆ A,

It3 E(E(A)) = E(A),

It4 E(X1 × · · · ×Xs) = X1 × · · · ×Xs;

• ηs : (X1 × · · · ×Xs)× (X1 × · · · ×Xs) → X1 × · · · ×Xs is an
associative operation being a generator of the function η in the
above sense: if

η2(a1, a2) = η(a1, a2) = min(a1, a2) = min
1≤i≤2

ai,

then
ηs(a1, · · · as) = min

1≤i≤s
ai;



• * is a modal operator from cl- or in-type.
If it is from closure (cl) type, then it must satisfy the conditions

Cm1 E(AηsB) = E(A)ηsE(B),
Cm2 A ⊆ E(A),

Cm3 E(E(A)) = E(A),

If it is from interior (in) type, then it must satisfy the conditions
Im1 E(AηsB) = E(A)ηsE(B),

Im2 E(A) ⊆ A,

Im3 E(E(A)) = E(A);

• χ, φ ∈ {cl, in},
• both operators (topological and modal) must satisfy the condition

∗E(A) = E(∗A). (∗)



We can see immediately that when s = 1, ζ1 = ζ, η1 = η, we obtain
the definition of the standard MTS.
We must mention immediately, having in mind that the temporal scale
T is a set, then each temporal MTS can be interpreted as a 2-DMTS.
If we require as additional conditions the functions ζs and ηs to be
commutative and for every i, j (1 ≤ i < j ≤ s) and for each
A1 × · · · ×As ∈ P(X1 × · · · ×Xs):

E(A1×· · ·Ai×· · ·×Aj×· · ·×As) = E(A1×· · ·Aj×· · ·×Ai×· · ·×As),

(∗∗)
then the MDMTS will be called a commutative MDMTS.



Intuitionistic Fussy Multi-Dimensional Modal Topological
Structures

As a point of departure, further we give a list of the existing Cartesian
products over two IFSs.
Let E1 and E2 be two universes and let

A = {⟨x, µA(x), νA(x)⟩|x ∈ E1},
B = {⟨y, µB(y), νB(y)⟩|y ∈ E2},

be two IFSs over E1 and over E2, respectively. Then:



A×1 B = {⟨⟨x, y⟩, µA(x).µB(y), νA(x).νB(y)⟩|x ∈ E1&y ∈ E2},

A×2 B = {⟨⟨x, y⟩, µA(x) + µB(y)− µA(x).µB(y), νA(x).νB(y)⟩
|x ∈ E1&y ∈ E2},

A×3 B = {⟨⟨x, y⟩, µA(x).µB(y), νA(x) + νB(y)− νA(x).νB(y)⟩
|x ∈ E1&y ∈ E2},

A×4 B = {⟨⟨x, y⟩,min(µA(x), µB(y)),max(νA(x), νB(y))⟩
|x ∈ E1&y ∈ E2},

A×5 B = {⟨⟨x, y⟩,max(µA(x), µB(y)),min(νA(x), νB(y))⟩
|x ∈ E1&y ∈ E2},

A×6 B = {⟨⟨x, y⟩, µA(x)+µB(y)
2 , νA(x)+νB(y)

2 )⟩|x ∈ E1&y ∈ E2}.

Of course, these products can be generalize for the case of s universes
E1, · · ·Es and s IFSs A1, · · ·As so that the IFS Ai is an IFS over Ei

for 1 ≤ i ≤ s, as follows



A1 ×1 · · · ×1 As = {⟨⟨x1, · · ·xs⟩,
s∏

i=1
µAi(xi),

s∏
i=1

νAi(xi)⟩|xi ∈ Ei

for 1 ≤ i ≤ s},

A1 ×2 · · · ×2 As = {⟨⟨x1, · · ·xs⟩, 1−
s∏

i=1
(1− µAi(xi)),

s∏
i=1

νAi(xi)⟩|xi ∈ Ei

for 1 ≤ i ≤ s},

A1 ×3 · · · ×3 As = {⟨⟨x1, · · ·xs⟩,
s∏

i=1
µAi(xi), 1−

s∏
i=1

(1− νAi(xi))⟩|xi ∈ Ei

for 1 ≤ i ≤ s},
A1 ×4 · · · ×4 As = {⟨⟨x1, · · ·xs⟩, min

1≤i≤s
µAi(xi), max

1≤i≤s
νAi(xi)⟩|xi ∈ Ei

for 1 ≤ i ≤ s},
A1 ×5 · · · ×5 As = {⟨⟨x1, · · ·xs⟩, max

1≤i≤s
µAi(xi), min

1≤i≤s
νAi(xi)⟩|xi ∈ Ei

for 1 ≤ i ≤ s},

A1 ×6 · · · ×6 As = {⟨⟨x1, · · ·xs⟩,

s∑
i=1

µAi
(xi)

s ,

s∑
i=1

νAi
(xi)

s ⟩|xi ∈ Ei for 1 ≤ i ≤ s},



For each one of these products we can see that their µ- and
ν-functions are commutative and for the first five products – that their
functions are associative.
In addition, we must re-defined the operations ∪ and ∩, relations ⊆
and =, and operators and ♢ for IFSs over s universes E1, · · ·Es:



A1 × · · · ×As ∪B1 × · · · ×Bs

= {⟨⟨x1, · · · , xs⟩,max(µA(x1, · · · , xs), µB(x1, · · · , xs)),

min(νA(x1, · · · , xs), νB(x1, · · · , xs))⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s},

A1 × · · · ×As ∩B1 × · · · ×Bs

= {⟨⟨x1, · · · , xs⟩,min(µA(x1, · · · , xs), µB(x1, · · · , xs)),

max(νA(x1, · · · , xs), νB(x1, · · · , xs))⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s},

A1 × · · · ×As ⊆ B1 × · · · ×Bs if and only if

= ∀⟨x1, · · · , xs⟩ : µA(x1, · · · , xs) ≤ µB(x1, · · · , xs)
& νA(x1, · · · , xs) ≥ νB(x1, · · · , xs),



A1 × · · · ×As = B1 × · · · ×Bs if and only if

= ∀⟨x1, · · · , xs⟩ : µA(x1, · · · , xs) = µB(x1, · · · , xs)
& νA(x1, · · · , xs) = νB(x1, · · · , xs),

(A1 × · · · ×As) = {⟨⟨x1, · · · , xs⟩, µA(x1, · · · , xs), 1− µA(x1, · · · , xs)⟩|

⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s},

♢(A1 × · · · ×As) = {⟨⟨x1, · · · , xs⟩, 1− νA(x1, · · · , xs), νA(x1, · · · , xs)⟩|

⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}.



Now, we will construct some examples of MDMTSs using IFSs. They
will be MDMTS-cases, or more exact, s-DMTS-cases of standard
MTSs.
We must mention that when the topological structure from the present
form is related to IFSs, it will be denoted as
IFs-D(cl,∩)-M(in,∩)-TS.
Let the µ- and ν-functions have one of the six forms discussed above.
Theorem 1. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), C,∪,♢,∩⟩ is an s-D(cl,∩)-M(cl,∪)-TS.



Proof.
First, we will give a detailed proof and after this will comment other
forms of the proof.
Let A1 × · · · ×As, B1 × · · · ×Bs ∈ P(E∗

1 × · · · × E∗
s ). Then, we

check sequentially
Ct1:

C(A1 × · · · ×As ∪B1 × · · · ×Bs)

= C({⟨⟨x1, · · · , xs⟩, µA(x1, · · · , xs), νA(x1, · · · , xs)⟩

|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

∪ {⟨⟨x1, · · · , xs⟩, µB(x1, · · · , xs), νB(x1, · · · , xs)⟩

|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s})

= C({⟨⟨x1, · · · , xs⟩,max(µA(x1, · · · , xs), µB(x1, · · · , xs)),

min(νA(x1, · · · , xs), νB(x1, · · · , xs))⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s})



= {⟨⟨x1, · · · , xs⟩, sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

max(µA(y1, · · · , ys), µB(y1, · · · , ys)),

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

min(νA(y1, · · · , ys), νB(y1, · · · , ys))⟩

|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

= {⟨⟨x1, · · · , xs⟩,max( sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

µA(y1, · · · , ys), sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

µB(y1, · · · , ys)),

min( inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

min(νA(y1, · · · , ys), inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νB(y1, · · · , ys))⟩

|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

= C(A) ∪ C(B);



Ct2:

A1 × · · · ×As

= {⟨⟨x1, · · · , xs⟩, µA(x1, · · · , xs), νA(x1, · · · , xs)⟩|

⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}
⊆ {⟨⟨x1, · · · , xs⟩, sup

⟨y1,··· ,ys⟩∈E∗
1×···×E∗

s

µA(y1, · · · , ys),

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

min(νA(y1, · · · , ys)⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

= C(A1 × · · · ×As);



Ct3: Having in mind that sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

µA(y1, · · · , ys) and

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νA(y1, · · · , ys) are constants, we obtain:

C(C(A1 × · · · ×As))

= C({⟨⟨x1, · · · , xs⟩, sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

µA(y1, · · · , ys),

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νA(y1, · · · , ys)⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s})

= {⟨⟨x1, · · · , xs⟩, sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

µA(y1, · · · , ys),

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νA(y1, · · · , ys)⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

= C(A1 × · · · ×As);



Ct4:

C(O∗
1 × · · · ×O∗

s)

= C({⟨⟨x1, · · · , xs⟩, 0, 1⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}})
= {⟨⟨x1, · · · , xs⟩, sup

⟨y1,··· ,ys⟩∈E∗
1×···×E∗

s

0,

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

1⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

{⟨⟨x1, · · · , xs⟩, 0, 1⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}})
= O∗

1 × · · · ×O∗
s ;



Cm1:

♢(A1 × · · · ×As ∩B1 × · · · ×Bs) = ♢({⟨⟨x1, · · · , xs⟩, µA(x1, · · · , xs),
νA(x1, · · · , xs)⟩|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

∩ {⟨⟨x1, · · · , xs⟩, µB(x1, · · · , xs), νB(x1, · · · , xs)⟩
|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s})

= ♢{⟨⟨x1, · · · , xs⟩,min(µA(x1, · · · , xs), µB(x1, · · · , xs)),
max(νA(x1, · · · , xs), νB(x1, · · · , xs))⟩|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

= {⟨⟨x1, · · · , xs⟩, 1−max(νA(x1, · · · , xs), νB(x1, · · · , xs)),
max(νA(x1, · · · , xs), νB(x1, · · · , xs))⟩|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

= {⟨⟨x1, · · · , xs⟩,min(1− νA(x1, · · · , xs), 1− νB(x1, · · · , xs)),
max(νA(x1, · · · , xs), νB(x1, · · · , xs))⟩|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

= {⟨⟨x1, · · · , xs⟩, 1− νA(x1, · · · , xs), νA(x1, · · · , xs)⟩
|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

∩ {⟨⟨x1, · · · , xs⟩, 1− νB(x1, · · · , xs), νB(x1, · · · , xs)⟩
|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

= ♢(A1 × · · · ×As) ∩ ♢(B1 × · · · ×Bs);



Cm2:

A1 × · · · ×As

= {⟨⟨x1, · · · , xs⟩, µA(x1, · · · , xs), νA(x1, · · · , xs)⟩
|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

⊆ {⟨⟨x1, · · · , xs⟩, 1− νA(x1, · · · , xs), νA(x1, · · · , xs)⟩
|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

= ♢(A1 × · · · ×As);



Cm3:

♢(♢(A1 × · · · ×As))

= ♢({⟨⟨x1, · · · , xs⟩, 1− νA(x1, · · · , xs), νA(x1, · · · , xs)⟩
|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s})

= {⟨⟨x1, · · · , xs⟩, 1− νA(x1, · · · , xs), νA(x1, · · · , xs)⟩
|⟨x1, · · · , xs⟩ ∈ E∗

1 × · · · × E∗
s}

= ♢(A1 × · · · ×As);



(*):

♢(C(A1 × · · · ×As))

= ♢({⟨⟨x1, · · · , xs⟩, sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

µA(y1, · · · , ys),

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νA(y1, · · · , ys)⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s})

= {⟨⟨x1, · · · , xs⟩, 1− inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νA(y1, · · · , ys),

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νA(y1, · · · , ys)⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

= {⟨⟨x1, · · · , xs⟩, sup
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

1− νA(y1, · · · , ys),

inf
⟨y1,··· ,ys⟩∈E∗

1×···×E∗
s

νA(y1, · · · , ys)⟩|⟨x1, · · · , xs⟩ ∈ E∗
1 × · · · × E∗

s}

= C(♢(A1 × · · · ×As));



(**): This condition is valid because as we mentioned above, the µ-
and ν-functions have one of the seven forms and all of them are
commutative.
This completes the proof.
In the same manner we can also prove the following theorems.



Theorem 2. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), C,∪,♢,∪⟩ is an s-D(cl,∪)-M(cl,∪)-TS.

Theorem 3. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), C,∪, ,∩⟩ is an s-D(in,∩)-M(cl,∪)-TS.

Theorem 4. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), C,∪, ,∪⟩ is an s-D(in,∪)-M(cl,∪)-TS.

Theorem 5. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), I,∪,♢,∩⟩ is an s-D(cl,∩)-M(in,∪)-TS.

Theorem 6. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), I,∪,♢,∪⟩ is an s-D(cl,∪)-M(in,∪)-TS.

Theorem 7. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), I,∪, ,∩⟩ is an s-D(in,∩)-M(in,∪)-TS.

Theorem 8. Let E1, · · · , Es be fixed universes. Then
⟨P(E∗

1 × · · · × E∗
s ), I,∪, ,∪⟩ is an s-D(in,∪)-M(in,∪)-TS.



Finally, we will mention that

C(U1 × · · · × Us) = U1 × · · · × Us,

and
I(U1 × · · · × Us) = U1 × · · · × Us.



Conclusion

By analogy with previous research, let us imagine that each of the
structures ⟨P(X1), E , ζ, ∗, η⟩, · · · , ⟨P(Xs), E , ζ, ∗, η⟩ is a page of a
book, where each page is enumerated with the number of the structure
located on it. Then the common components of any of the structures
can be interpreted as the spine of the book, and the entire mDMTS –
as the book itself, as it is shown on the Fig. 1. Now, each page of our
book can be interpreted as a map and then the whole book can be
interpreted as an atlas.
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Fig. 1. Atlas with maps generated by the structures
⟨P(X1), E , ζ, ∗, η⟩, · · · , ⟨P(Xs), E , ζ, ∗, η⟩



We will finish with the following three Open problems:
1. Which other topological operators are suitable for generating of

mDMTSs?

2. Which other logical operators are suitable for generating of
mDMTSs?

3. Which other types of mDMTSs can be constructed?
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Conclusion

In a next research, we will give the list of the intuitionistic fuzzy
conjunctions and disjunctions generated by the above implications and
negations and will discuss some of their properties.
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Thank you for attention!


