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Introduction

The paper is a continuation of previous author’s research. In it,
examples of Modal Topological Structures (MTSs) with elements
from the area of intuitionistic fuzziness are described. Here, new
examples related to the extension of the MTSs called
Multi-Dimensional MTSs (MDMTSs) are introduced.
In Section 2 we give short remarks on MDMTSs, Intuitionistic Fuzzy
MDMTSs (IFMDMTSs) and Extended Intuitionistic Fuzzy IMs
(EIFIMs). In Section 3 we give 16 IFMDMTSs based on EIFIMs.
Finally, in the Conclusion we discuss some other possible applications
of the IFMDMTSs.
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Preliminaries
Below, we will give some definitions related to MDMTSs and EIFIMs.
Definition of the Multi-Dimensional Modal Topological
Structure
First, we will define the concept of a MDMTS, or, when the number
of the dimensions is determined, e.g., as s ≥ 1 for some natural
number s – as s-dimensional MTS (s-DMTS).
Let for the arbitrary set Z we define

P(Z) = {Y |Y ⊆ Z}.

Let us have the fixed sets X1, · · ·Xs, where the natural number s ≥ 1.
Let

⟨P(X1), E , ζ, ∗, η⟩,

· · ·

⟨P(Xs), E , ζ, ∗, η⟩

be given, where for each r (1 ≤ r ≤ s), the object ⟨P(Xr), E , ζ, ∗, η⟩
is a MTS.
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Now, following the definition of a topological structure and the
definition for a MTS, we construct the object

⟨P(X1 × · · · ×Xs), E , ζs, ∗, ηs⟩

that will denote as an s-Dimensional(χ, ηs)-Modal(φ, ζs)-Topological
Structure (s-D(χ, ηs)-M(φ, ζs)-TS) or (more general)
multi-Dimensional(χ, ηs)-Modal(φ, ζs)-Topological Structure
(mD(χ, ηs)-M(φ, ζs)-TS), where for A,B ∈ P(X1 × · · · ×Xs):
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• ζs : (X1 × · · · ×Xs)× (X1 × · · · ×Xs) → X1 × · · · ×Xs is an
associative operation, being a generation of the function ζ in the
following, for example, sense: if

ζ2(a1, a2) = ζ(a1, a2) = a1a2 =

2∏
i=1

ai,

then

ζs(a1, · · · , as) =
s∏

i=1

ai;

• E is a topological operator and if it is from closure (cl) type, then
it must satisfy the conditions
Ct1 E(AζsB) = E(A)ζsE(B),
Ct2 A ⊆ E(A),
Ct3 E(E(A)) = E(A),
Ct4 E(O1 × · · · ×Os) = O1 × · · · ×Os,

where Or is the minimal element of P(Xr) for 1 ≤ r ≤ s,
O = O1 × · · · ×Os is the minimal element of the set
P(X1 × · · · ×Xs), and if it is from interior (in) type, then the
topological operator E must satisfy the conditions
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It1 E(AζsB) = E(A)ζsE(B),

It2 E(A) ⊆ A,

It3 E(E(A)) = E(A),

It4 E(X1 × · · · ×Xs) = X1 × · · · ×Xs;

• ηs : (X1 × · · · ×Xs)× (X1 × · · · ×Xs) → X1 × · · · ×Xs is an
associative operation being a generation of the function η in the
above, for example, sense: if

η2(a1, a2) = η(a1, a2) = min(a1, a2) = min
1≤i≤2

ai,

then
ηs(a1, · · · , as) = min

1≤i≤s
ai;

• * is a modal operator and if it is from closure (cl) type, then it
must satisfy the conditions
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Cm1 ∗(AηsB) = ∗Aηs ∗B,

Cm2 A ⊆ ∗A,

Cm3 ∗ ∗A = ∗A,

and if it is from interior (in) type, then it must satisfy the conditions
Im1 ∗(AηsB) = ∗Aηs ∗B,

Im2 ∗A ⊆ A,

Im3 ∗ ∗A = ∗A;
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• χ, φ ∈ {cl, in},
• both operators (topological and modal) must satisfy the condition

∗E(A) = E(∗A). (∗)

We can see immediately that when s = 1, ζ2 = ζ, η2 = η, we obtain
the definition of a MTS.
If we add as an additional conditions the operations ζs and ηs to be
commutative and for every i, j (1 ≤ i < j ≤ s) and for each
A1 × · · · ×As ∈ P(X1 × · · · ×Xs):

E(A1×· · ·Ai×· · ·×Aj×· · ·×As) = E(A1×· · ·Aj×· · ·×Ai×· · ·×As),
(∗∗)

then the MDMTS will be called a commutative MDMTS.
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When E = E1 × · · · ×Es, where E1, · · · , Es are fixed universes, and
for each its subset A we can construct the IFS (more exactly - multi-
(or s-)dimensional IFS

A∗ = {⟨x, µA(x1, · · ·xs), νA(x1, · · ·xs)⟩ | ⟨x1, · · ·xs⟩ ∈ E},

then
⟨P(E1 × · · · × Es), E , ζs, ∗, ηs⟩

is an IFMDMTS.
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Short remarks on EIFIMs

Let I be a fixed set. By EIFIM with index sets K and L (K,L ⊂ I),
we denote the object:

[K∗, L∗, {⟨µki,lj , νki,lj ⟩}] ≡

l1, ⟨αL
1 , β

L
1 ⟩ . . . lj , ⟨αL

j , β
L
j ⟩ . . . ln, ⟨αL

n , β
L
n ⟩

k1, ⟨αK
1 , β

K
1 ⟩ ⟨µk1,l1 , νk1,l1⟩ . . . ⟨µk1,lj , νk1,lj ⟩ . . . ⟨µk1,ln , νk1,ln⟩

...
... . . .

... . . .
...

ki, ⟨αK
i , β

K
i ⟩ ⟨µki,l1 , νki,l1⟩ . . . ⟨µki,lj , νki,lj ⟩ . . . ⟨µki,ln , νki,ln⟩

...
... . . .

... . . .
...

km, ⟨αK
m, β

K
m ⟩ ⟨µkm,l1 , νkm,l1⟩ . . . ⟨µkm,lj , νkm,lj ⟩ . . . ⟨µkm,ln , νkm,ln⟩

,
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where
K = {k1, k2, ..., km},

L = {l1, l2, ..., ln};

K∗ = {⟨ki, αK
i , β

K
i ⟩|ki ∈ K} = {⟨ki, αK

i , β
K
i ⟩|1 ≤ i ≤ m},

L∗ = {⟨lj , αL
j , β

L
j ⟩|lj ∈ L} = {⟨lj , αL

j , β
L
j ⟩|1 ≤ j ≤ n}

are IFSs and for every 1 ≤ i ≤ m, 1 ≤ j ≤ n:

µki,lj , νki,lj , µki,lj + νki,lj ∈ [0, 1],

αK
i , β

K
i , α

K
i + βKi ∈ [0, 1],

αL
j , β

L
j , α

L
j + βLj ∈ [0, 1].
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For the EIFIMs

A = [K∗, L∗, {⟨µki,lj , νki,lj ⟩},

B = [P ∗, Q∗, {⟨ρpr,qs , σpr,qs⟩}],

we will introduce only these operations, relations and operators that
are necessary for the current research.
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Addition-(max,min)

A⊕(max,min) B = [T ∗, V ∗, {⟨φtu,vw , ψtu,vw⟩}],

where

T ∗ = K∗ ∪ P ∗ = {⟨tu, ⟨αK
u , β

K
u ⟩ ∨ ⟨αP

u , β
P
u ⟩⟩|tu ∈ K ∪ P},

= {⟨tu, αT
u , β

T
u ⟩|tu ∈ K ∪ P}

V ∗ = L∗ ∪Q∗ = {⟨vw, ⟨αL
w, β

L
w⟩ ∨ ⟨αQ

w , β
Q
w ⟩⟩|vw ∈ L ∪Q},

= {⟨vw, αV
w , β

V
w ⟩|vw ∈ L ∪Q},
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where

αT
u =


αK
i , if tu ∈ K − P

αP
r , if tu ∈ P −K

max(αK
i , α

P
r ), if tu ∈ K ∩ P

,

βVw =


βLj , if vw ∈ L−Q

βQs , if tw ∈ Q− L

min(βLj , β
Q
s ), if tw ∈ L ∩Q

,

and
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⟨φtu,vw , ψtu,vw⟩ =



⟨µki,lj , νki,lj ⟩, if tu = ki ∈ K

and vw = lj ∈ L−Q
or tu = ki ∈ K − P
and vw = lj ∈ L;

⟨ρpr,qs , σpr,qs⟩, if tu = pr ∈ P
and vw = qs ∈ Q− L
or tu = pr ∈ P −K
and vw = qs ∈ Q;

⟨max(µki,lj , ρpr,qs), if tu = ki = pr ∈ K ∩ P
min(νki,lj , σpr,qs)⟩, and vw = lj = qs ∈ L ∩Q

⟨0, 1⟩, otherwise
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Addition-(min,max)

A⊕(min,max) B = [T ∗, V ∗, {⟨φtu,vw , ψtu,vw⟩}],
where T ∗, V ∗, αT

u , β
V
w , have the above forms and

⟨φtu,vw , ψtu,vw⟩ =



⟨µki,lj , νki,lj ⟩, if tu = ki ∈ K

and vw = lj ∈ L−Q
or tu = ki ∈ K − P
and vw = lj ∈ L;

⟨ρpr,qs , σpr,qs⟩, if tu = pr ∈ P
and vw = qs ∈ Q− L
or tu = pr ∈ P −K
and vw = qs ∈ Q;

⟨min(µki,lj , ρpr,qs), if tu = ki = pr ∈ K ∩ P
max(νki,lj , σpr,qs)⟩, and vw = lj = qs ∈ L ∩Q

⟨0, 1⟩, otherwise
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Termwise multiplication-(max,min)

A⊗(max,min) B = [T ∗, V ∗, {⟨φtu,vw , ψtu,vw⟩}],

where

T ∗ = K∗ ∩ P ∗ = {⟨tu, ⟨αK
u , β

K
u ⟩&⟨αP

u , β
P
u ⟩⟩|tu ∈ K ∪ P},

= {⟨tu, αT
u , β

T
u ⟩|tu ∈ K ∪ P}

V ∗ = L∗ ∩Q∗ = {⟨vw, ⟨αL
w, β

L
w⟩&⟨αQ

w , β
Q
w ⟩⟩|vw ∈ L ∪Q},

= {⟨vw, αV
w , β

V
w ⟩|vw ∈ L ∪Q},

αT
u = min(αK

i , α
P
r ), for tu = ki = pr ∈ K ∩ P,

βVw = min(βLj , β
Q
s ), for vw = lj = qs ∈ L ∩Q

and

⟨φtu,vw , ψtu,vw⟩ = ⟨max(µki,lj , ρpr,qs),min(νki,lj , σpr,qs)⟩.
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Termwise multiplication-(min,max)

A⊗(min,max) B = [T ∗, V ∗, {⟨φtu,vw , ψtu,vw⟩}],

where T ∗, V ∗, αT
u , β

V
w , have the above forms and

⟨φtu,vw , ψtu,vw⟩ = ⟨min(µki,lj , ρpr,qs),max(νki,lj , σpr,qs)⟩.

Let

K∗ ⊂ P ∗ iff (K ⊂ P ) & (∀ki = pi ∈ K)((αK
i < αP

i ) & (βKi > βPi )),

K∗ ⊆ P ∗ iff (K ⊆ P ) & (∀ki = pi ∈ K)((αK
i ≤ αP

i ) & (βKi ≥ βPi )).
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Let the two EIFIMs A and B be given. We shall introduce the
following definitions for relations over EIFIMs, where ⊂ and ⊆
denote the relations “strong inclusion" and “weak inclusion",
respectively. We must mention that in the present form, they are new
and extend existing definitions given in [?].
The strict relation “inclusion about dimension" is

A ⊂d B iff (((K∗ ⊂ P ∗) & (L∗ ⊂ Q∗)) ∨ ((K∗ ⊆ P ∗) & (L∗ ⊂ Q∗))

∨((K∗ ⊂ P ∗) & (L∗ ⊆ Q∗))) & (∀k ∈ K)(∀l ∈ L)((⟨αK
k , β

K
k ⟩ = ⟨αP

k , β
P
k ⟩)

&(⟨αL
l , β

L
l ⟩ = ⟨αQ

l , β
Q
l ⟩) & (⟨µk,l, νk,l⟩ = ⟨ρk,l, σk,l⟩).
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The non-strict relation “inclusion about dimension" is

A ⊆d B iff (K∗ ⊆ P ∗) & (L∗ ⊆ Q∗) & (∀k ∈ K)(∀l ∈ L)

((⟨αK
k , β

K
k ⟩ = ⟨αP

k , β
P
k ⟩) &(⟨αL

l , β
L
l ⟩ = ⟨αQ

l , β
Q
l ⟩)

& (⟨µk,l, νk,l⟩ = ⟨ρk,l, σk,l⟩)).

The strict relation “inclusion about value" is

A ⊂v B iff (K∗ = P ∗) & (L∗ = Q∗) & (∀k ∈ K)(∀l ∈ L)

((⟨αK
k , β

K
k ⟩ = ⟨αP

k , β
P
k ⟩) &(⟨αL

l , β
L
l ⟩ = ⟨αQ

l , β
Q
l ⟩)

& (⟨µk,l, νk,l⟩ < ⟨ρk,l, σk,l⟩)).
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The non-strict relation “inclusion about value" is

A ⊆v B iff (K∗ = P ∗) & (L∗ = Q∗) & (∀k ∈ K)(∀l ∈ L)

((⟨αK
k , β

K
k ⟩ = ⟨αP

k , β
P
k ⟩) & (⟨µk,l, νk,l⟩ ≤ ⟨ρk,l, σk,l⟩)).

The strict relation “inclusion about indices" is

A ⊂i B iff (K∗ = P ∗) & (L∗ = Q∗) & (∀k ∈ K)(∀l ∈ L)

((⟨αK
k , β

K
k ⟩ < ⟨αP

k , β
P
k ⟩) &(⟨αL

l , β
L
l ⟩ < ⟨αQ

l , β
Q
l ⟩)

& (⟨µk,l, νk,l⟩ = ⟨ρk,l, σk,l⟩)).
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The non-strict relation “inclusion about indices" is

A ⊆i B iff (K∗ = P ∗) & (L∗ = Q∗) & (∀k ∈ K)(∀l ∈ L)

((⟨αK
k , β

K
k ⟩ ≤ ⟨αP

k , β
P
k ⟩) &(⟨αL

l , β
L
l ⟩ ≤ ⟨αQ

l , β
Q
l ⟩)

& (⟨µk,l, νk,l⟩ = ⟨ρk,l, σk,l⟩)).
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Now, we can introduce combinations of these relations in the forms

A ⊂d,v B iff (A ⊂d B) & (A ⊂v B),

A ⊆d,v B iff (A ⊆d B) & (A ⊆v B),

A ⊂d,i B iff (A ⊂d B) & (A ⊂i B),

A ⊆d,i B iff (A ⊆d B) & (A ⊆i B),

A ⊂v,i B iff (A ⊂v B) & (A ⊆i B),

A ⊆v,i B iff (A ⊆v B) & (A ⊆i B),

A ⊂ B iff (A ⊂d B) & (A ⊂v B) & (A ⊂i B),

A ⊆ B iff (A ⊆d B) & (A ⊆v B) & (A ⊆i B).
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Extended intuitionistic fuzzy index matrices as
multi-dimensional modal topological structures

Let us have two sets of indices I1 and I2 and a universe E. Let

I∗1 = {⟨i1, 1, 0⟩|i1 ∈ I1},

I∗2 = {⟨i2, 1, 0⟩|i2 ∈ I2},
E∗ = {I∗1 , I∗2 , ⟨x, 1, 0⟩|x ∈ E},
O∗ = {I∗1 , I∗2 , ⟨x, 0, 1⟩|x ∈ E}.

These sets are IFSs and for them, similarly to [?], we can construct the
IFMTSs

⟨P(I∗1 ), E , ζ, ∗, η⟩,
⟨P(I∗2 ), E , ζ, ∗, η⟩,
⟨P(E∗), E , ζ, ∗, η⟩,

where E ∈ {C, I}, ∗ ∈ { ,♢}, ζ and η are functions and C, I, ,♢
are the standard intuyitionistic fuzzy topological (from closure and
interior type) and modal (from necessity and possibility type)
operators, respectively.
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Therefore, we can construct the object

⟨P(I∗1 × I22 × E∗), E , ζ3, ∗, η3⟩.

The elements of the set P(I∗1 × I22 × E∗) are IFSs with the form

A∗ = {⟨⟨⟨ki, αK
i , β

K
i ⟩, ⟨li, αL

i , β
L
i ⟩⟩, µ(ki, li), ν(ki, li)⟩ | ⟨ki, li⟩ ∈ K×L},

where K∗ ⊆ I∗
1 and L∗ ⊆ I∗

2 .
Now, we can construct the EIFIM

A = [K∗, L∗, {⟨µ(ki, li), ν(ki, li)⟩ | ki ∈ K, li ∈ L}].
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It is interesting to mention that in the previous research we perceived
the set I1 × I2 as one set, while below we will perceive the object
I∗1 × I22 × E∗ as a Cartesian product of three sets.
Obviously, the EIFIM A is another form of the IFS A∗. Therefore, on
it we can define topological and modal operators as follows:
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C(A) = [{⟨ki, sup
k∈K

αK
k , inf

k∈K
βKk ⟩|ki ∈ K}, {⟨lj , sup

l∈L
αL
l , inf

l∈L
βLl ⟩|lj ∈ L},

{⟨ sup
⟨k,l⟩∈K×L

µ(k, l), inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | ki ∈ K, lj ∈ L}],

I(A) = [{⟨ki, inf
k∈K

αK
k , sup

k∈K
βKk ⟩|ki ∈ K}, {⟨lj , inf

l∈L
αL
l , sup

l∈L
βLl ⟩|lj ∈ L},

{⟨ inf
⟨k,l⟩∈K×L

µ(k, l), sup
⟨k,l⟩∈K×L

ν(k, l)⟩ | ki ∈ K, lj ∈ L}],

A = [{⟨k, αK
k , 1− αK

k ⟩|k ∈ K}, {⟨l, αL
l , 1− αL

l ⟩|l ∈ L},
{⟨µ(k, l), 1− µ(k, l)⟩} | k ∈ K, l ∈ L}],

♢A = [{⟨k, 1− βKk , β
K
k ⟩|k ∈ K}, {⟨l, 1− βLl , β

L
l ⟩|l ∈ L},

{⟨µ(k, l), 1− µ(k, l)⟩} | k ∈ K, l ∈ L}].
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It is important to mention that in the previous research we perceived
the set I1 × I2 as one set, while below we will perceive the object
I∗1 × I22 × E∗ as a Cartesian product of three sets. In addition, these
sets are such that just as a topological or modal operator can be
defined over each of them separately, the same can be done over their
product. Therefore, in the sense of the definition from Section 2.1, the
structure will be 3-dimensional one.
Now, we can prove the following assertion.
Theorem 1. For every three IFSs I∗1 , I22 , E∗:
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(1) ⟨P(I∗1 × I∗2 × E∗), C,⊕∨,♢,⊕∨⟩ is an IF3DMTS,

(2) ⟨P(I∗1 × I∗2 × E∗), C,⊕∨,♢,⊕∧⟩ is an IF3DMTS,

(3) ⟨P(I∗1 × I∗2 × E∗), C,⊕∨, ,⊕∨⟩ is an IF3DMTS,

(4) ⟨P(I∗1 × I∗2 × E∗), C,⊕∨, ,⊕∧⟩ is an IF3DMTS,

(5) ⟨P(I∗1 × I∗2 × E∗), C,⊗∨,♢,⊕∨⟩ is an IF3DMTS,

(6) ⟨P(I∗1 × I∗2 × E∗), C,⊗∨,♢,⊕∧⟩ is an IF3DMTS,

(7) ⟨P(I∗1 × I∗2 × E∗), C,⊗∨, ,⊕∨⟩ is an IF3DMTS,

(8) ⟨P(I∗1 × I∗2 × E∗), C,⊗∨, ,⊕∧⟩ is an IF3DMTS,

29



(9) ⟨P(I∗1 × I∗2 × E∗), I,⊕∧,♢,⊕∨⟩ is an IF3DMTS,

(10) ⟨P(I∗1 × I∗2 × E∗), I,⊕∧,♢,⊕∧⟩ is an IF3DMTS,

(11) ⟨P(I∗1 × I∗2 × E∗), I,⊕∧, ,⊕∨⟩ is an IF3DMTS,

(12) ⟨P(I∗1 × I∗2 × E∗), I,⊕∧, ,⊕∧⟩ is an IF3DMTS,

(13) ⟨P(I∗1 × I∗2 × E∗), I,⊗∧,♢,⊕∨⟩ is an IF3DMTS,

(14) ⟨P(I∗1 × I∗2 × E∗), I,⊗∧,♢,⊕∧⟩ is an IF3DMTS,

(15) ⟨P(I∗1 × I∗2 × E∗), I,⊗∧, ,⊕∨⟩ is an IF3DMTS,

(16) ⟨P(I∗1 × I∗2 × E∗), I,⊗∧, ,⊕∧⟩ is an IF3DMTS.
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Proof.

Let the sets I∗1 , I22 and E∗ be given and let

A = [K∗, L∗, {⟨µ(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}] ∈ P(I∗1 × I22 ×E∗),

B = [P ∗, Q∗, {⟨µ(p, q), ν(p, q)⟩ | p ∈ P, q ∈ Q}] ∈ P(I∗1 ×I22 ×E∗).

We must mention that objects {⟨µ(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L} and
{⟨µ(p, q), ν(p, q)⟩ | p ∈ P, q ∈ Q} that are the elements of EIFIMs
can be interpreted as IFSs. Then for example for (1) we can check the
conditions that the object is an EIFMTS as follows
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Ct1 For every two IFSs X and Y : C(X ∪ Y ) = C(X) ∪ C(Y ) and
from this equality it follows:

C(A⊕∨ B) = C([K∗ ∪ P ∗, L∗ ∪Q∗, {⟨µ(k, l), ν(k, l) ∨ ⟨µ(p, q), ν(p, q)⟩ |

k, p ∈ K ∪ P ; l, q ∈ L ∪Q}])

= [C(K∗ ∪ P ∗), C(L∗ ∪Q∗), {⟨ sup
k,p∈K∪P,l,q∈L∪Q

max(µ(k, l), µ(p, q)),

inf
k,p∈K∪P,l,q∈L∪Q

min(ν(k, l), ν(p, q))⟩ | k, p ∈ K ∪ P ; l, q ∈ L ∪Q}]

= [C(K∗) ∪ C(P ∗), C(L∗) ∪ C(Q∗), {⟨max( sup
⟨k,l⟩∈K×L

µ(k, l), sup
⟨p,q⟩∈P×Q

µ(p, q)),

min( inf
⟨k,l⟩∈K×L

ν(k, l), inf
⟨p,q⟩∈P×Q

ν(p, q))⟩ | k ∈ K, l ∈ L}]

= [{C(K∗), C(L∗), {⟨ sup
⟨k,l⟩∈K×L

µ(k, l), inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | k ∈ K, l ∈ L}]

⊕∨[C(P ∗), C(Q∗), {⟨ sup
⟨p,q⟩∈P×Q

µ(p, q), inf
⟨p,q⟩∈P×Q

ν(p, q))⟩ | p ∈ P, q ∈ Q}]

= C(A)⊕∨ C(B);
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Ct2 For each IFS X: C(C(X)) = C(X) and from this equality it
follows:

C(C(A))

= C([C(K∗), C(L∗), {⟨ sup
⟨k,l⟩∈K×L

µ(k, l), inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | k ∈ K, l ∈ L}])

= [C(C(K∗)), C(C(L∗)), {⟨ sup
⟨p,q⟩∈K×L

sup
⟨k,l⟩∈K×L

µ(k, l),

inf
⟨p,q⟩∈K×L

inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | k ∈ K, l ∈ L}]

= [C(K∗), C(L∗), {⟨ sup
⟨k,l⟩∈K×L

µ(k, l), inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | k ∈ K, l ∈ L}]

= C(A);

Ct3
A = [K∗, L∗, {⟨µ(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}]

⊆v,i [C(K∗), C(L∗), {⟨ sup
⟨k,l⟩∈K×L

µ(k, l), inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | k ∈ K, l ∈ L}])

= C(A);

33



Ct4
C(O∗) = [C(I∗1 ), C(I∗2 ), {⟨ sup

⟨k,l⟩∈K×L
0, inf

⟨k,l⟩∈K×L
1⟩ | k ∈ K, l ∈ L}]

= [I∗1 , I
∗
2 , {⟨0, 1⟩ | k ∈ K, l ∈ L}]

= O∗;

Cm1 For every two IFSs X and Y : ♢(X ∪ Y ) = ♢X ∪♢Y and from
this equality it follows:

♢(A⊕∨ B)
= [♢(K∗ ∪ P ∗),♢(L∗ ∪Q∗),♢{⟨⟨max(µ(k, l), µ(p, q)),min(ν(k, l), ν(p, q))⟩⟩ |

k, p ∈ K ∪ P ; l, q ∈ L ∪Q}]
= [♢K∗ ∪ ♢P ∗,♢L∗ ∪ ♢Q∗, {⟨1−min(ν(k, l), ν(p, q)),min(ν(k, l), ν(p, q))⟩ |

k, p ∈ K ∪ P ; l, q ∈ L ∪Q}]
= [♢K∗ ∪ ♢P ∗,♢L∗ ∪ ♢Q∗, {⟨max(1− ν(k, l), 1− ν(p, q)),min(ν(k, l), ν(p, q))⟩ |

k, p ∈ K ∪ P ; l, q ∈ L ∪Q}]
= [K∗, L∗, {⟨1− ν(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}]

⊕∨[P
∗, Q∗, {⟨1− ν(p, q), ν(p, q))⟩ | p ∈ P, q ∈ Q}]

= ♢A⊕∨ ♢B;
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Cm2 As it is proved in [?], for each IFS X:

♢♢X = ♢X

and from this equality it follows:

♢♢A = ♢[♢K∗,♢L∗,♢{⟨µ(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}]

= [♢♢K∗,♢♢∗L,♢{⟨1− ν(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}]

= [♢K∗,♢∗L, {⟨1− ν(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}])

= ♢A;

Cm3

A = [K∗, L∗, {⟨µ(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}]

⊆v,i [♢K∗,♢L∗, {⟨1− ν(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}]

= ♢A.

35



Cm4
♢E∗ = ♢[I∗1 , I

∗
2 ,♢{⟨1, 0⟩ | k ∈ K, l ∈ L}]

= [I∗1 , I
∗
2 , {⟨1, 0⟩ | k ∈ K, l ∈ L}]

= E∗.

(*) For each IFS X: C(♢X) = ♢C(X) and from this equality it
follows:

C(♢A)) = C([♢K∗,♢L∗, {⟨1− ν(k, l), ν(k, l)⟩ | k ∈ K, l ∈ L}])

= [C(♢K∗), C(♢L∗), {⟨ sup
⟨k,l⟩∈K×L

(1− ν(k, l)),

inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | k ∈ K, l ∈ L}])

= [♢C(K∗),♢C(L∗), {⟨1− inf
⟨k,l⟩∈K×L

(1− ν(k, l)),

inf
⟨k,l⟩∈K×L

ν(k, l)⟩ | k ∈ K, l ∈ L}])

= ♢C(A).

The remaining 15 assertions are proved in the same manner.
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Obviously, if I∗ = I∗
1 ∪ I∗

2 , the above theorem can be modified to the
form for the case of IM2DMTS.
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Intuitionistic fuzzy interpretation of multi-person
multi-criteria decision making procedures

In a previous research, a very general multi-person multi-criteria
decision making procedure is described. We will use it as a basis of
the next research in which elements of this procedure will be used.
Let us have e experts X1, X2, · · · , Xe who must evaluate (on first
step) only one object, using c criteria C1, C2, · · · , Cc.
Let each expert have his/her own (current) reliability score in the form
of an IFP ⟨δi, εi⟩ and his/her own (current) number of participations in
expert investigations γi (these two values correspond to his last expert
estimation). Expert’s reliabiliy scores can be interpreted, e.g., as

⟨δi, εi⟩ =

〈 e∑
j=1

δi,j

e
,

e∑
j=1

εi,j

e

〉
,

where ⟨δi,j , εi,j⟩ are elements of the IM
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T =

X1 X2 . . . Xe

C1

⟨δi,j , εi,j⟩
C2

(1 ≤ i ≤ c,
...

1 ≤ j ≤ e)
Cc

and ⟨δi,j , εi,j⟩ is the score of the i-th expert with respect to the j-th
criterion (we assume that i-th expert’s knowledge reliability may differ
over different criteria; the case when the expert is equally good a
specialist with respect to the different criteria is a special one).
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Now, we can construct an EIFIM

X1, ⟨δ1, ε1⟩ . . . Xj , ⟨δj , εj⟩ . . . Xe, ⟨δe, εe⟩
C1, ⟨α1, β1⟩ ⟨µC1,X1 , νC1,X1⟩ . . . ⟨µC1,Xj , νC1,Xj ⟩ . . . ⟨µC1,Xe , νC1,Xe⟩
...

... . . .
... . . .

...
Ci, ⟨αi, βi⟩ ⟨µCi,X1 , νCi,X1⟩ . . . ⟨µCi,Xj , νCi,Xj ⟩ . . . ⟨µCi,Xe , νCi,Xe⟩
...

... . . .
... . . .

...
Cc, ⟨αc, βc⟩ ⟨µCc,X1 , νCc,X1⟩ . . . ⟨µCc,Xj , νCc,Xj ⟩ . . . ⟨µCc,Xe , νCc,Xe⟩

.
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Having in mind the results from Section 3, we see that object
⟨P(C∗ ×X∗ × E∗), E , ζ, ∗, η⟩ is an IF3DMTS, where E ∈ {C, I} is
one of the topological operators, ∗ ∈ { ,♢} is one of the modal
operators, ζ, η ∈ {∨,∧} and

C∗ = {⟨Ci, αi, βi⟩|1 ≤ i ≤ c},

X∗ = {⟨Xj , δj , εj⟩|1 ≤ j ≤ e},

E∗ = {⟨⟨Ci, Xj⟩, µCi,Xj , νCi,Xj ⟩|1 ≤ i ≤ c, 1 ≤ j ≤ e},

are IFSs
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Now, we can take the next step – the experts will evaluate many
objects, e.g., s in number – S = {S1, S2, · · · , Ss}}. In this case the
EIFIM will be 3-dimensional (see Fig. 2).

�
�
�
��

C

X

S

Fig. 2: A 3-dimensional EIFIM
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The q-th level of this parallelepiped, where 1 ≤ q ≤ s will be related
to the experts’ evaluations of the object Sq and will have the form

Sq X1, ⟨δ1, ε1⟩ . . . Xj , ⟨δj , εj⟩ . . . Xe, ⟨δe, εe⟩
C1, ⟨α1, β1⟩ ⟨µC1,X1,Sq , νC1,X1,Sq⟩ . . . ⟨µC1,Xj ,Sq , νC1,Xj ,Sq⟩ . . . ⟨µC1,Xe,Sq , νC1,Xe,Sq⟩

...
... . . .

... . . .
...

Ci, ⟨αi, βi⟩ ⟨µCi,X1,Sq , νCi,X1,Sq⟩ . . . ⟨µCi,Xj ,Sq , νCi,Xj ,Sq⟩ . . . ⟨µCi,Xe,Sq , νCi,Xe,Sq⟩
...

... . . .
... . . .

...
Cc, ⟨αc, βc⟩ ⟨µCc,X1,Sq , νCc,X1,Sq⟩ . . . ⟨µCc,Xj ,Sq , νCc,Xj ,Sq⟩ . . . ⟨µCc,Xe,Sq , νCc,Xe,Sq⟩

.
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In this EIFIM the set

S∗ = {⟨Sq, φq, ψq⟩|1 ≤ q ≤ s}

is an IFS and the object ⟨P(C∗ ×X∗ × S∗ × E∗), E , ζ, ∗, η⟩ is an
IF4DMTS.
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Conclusion

We will finish the present paper with short remarks for a future
research.
First, we can further complicate our construction by introducing a
time components. In a result we will obtain the IF4DMTS
P(C∗ ×X∗ × T × E∗) in which only the time-scale T will be not
intuitionistic fuzzified.
Second, over the set P(C∗ ×X∗ × E∗) or P(C∗ ×X∗ × S∗ × E∗)
we can apply the level operators introduced over IFSs, IFIMs and
EIFIMs. In this case, we can construct IFMDM_level_TS, that will be
an extension of the IFMLTS.
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