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Abstract: An implementation of functional state approach for modelling of yeast fed-batch 
cultivation is presented in this paper. Using of functional state modelling approach aims to 
overcome the main disadvantage of using global process model, namely complex model 
structure and big number of model parameters, which complicate the model simulation and 
parameter estimation. This approach has computational advantages, such as the possibility 
to use the estimated values from the previous state as starting values for estimation of 
parameters of a new state. The functional state modelling approach is applied here for fed-
batch cultivation of Saccharomyces cerevisiae. Four functional states are recognised and 
parameter estimation of local models is presented as well. 
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Introduction 
More complex plants, advances in information technology, and tightened economical and 
environmental constraints in recent years have lead to practising engineers being faced with 
modelling and control problems of increasing complexity. When confronted with such 
problems, there is a strong intuitive appeal in building systems which operate robustly over a 
wide range of operating conditions by decomposing them into a number of simpler modelling 
or control problems, even for nonlinear modelling or control problems. This appeal has been a 
factor in the development of increasingly popular functional state modelling approach to 
coping with strongly nonlinear and time-varying systems [1]. Such local approaches are 
directly based on the divide-and-conquer strategy [1], in the sense that the core of the 
representation is a partitioning of the system's full range of operation into multiple smaller 
operating regimes each of which is associated with a locally valid model or controller. In 
addition, the local approach has computational advantages, lends itself to adaptation and 
learning algorithms and allows direct incorporation of high-level and qualitative plant 
knowledge into the model. 
 
Yeast is an important microorganism, which has been used for industrial applications. Its 
importance bases on the use in the baking and brewing industries, in single-cell protein 
production, and as a host in genetic engineering applications. Compared to penicillin 
fermentation or animal cell cultures, aerobic yeast fermentation is relatively simple. This is 
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caused by the fact that the metabolic mechanism of the process is well known. Therefore, 
yeast processes are often used as a test process for new methods or ideas and they are also 
applied in this paper. 
 
The modelling of yeast fermentation has been widely studied and reported. The common 
modelling approach is to synthesise one global process model such as ones presented from 
Sonnleitner and Kappeli [2]. The main disadvantage of such approach is the complex model 
structure and the big number of model parameters, which complicate the model simulation 
and parameter estimation. As an alternative approach, functional state modelling approach 
will be here presented. Four functional states are recognised during fed-batch cultivation of 
Saccharomyces cerevisiae and parameter estimation of local models is presented. 
 
Functional state modelling approach for yeast cultivation 
Functional state modelling approach is a concept, which helps in monitoring and control of 
complex processes such as bioprocesses [1, 3]. The main idea is to use a two-level hierarchy 
where at the first level the process is divided into macrostates, called functional states (FS), 
according to behavioural equivalence. In each FS certain metabolic pathways are active 
enough to dominate the overall behaviour of the process. In each FS the process is described 
by a conventional type of model, called local model, which is valid only in this FS. At the 
second hierarchical level some numeric detection algorithms and/or rules based on expert 
knowledge can be used for the recognition of the FS and state transitions. A set of local 
models together with FS “dynamics” can be used to describe, monitor and control the overall 
yeast growth process. 
 
A substrate such as sugar is degrading by yeast to produce a number of carbon intermediates 
as well as to provide energy. Yeast metabolise the carbon intermediates to synthesise new cell 
material. If the sugar concentration during an aerobic yeast growth process exceeds a critical 
level (Scrit), a part of the sugar is metabolised to ethanol. The whole yeast growth process can 
be divided into at least five FS in batch and fed-batch cultures [3], namely: 
• FS I - first ethanol production state. 
• FS II - mixed oxidative state. 
• FS III - complete sugar oxidative state. 
• FS IV - ethanol consumption state. 
• FS V - second ethanol production state. 
 

State I 
S ≥ Scrit 

DO ≥ DOcrit 

State II 
S ≤ Scrit 

DO ≥ DOcrit 
E > 0 

State III 
S ≤ Scrit 

DO ≥ DOcrit 
E = 0 

State V 
S ≤ Scrit 

DO < DOcrit 
 

 
Fig. 1 Functional states and their relations in fed-batch yeast process 
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Fig. 1 illustrates the metabolic characteristics and interrelationships of the different FS (FS IV 
normally appears only in batch culture, so that is the reason that it is omitted in that figure).  
It is obvious that the bioprocess can be only in one FS at any given time, although a certain 
FS may appear more than once during the total growth period. An aerobic baker’s yeast 
process switches relatively abruptly from one FS to another when the metabolic conditions 
change. To detect when the process is in a certain FS might be a non-trivial task. 
 
Modelling of functional states in fed-batch cultivation of S. cerevisiae 
Materials and Methods 
The cultivation of the yeast Saccharomyces cerevisiae is performed in a 2 l reactor, developed 
at the Institute of Technical Chemistry, University of Hannover, Germany, using a 
Schatzmann medium. For the process control a BiostatB unit from B. Braun is used. Before 
the fed-batch, a batch cultivation was carried out to get an appropriate amount of biomass. 
After the end of the batch, a break of 4 hours is made to get a defined metabolic state. The 
values of the process parameters used for both cultivations are listed in Table 1. In the exhaust 
gas carbon dioxide and oxygen are measured using the Process-analyze system “Advance 
Optima/ Uras 14E” (Hartmann & Braun). Off-line samples are collected almost every hour. 
From the off-line samples the dry biomass concentration, as well as the concentration of 
ethanol and glucose, are measured. The glucose concentration is measured using a glucose 
analyzer (YSI 2700, Yellow Springs Instruments). For the determination of ethanol a gas 
chromatograph (GC-14B, Shimadzu) is used. The dry biomass concentration is measured by 
separating the cells by centrifuge. After drying for 24h at 110°C the biomass is measured by 
weighing the tubes. 
 

 Table 1. Process parameters 
Parameter Value 

Aeration rate 300 L/h 
Stirrer speed 1200 rpm 
Temperature 30 °C 
pH 5.5 
Start volume 1.3 l 
Initial value of biomass 4.5 g/l 
Glucose concentration in feed 35 g/l 

 
For glucose measurements a flow injection analysis (FIA) system, developed by ANASYSCON 
Hannover, Germany, is employed, which uses a sampling probe (Flownamics E19) to get 
cell-free samples for the FIA. Employing an extended Kalman filter the state variables 
biomass, glucose concentration as well as µmax (Monod model) and volume are estimated. 
Based on the glucose estimation a feedforward-feedback controller is implemented to 
establish the different setpoints between 0.04 and 0.09 g/l.  
 
The determination of the time-delay is carried out in a simple reactor by measuring the 
changes of the conductivity. The reactor contains 200ml distilled water. At the start of the 
measurement 20ml of 1mol KCl solution are added as a pulse. The change of the conductivity 
was measured. From the plots of the conductivity vs. time the time delay is calculated.  
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The bioreactor, as well as FIA measurement system is presented in Fig. 2. Fig. 3 show the 
computers used for the data measurement from the FIA system, as well as computer for the 
control of the process. 
 

 
Fig. 2 

 

 
Fig. 3 

 
Model of fed-batch cultivation of S. cerevisiae 
Experimental data from fed-batch cultivation of baker’s yeast is used. The used data set 
consists of off-line measurements of biomass (yeast) and ethanol and on-line measurements of 
substrate (glucose). 
 
The rates of cell growth, sugar consumption and ethanol production in a yeast fed-batch 
growth process are commonly described for all FS according to the mass balance as follows: 
 

feed sampleV(t) VdX(t) = µ(S)X(t) - X(t)+ X(t)
dt V(t) V(t)

 (1) 

( )feed
S in

V(t)dS(t) = -q X(t)+ S - S(t)
dt V(t)

 (2) 

feed
E

V(t)dE(t) = q X(t) - E(t)
dt V(t)

 (3) 
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feed sample
dV = V(t) -V
dt

   , (4) 

 
where: 
X, S and E are the concentrations of biomass, substrate (glucose) and ethanol, [g/l]; 
V - bioreactor volume, [l]; 

feedV(t)  - feeding rate, [l/h]; 

sampleV  - taking on-line samples, [l/h]; 
Sin - initial concentration of the feeding solution, [g/l]; 
µ, qS, qE - parameter functions, varying with the functional state transitions. 
 
Analysing experimental data and assuming that Scrit has been changed during the cultivation, 
there are sufficient conditions for availability of four FS during this cultivation, namely: 
A: complete sugar oxidative state (FS III) 
B: first ethanol production state (FS I) 
C: first ethanol production state (FS I), after changing of Scrit 
D: mixed oxidative state (FS II) 
 
All parameter functions of the local models for four recognised FS are presented in Table 2. 
 
 Table 2. Local models in different functional states 

 FS A FS B FS C FS D 

µ 3
S

Sµ
S + k

 1
S

Sµ
S + k

 1
S

Sµ
S + k

 2S 2E
S E

S Eµ + µ
S + k E + k

 

qS 3

SX S

µ S
Y S + k

 1

SX S E

µ S E
Y S + k E + k

 1

SX S

µ S
Y S + k

 2S

SX S

µ S
Y S + k

 

qE 0 1

ES S

µ S
Y S + k

 S Scrit ES(q - q )Y  2E

EX E

µ E-
Y E + k

 

 
In the Table 2 the following symbols are used: 

• µi - maximum values of the corresponding specific growth rates, [h-1]; 
• kS, kE - saturation constants, [g/l]; 
• YSX, YES, YEX - yield coefficients, [g.g-1]. 

 
The estimation of the local models' parameters is made with using of MATLAB Optimisation 
Toolbox procedures. The RK45 integration algorithm is used for numeric simulation of the 
model. As the optimisation criterion the function of difference between experimental data and 
data from simulated model is used. Therefore the optimisation criterion is presented as 
follows: 
 

( ) ( ) ( ) ( ) ( ) ( )T T T
1 2 3J = c X - X * X - X * + c S - S * S - S * + c E - E* E - E* , (5) 

 
where X*, S* and E* are the column vectors of experimental data, X, S and E are the column 
vectors of simulated data and ci are weight coefficients. The values of estimated parameters 
are presented in Table 3. 
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 Table 3. Values of the estimated parameters in different functional states 

Name FS A Name FS B Name FS C Name FS D 
µ3 0.14 h-1 µ1 0.29 h-1 µ1 0.43 h-1 µ2S 

µ2E 

0.45 h-1 

0.14 h-1 

kS 0.05 gl-1 kS 
YSX 

0.05 gl-1 

0.18 gg-1 
kS 0.05 gl-1 kS 

kE 

0.06 gl-1 

0.88 gl-1 

YSX 0.54 gg-1 kE 
YES 

0.31 gl-1 

5.84 gg-1 
YSX 
YSE 

0.46 gg-1 

34.14 gg-1 
YSX 
YEX 

0.31 gg-1 

32.43 gg-1 
 
Description of recognized functional states 
FS A: The process is defined to be in this state when there is no ethanol available, the sugar 
concentration is no more than the critical level and the dissolved oxygen is above its critical 
level. During parameter identification of this state, the original local models, presented by 
Zhang [3] have been used. Local model functions for this state (as well as for the other states) 
are presented in Table 2. The values of estimated parameters for this state (as well as for the 
other states) are listed in Table 3. Both the real cultivation trajectories and the simulated ones 
for each FS are presented in the following figures, respectively Fig. 4 for FS A, Fig. 5 for FS 
B, Fig. 6 for FS C and Fig. 7 for FS D. With small letters a, b and c are noted consequently 
substrate, biomass and ethanol.  
 

Fig. 4.a Substrate     Fig. 4.b Biomass 
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Fig. 4.c Ethanol 

Fig. 4.a,b,c Measured and simulated data for FS A 
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FS B: The process is defined to be in this state when the sugar concentration is above its 
critical value and there is sufficient dissolved oxygen. During parameter identification of this 
state, all original local models, presented by Zhang [3] have been changed. Using Monod’ 
kinetics instead of proposed constant value for biomass concentration gives more meaningful 
results. Using of Monod’ kinetics for the specific rate of sugar consumption does not succeed 
to describe the process behaviour. Many other specific rates had been applied without a big 
success. At the moment using of Aborhey and Williamson's kinetics describes in a sufficient 
degree the process behaviour in this state. Perhaps some other decisions have to be further 
discussed. Better results are achieved by using of Monod kinetics also for specific ethanol 
production rate, instead of proposed by Zhang rate, directly proportional to the difference 
between the specific sugar and the critical sugar specific consumption rate. 

 

Fig. 5.a Substrate     Fig. 5.b Biomass 
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Fig. 5.c Ethanol 

Fig. 5.a,b,c Measured and simulated data for FS B 
 

FS C: The process follows to be at the same conditions as FS B. It is supposed that because of 
changing of Scrit this state should be considered as new. Moreover, the local models, which 
describe this state, are different from those, used in FS B, and the rate of ethanol production is 
different in both states (Table 2 and Table 3). Only the specific growth rate of biomass has 
been changed again with Monod’ kinetics instead of constant value (as it was in FS B as 
well). The specific substrate consumption rate as well as specific ethanol production rate is 
equal to the originals presented in Zhang [3]. 
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Fig. 6.a Substrate     Fig. 6.b Biomass 
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Fig. 6.c Ethanol 

Fig. 6.a,b,c Measured and simulated data for FS C 
 

FS D: The process enters this state when the sugar concentration decreases to be equal to or 
below the critical level and there is sufficient dissolved oxygen. During parameter 
identification of this state, the original local models, presented by Zhang [3] have been used. 

 

Fig. 7.a Substrate     Fig. 7.b Biomass 
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Fig. 7.c Ethanol 

Fig. 7.a,b,c Measured and simulated data for FS D 
 

Conclusions 
The concept of functional state approach and its application for modelling of aerobic fed-
batch yeast cultivation are presented in this paper. The concept's implementation leads to the 
process description with simpler and more transparent local models. Moreover, the 
implementation of FS modelling approach has computational advantages and allows direct 
incorporation of high-level and qualitative plant knowledge into the model. These advantages 
have proven to be very appealing for industrial applications. 
 
The work process shows that the FS modelling approach should be applied for such a 
complex cultivation, because of proved changes of the process parameters during the time of 
the cultivation. Four FS have been recognized and the estimation of state parameters has been 
presented. This fact proves the implementation of FS modelling approach as more convenient 
for parameter estimation than the global models of this process. The main advantage of FS 
modelling is that parameters of each local model could be separately estimated from other 
local models. The results obtained in the simulation of models show a good efficiency of the 
approach for functional state modelling. 
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