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Abstract: A Brunovsky normal form model is introduced by using some differential geometry 
results for reduction of a non-linear kinetic model into equivalent linearised form. The 
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principle.  
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Introduction 
The biosynthesis process description belongs to the class of non-linear, non-stationary, 
complex systems. The implementation of optimisation methods as well as Pontryagin’s 
maximum principle-based method is problematic when a non-linear model is used. A 
differential geometric technique permits the utilisation of a new non-linear transformation of a 
biotechnological kinetic model into an equivalent model. The model investigated in this paper 
permits exact linearization to the Brunovsky normal form. In certain cases this transformation 
technique allows to obtain an equivalent model, which substantially simplifies the 
mathematical derivations leading to the optimal control law. All these peculiarities, together 
with the complex formula of the latter dependence cause difficulties when implementing this 
differential geometric technique. However, in other cases this peculiarity becomes an 
advantage, which permits interesting new solutions. In this paper we discuss the possibilities 
for utilisation of these equivalent models in order to determine the optimal control solutions. 
 
Transformations and equivalent models 
We discuss yeast’s C.blankii 35 continuous cultivation process [6, 8]. As usual, the first step 
in such investigations is identifying an adequate kinetic model. Consider the lactose utilising 
yeast’s C.blankii 35 continuous cultivation process, described by a non-linear kinetic model 
as follows [6, 7, 9]: 
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where x denotes biomass concentration [g/l], S - limiting substrate (residual lactose) 
concentration [g/l], µ - the specific growth rate [h-1], a denotes acetate concentration [g/l], So - 
initial concentration of limiting substrate, D - the dilution rate (model input) in the same 
dimension as the specific growth rate, ν - white noise. Coefficients are as follows: µmax – 
maximal specific growth rate [h-1], KS – constant [g/l], Ko – inhibitory effects constant [-], m – 
correction constant [-]. The system parameters are as follows: µm=0.776 [h-1], KS= 14.81 [g/l], 
Ko=1/1231 [–], m=3.51 [–], Se=0.2625 [g/l], S0=9 [g/l], y=0.5584 [–], De=0.01 [h-1]. The 
fourth equation in (A) is equivalent to the first one, which is seen by implementing the simple 
transformation:  
 
 
 
Finally the non-linear kinetic model describes the continuous cultivation process: 
 
 

(1) 
       
  
 
 
In another form this model is d(x,S,µ)′/dt=f0+f1D. The basis of the appropriate linear space of 
the model (1) is {f1} and f0 determines the affine space [1, 4, 6]. The first step leading to the 
Brunovsky normal form is a simplification of the basis of the affine model space. The 
common integral of the field f1 is a solution of the equation: 
 

(2) 
 
Taking into account the established results in [1] and the solution of equation (2), the model 
(1) is transformed with the diffeomorphic transformation: 
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where the new affine model has the form dx/dt=f0+f1D, x=(x1, x2, x3): 
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Now the field f1 has a simple form and it is easy to determine the t-differential forms. The 
dual spaces defined by the t-differential forms and their range determine the equivalent 
system [1, 4, 6]. In this case the system obtains the Brunovsky normal form: 
 
 

                                                                                  (6) 
 
The corresponding non-linear transformation (diffeomorphism) is of the form: 
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where S is substrate concentration, x2 corresponds to x’1/(x’2-S0) and x′=(x1’, x2’, x3’), which 
are the state vector coordinates of model (1).  The control input V of the model (6) is linked 
with the control input D of the model (1) by the formula [1, 6]: 
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The main conclusion after these transformations is that the model (1) and the model (6) are 
equivalent, in the sense that every solution of the model (1) with control D is a solution of 
model (6) with control V using transformations (3) and (7) [1]. There are many other non-
linear transformations and the Brunovsky normal form is only one of them. 
 
Maximum principle and optimal control  
The optimisation problem is: 
min (x(t1)-x0)2, where the variable x is the first coordinate of the model (6) state vector 
and   t∈[0,t1], D∈[0,D0]. Here x0 is a chosen constant. 
In agreement with the maximum principle, the following problem has to be solved: 
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,CtCΨ 212 +−=                                                                                                                     (10) 
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But the problem is more complicated. The domain of the control input V(x, y, z, t,...) depend 
on variables (x, y, z). According the optimal control theory, Φ(t, x, y, z, ψ)=maxV(x, y, z)H(t, x, 
y, z, D, ψ) must be put in the place of H(.) [3]. In addition, constants C1, C2, C3 are calculated 
in the moment t1. The constants C1, C2 and C3 have the forms: 

,)(2 01 xxC −=                                                                                                                      (11) 
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Finally, the optimal control law depends on formula max(Ψ3V), where: 
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This part of V, which determines max(Ψ3V) is negative /under the chosen initial conditions/. 
That is why only Ψ3(t) determines the control law. Concluding this section we emphasise that 
the Pontryagin′s conditions are not sufficient conditions. Some sufficient conditions can be 
determined with the Krotov′s function. Equations (9) determine only the derivative of the 
Krotov′s function [3].  
 
Discussion 
Because the maximum principle does not give sufficient conditions the control law needs 
supplementary verifications. Here Belman′s principle [2] is very useful.  It states that the 
control law is optimal in every time subinterval.  And now we note that the optimisation 
problem discussed in the previous section, in view of the Belman′s principle becomes “reach 
for minimal time the state x0”. The result is shown in fig.1. Now in the formula max(Ψ3V) 
the sign sgn(x (t)-x0) is taken into account at every moment t. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Optimal control where x is by model (6) 
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The use of Belman′s principle needs cumulative criteria. Such a criterion is for example the 
maximum biomass in the end of a fed-batch biotechnological process [5]. It should be noted 
that other similar problems can be solved with this mathematical apparatus. An example is the 
achievement and stabilising of a biomass concentration x0 by model (1): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

Fig. 2 Optimal control x - model (1) 
 
The optimal control law is analytically determined by implementing the Belman′s principle. 
The optimal control is obtained by iterations of relatively small intervals [ti,ti+1], solving the 
optimal problem in each subinterval. 
 
Conclusions 
The discussed biotechnological models were shown here to be equivalent in the sense that 
every solution to one of them is solution to the others.  
The non-linear equivalent transformation proposed here to the Brunovsky normal form of the 
continuous biotechnological process permits obtaining a stationary linear model. This model 
is also easy for optimisation with the Pontryagin’s maximum principle. 
Some disadvantages of this approach are the complex formulae of the state vector (x, y, z) by 
model (6), and the complex formula of the control V(.). But with the use of Bellman′s 
principle these formulae permit analytical determination of new control laws. 
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