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Introduction 
Rapid interaction between mathematics and biology is widely recognized in the past decades. 
This interaction goes in two opposite directions: i) novel mathematical tools and models are 
increasingly introduced in life sciences, and ii) biological problems require and generate new 
mathematical results and stimulate the development of novel mathematical theories and 
programming tools. Recently a number of textbooks devoted to the mathematical modelling 
in life sciences appeared, e. g. [14, 15, 34, 38, 66, 77, 78, 80, 84]. 
 
The two most popular in life sciences computer algebra systems (CAS) are MAPLE and 
MATHEMATICA [28, 45, 83]. MAPLE can be accessed through the familiar system 
MATLAB. Other CAS that can be used for modelling in life science include AXIOM, 
MACSYMA, REDUCE, FORM and SACLIB [33, 30, 29, 79, 19]. 
 
CAS are mainly used to simplify algebraic expressions and perform symbolic operations such 
as integration and differentiation. The symbolic results of CAS can be used by procedures that 
evaluate formulas and solve equations numerically. Symbolic calculations are combined with 
statistical operations and data analysis. CAS are used increasingly for numerical calculations. 
They are computationally less efficient than programming languages such as FORTRAN and 
C, however they are easier to use for investigations in biology which usually do not require 
highly repetitive computations. 
 
In this paper we discuss the use of CAS in the modelling, optimization and control of 
biotechnological processes emphasizing the role of enclosure methods in dealing with 
problems of uncertainty. When talking of uncertainty we usually presume  that no knowledge 
about probability distributions is available. That is why applications of probability and 
stochastic CAS tools have been omited in this work. For such applications we recommend the 
survey paper [9]; there the interested reader may find information about CAS applications to 
all branches of life sciences. 
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Uncertainty in bioprocesses 
A main characteristic of biological systems is uncertainty, due to the use of simplified 
models, variation with time of  parameters, unpredictable phenomena, inexact measurements, 
intrinsic sensitivity of the system, etc. Characterisation of uncertainty and its consideration in 
subsequent analysis is important for understanding bioprocesses, the identification of state 
variables and the design of effective control strategies. Researchers in life sciences often 
underestimate uncertainty. Although formal methods for dealing with uncertainty have been 
developed over the last decades, little effort has been invested so far to produce results 
concerning guaranteed characterisation of uncertainty, guaranteed modelling and simulation, 
guaranteed optimization, experiment design, robust control, etc. 
 
For model identification of biological processes involving short uncertain records and 
unstable solutions (as is often the case whenever enzyme reactions are present) it seems that 
novel mathematical tools, such as differential inclusions, set-valued analysis, viability 
analysis, enclosure methods, interval analysis, numerical methods with automatic result 
verification, will play a major roles in the future. Such methods may require some additional 
effort from experimental scientists in providing bounds for the measured quantities.  
 
The management of uncertainty in biological systems requires an interaction and transfer of 
knowledge between different fields involved, such as biological modelling, bioprocess 
applications, CAS, enclosure methods, interval analysis, validated numerical analysis, robust 
control. The integration of experimental and computational research is helpful for the 
understanding of complex biological systems. Global optimization is a fundamental 
prerequisite for model identification  [81]. Identifiability studies are important in qualitative 
experiment design. Various methods have been proposed for linear systems and some novel 
methods are available for nonlinear ones [81, 17, 18, 7, 8]. Most identification methods 
require the solution to systems of highly nonlinear algebraic equations. 
 
As far as a model is specified, the problem of estimating its parameters arises, leading usually 
to an optimization problem [82]. Characterisation of the uncertainty in the subsequent 
analysis is important for the understanding of the underlying processes. Novel developments 
and tools to manage uncertainty are now available for biological researches; amongst them 
enclosure methods and interval analysis plays important roles. 
 
Enclosure methods and interval analysis 
The main idea of enclosure methods is to enclose uncertain/inexact data by means of simple 
representable sets such as interval boxes, ellipsoids, polytopes, zonotopes, etc. In the case of 
interval boxes such methods are known as interval methods and the corresponding 
fundamental theory is known as interval analysis [65]. Interval analysis is a branch of 
numerical analysis aiming to bound the error propagation in computations and to take into 
account uncertainties in data measurements. At present, interval analysis is being successfully 
applied in a number of fields, other than numerical analysis, such as global optimization, 
systems theory, control, robotics, diagnosis, economy, etc. [31, 32]. Applications with a direct 
impact in biological modelling are for instance guaranteed parameter estimation, 
identifiability studies and guaranteed simulation. Several approaches have been suggested in 
the literature for the solution of uncertain differential equations. The most widely used is the 
application of interval methods to guaranteed numerical integration. Typically these methods 
use Taylor series, automatic differentiation and CAS. A survey of these techniques can be 
found in [76]. 
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Techniques of guaranteed integration and guaranteed optimization enable a global analysis to 
be carried out in parameter estimation, as opposed to local methods. When only bounds are 
available for the measurement noise and state perturbations, bounded-error techniques may be 
used [61, 64]. One has then to characterize the set of all parameter or state vectors that are 
consistent with the data. The characterization should be guaranteed in the sense that outer 
(and sometimes inner) bounds are provided. When the model output depends nonlinearly on 
uncertain parameters, this is a challenging task. The promising results recently obtained in 
this rapidly evolving domain with interval analysis, guaranteed integration and constraint 
propagation should find their way into the modelling and optimization of bioprocesses. 
 
The application of contemporary mathematical methods in biotechnological processes (BTP) 
is characterized by the following: BTP involve living microorganisms, their dynamics is often 
badly understood and strongly nonlinear. The reproducibility of the experiments is uncertain. 
BTP are typically characterized by the impossibility of repeating of the experimental data 
even by strictly keeping equal conditions for cultivating of microorganisms. Small variations 
in the physico-chemical conditions of cultivation (temperature, dissolved oxygen, pH and 
etc.), or internal factors (genetic, biochemical, etc) influence the enzyme and physiological 
activity of microorganisms. The model parameters do not remain constant over long periods 
due to methabolic variations and physiological modifications. There are no reliable tools 
capable of providing direct on-line measurements of the biological variables (such as biomass 
or metabolite concentration) required to implement efficient control strategies.  
 
BTP are described by systems of ordinary differential equations involving uncertainties in the 
model parameters (yield and kinetic coefficients) and unknown functional relations (specific 
growth rate and productivity functions) [77]. The uncertainties in the experimental data reflect 
on the values of the model parameters, i.e. they are unknown but bounded. These peculiarities 
lead to the necessity of applying contemporary mathematical approaches for modelling and 
control, taking into account all influent factors [43, 23, 16]. 
 
Enclosure methods are tightly connected to specific approaches of collecting and reading off 
experimental quantitative data in the form of intervals or other bounding volumes. The 
experimental scientist should make some additional effort in the process of collecting data 
from biological experiment/observation by providing bounds (e. g. intervals) that contain the 
true values of the measured/observed quantities. A careful consideration of the measured 
quantities and of the physical construction of the measurment tools is of immense importance 
for the new methodology. We recommend the assignment of three types of bounds to each 
measured/observed quantity: i) bounds which contain the true values with absolute guarranty; 
ii) bounds  that contain the true values with “almost full guaranty”, and, iii) bounds that 
contain the true values with “some guaranty” [48]. After specifying or constructing an 
enclosure numerical algorithm for the solution of the problem, one can easily obtain bounds 
for the solutions corresponding to these three sets of input data. The experimental scientist 
should trust the resulting bounds corresponding to the absolute guaranteed input bounds. If 
these resulting bounds are too large, then the remaining results can be used with a degree of 
trust corresponding to the degree of guarancy assigned to the input bounds. The comparisson 
of the three different types of resulting bounds for the solutions of  model identification 
problems can be valueable for the final interpretation and the global study of the particular 
biological process. 
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The use of CAS in the study of BTP 
The use of computer algebra systems, such as MAPLE and MATHEMATICA, is increasing 
rapidly and impacts research on biotechnological processes and related topics, such as 
enzyme kinetics and population dynamics. The following topics within the scope of 
biotechnological processes have been discussed in research papers applying CAS. 
 
The use of CAS in the BIOESTIM system for on-line estimation in bioprocess engineering 
from minimal knowledge of process kinetics is presented in [24]. Global identifier linear and 
nonlinear problems in enzyme kinetics using CAS are discussed in [7, 8]. The papers [75], 
[17] and [44] are devoted to enzyme kinetics and make use of compartmental analysis and 
CAS. Related studies have been conducted in [10-13, 74, 85-87]. A model of animal digestion 
using MATHEMATICA to study the kinetic equations for hydrolysis and absorption in three 
kinds of chemical reactor, and to find the optimal ingestion rate is considered in [35]. A 
pharmacokinetics problem using compartmental analysis and identifiability methods is 
studied in [46]. 
 
In the Biomathematics department of the Institute of Mathematics and Informatics (IMI) at 
the Bulgarian Academy of Sciences (BAS) investigations using MAPLE and 
MATHEMATICA, enclosure methods, interval analysis and other novel tools (such as 
stochastic arithmetic [5, 6, 56, 57], zonotopes [4, 51, 55], etc.) have been performed in the 
following directions related to biotechnological processes: 
 
i) steady states analysis (stability and bifurcations), sensitivity analysis of input-output 

static characteristics under uncertainty, with numerical simulations in MAPLE [37, 
39-42, 88, 89]; 

 
ii) feedback design for asymptotic stabilization of the dynamic systems with respect to 

on-line measurable state variables; robustness with respect to uncertainties in the 
model parameters, with numerical simulations in MAPLE [20-22, 40-41]; 

 
iii) numerical study of enzyme-kinetic and metabolic processes using MATHEMATICA 

[25-27, 53, 63, 49]; 
 
iv) interpolation/approximation linear problems under uncertainties and nonlinear case 

studies with numerical simulations [1, 2, 47, 58–62, 73]; a corresponding 
MATHEMATICA package has been developed [54, 61, 62]; 

 
v) theoretical fundamentals of “interval computer algebra” [50, 51] and relevant  

implementations in MATHEMATICA [3, 67-70]; 
 
vi) development of enclosure and interval methods and algorithms with relevant 

fundamentals [50, 51, 55, 57, 71-72]. 
 
The Biomathematics department of IMI-BAS collaborates with other BAS units working in 
the field of bioprocess modelling, such as the Research Group for Knowledge-Based Control 
Systems at the Institute of Control and System Research (http://www.icsr.bas.bg/), the 
Research Group for Mathematical Modelling and Computer Sciences at the Institute of 
Microbiology (http://www.microbio.bas.bg/), and the Research Group for Modelling and 
Optimization of BioProcesses Systems at the Centre of Biomedical Engineering 
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(http://www.clbme.bas.bg/). More about the activity of the Biomathematics department of 
IMI-BAS can be found at the web site: http://www.math.bas.bg/~bio/. 
 
Concluding remarks 
The modeling, optimization and control of BTP involving uncertain data requires new 
mathematical tools for efficient solving of set-valued problems. Computer algebra systems 
such as MAPLE and MATHEMATICA provide suitable software platforms for the 
development of   relevant simulation experiments. Extensive graphics capabilities allow the 
user to generate two- and three-dimensional graphics, which can be used in the process of 
mathematical modelling and control. 
 
There is an obvious tendency of hybridization between CAS and tools for treating 
uncertainties such as interval analysis. The computer algebra systems MAPLE and 
MATHEMATICA possess packages for interval arithmetic that can deal with interval-
arithmetic expressions and are suitable environments for the development of specialized tools. 
However, these packages are still not very effective in performing symbolic computations 
involving interval variables and interval arithmetic expressions. The implemented interval 
arithmetic is restricted to the classical theory based on the additive semigroup of proper 
intervals [65]. Clearly computations within this semigroup are not as efficient as ones using 
the induced  additive group, known as Kaucher interval arithmetic [36]. The latter arithmetic 
is extremely suitable for CAS implementations. We believe that such implementations will 
lead to a new branch of computer algebra, an “interval computer algebra”. Some work related 
both to the theoretical fundamentals of this novel direction [50, 51], as well as to relevant 
MATHEMATICA implementations is in progress [67-70]. 
 
Acknowledgments 
This work is an elaborated version of a lecture held at the International Symposium on 
Bioprocess Systems (BioPS'2005), October 25-26, 2005, Sofia, organized by CLBME, BAS. 
The author thanks the organizers for the invitation to give a lecture at the symposium. 
 
References 
1. Akyildiz Y., S. Markov, E. Popova, J. Schulze (1994). Computer-aided Interval 

Interpolation, In: Dimov I., Bl. Sendov, P. Vassilevski (Eds.), Advances in Numerical 
Methods and Applications, World Scientific, Singapore, 3-10. 

2. Akyildiz Y., M. Candev, S. Markov, I. Simeonov (1996). Curve Fitting and Smoothing 
under Uncertainties: the Logistic Model, Proc. Symp. on Modelling, Analysis and 
Simulation, IMACS/IEEE Multiconference on Computational Engineering in Systems 
Applications, Lille, France, July 9-12, 1151-1155. 

3. Akyildiz Y., E. D. Popova, C. Ullrich (1997). Towards a More Complete Interval 
Arithmetic in Mathematica. Innovation in Mathematics, Proceedings of the Second 
International Mathematica Symposium, 29-36. 

4. Akyildiz A., D. Claudio, S. Markov (2002). On the Linear Combinations of Symmetric 
Segments, In: Kelevedzhiev E., P. Boyvalenkov (Eds.), Mathematics and Education of 
Mathematics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 
Sofia, 321-326. 

5. Alt R., S. Markov (2001). On the Algebraic Properties of Stochastic Arithmetic. 
Comparison to Interval Arithmetic, Scientific Computing, Validated Numerics, Interval 
Methods (Eds. Kraemer W., J. Wolff von Gudenberg), Kluwer, 331-341. 



BIO

Autom
ati

on

Bioautomation, 2005, 3, 1 - 9 ISSN 1312 – 451X 
 

 6

6. Alt R., J.-L. Lamotte, S. Markov. Numerical Study of Algebraic Solutions to Linear 
Problems Involving Stochastic Parameters, Lecture Notes in Computer Science 3743, to 
appear. 

7. Audoly S., L. D'Angio, M. P. Saccomani, C. Cobelli (1998). Global Identifiability of 
Linear Compartmental Models - a Computer Algebra Algorithm, IEEE Trans. Biomed. 
Eng. 45, 36-47. 

8. Audoly S., G. Bellu, L. D'Angio, M. P. Saccomani, C. Cobelli (2001). Global 
Identifiability of Nonlinear Models of Biological Systems, IEEE Trans. Biomed. Eng. 
48(1), 55-65. 

9. Barnett M. P. (2002). Computer Algebra in the Life Sciences, SIGSAM Bulletin 36(4), 5-
32. http://www.princeton.edu/~allengrp/ms/annobib/cals.pdf 

10. Bayram M., J. P. Benett, M. C. Dewar (1993). Using Computer Algebra to Determine 
Rate Constants in Biochemistry, Acta Biotheoretica, 41(1-2), 53-62. 

11. Bayram M. (1996). Automatic Analysis of the Control of Metabolic Networks, Comput. 
Biol. Med., 26(5), 401–408. 

12. Bayram M. (1997). Automatic Derivation of Steady State Rate Laws Using a Computer 
Algebra System, Proc. Indian Natl. Sci. Acad., A. 63(3), 241-249. 

13. Benett J. P., J. H. Davenport, M. C. Dewar, D. L. Fisher, M. Grinfeld, M. Sauro (1991). 
Computer Algebra Approaches to Enzyme Kinetics, Lect. Notes in Cont. Inf. Sci., 165, 
23-30. 

14. Brown D., P. Rothery (1994). Models in Biology: Mathematics, Statistics and 
Computings, Wiley. 

15. Bulmer M. (1994). Theoretical Evolutionary Biology, Sinauer. 
16. Carson E. R., C. Cobelli, L. Finkenstein (1983). The Mathematical Modelling of 

Metabolic and Endocrine Systems, Wiley. 
17. Chappell M. J., K. R. Godfrey, S. Vajda (1990). Global Identifiability of the Parameters 

of Nonlinear Systems with Specified Inputs: A Comparison of Methods, Math. Biosci. 
102(1), 41–73. 

18. Chappell M. J., K. R. Godfrey (1992). Structural Identifiability of the Parameters of a 
Nonlinear Batch Reactor Model, Math. Biosci. 108, 245-251. 

19. Collins G. E. et al. (1993). SACLIB User’s Guide, Technical Report 93–19, RISC–Linz, 
Johannes Kepler University, Linz, Austria. 

20. Dimitrova N., M. Krastanov (2004). Stabilizing Feedback of a Nonlinear Biological 
Wastewater Treatment Plants Model, In: Dimov I. et al. (Eds.), Large-Scale Scientific 
Computing, Lecture Notes in Computer Science 2907, 222-230. 

21. Dimitrova N., M. Krastanov (2004). Asymptotic Stabilization of a Biotechnological 
Process with Substrate Inhibition, In: Mathematics and education in mathematics, Inst. 
Math. and Informatics, BAS, 407-412. 

22. Dimitrova N., P. Zlateva (1995). Study of the Steady-state of Methane Fermentation 
under Uncertain Data. In: Candev M. (Ed.): Lecture Notes in Biomathematics and 
Bioinformatics'95, DATECS Publ., Sofia, 90-99. 

23. Edelstein-Keshet L. (1988). Mathematical Models in Biology, McGraw-Hill. 
24. Farza M., A. Cheruy (1994). BIOESTIM: Software for Automatic Design of Estimators 

in Bioprocess Engineering, Computer Applications in the Biosciences, 10 (5), 477–488. 
25. Grigorova N., S. Markov (2000). Mathematical Modelling and Numerical Simulation of 

Metabolic Processes, In: Tsonkov S. (Ed.), Bioprocess Systems (BioPS'2000), CLBME, 
BAS, Sofia, II.17-II.20. 

26. Grigorova N., S. Markov (2001). Numerical Comparison between Two Enzyme-kinetic 
Models, In: Tsonkov S. (Ed.), Bioprocess Systems (BioPS'2001), CLBME, BAS, Sofia, 
I.45-I.48. 



BIO

Autom
ati

on

Bioautomation, 2005, 3, 1 - 9 ISSN 1312 – 451X 
 

 7

27. Grigorova N. (2002). Numerical Comparsion between Two Enzyme-kinetik Models, In: 
Kelevedziev E., P. Boyvalenkov (Eds.), Mathematics and Education in Mathematics, Inst. 
Math. and Informatics, BAS, 332-337. 

28. Garvan F. (2001). The Maple Book, Chapman and Hall, London. 
29. Hearn A. C. (1995). REDUCE User’s Manual, Version 3.6, RAND Corporation, Santa 

Monica, CA. 
30. Heller B. (1991). MACSYMA for Statisticians, Wiley. 
31. Herzberger J. (Ed.) (2003). Inclusion Methods for Nonlinear Problems with Applications 

in Engineering, Economics and Physics, Springer. 
32. Jaulin L., M. Kieffer, O. Didrit, E. Walter (2001). Applied Interval Analysis, with 

Examples in Parameter and State Estimation, Robust Control and Robotics, Springer. 
33. Jenks R. D., R. S. Sutor (1992). AXIOM: The Scientific Computation System, Springer. 
34. Jensen F. (1999). Introduction to Computational Chemistry, Wiley. 
35. Jumars P. A. (2000). Animal Guts as Ideal Chemical Reactors: Maximizing Absorption 

Rates, Am. Naturalist, 155(4), 528–543. 
36. Kaucher E. (1980). Interval Analysis in the Extended Interval Space IR, Computing 

Suppl. 2, 33-49. 
37. Kirov K., M. Krastanov (2005). Volterra Series and Numerical Approximations of ODEs, 

In: Li Zh., L. Vulkov, J. Wasniewski (Eds.), Numerical Analysis and Its Applications, 
Lecture Notes in Computer Science 3401, 337-344. 

38. Kot M.( 2001). Elements of Mathematical Ecology, Cambridge University Press. 
39. Krastanov M. (2005). On the Small-time Local Controllability, Mathematica Balkanica, 

19(1-2), 125-132. 
40. Krastanov M., N. Dimitrova (2003). A Stabilizing Feedback of an Uncertain Control 

System, In: Dimov I., I. Lirkov, S. Margenov, Z. Zlatev (Eds.), Numerical Methods and 
Applications, Lecture Notes in Computer Science 2542, 230-237. 

41. Krastanov M., N. Dimitrova (2003). Stabilizing Feedback of a Nonlinear Process 
Involving Uncertain Data, Bioprocess and Biosystems Engineering, 25(4), 217-220. 

42. Krastanov M., V. M. Veliov (2005). On the Controllability of Switching Linear Systems, 
Automatica, 41(4), 663-668. 

43. Kurzhanskij A. B. (1980). Dynamic Control System Estimation under Uncertainty 
Conditions, Probl. Control Inf. Theory, 9, 395-406. 

44. Ljung L., S. T. Glad (1994). On Global Identifiability for Arbitrary Model 
Parameterizations, Automatica, 30(2), 265–276. 

45. MapleAppl link “Biology” under “Science” in  
http://www.maplesoft.com/applications/index.aspx 

46. Margaria G., E. Riccomagno, M. J. Chappell, H. P. Wynn (2001). Differential Algebra 
Methods for the Study of Structural Identifiability of Rational Function State-space 
Models in the Biosciences, Math. Biosci., 174, 1-26. 

47. Markov S. (1990). Least-Square Approximation under Interval Input Data, Contributions 
to Computer Arithmetic and Self-Validating Numerical Methods, C. Ullrich (Ed.), 
Baltzer, IMACS, 133-147. 

48. Markov S. (1997). Some Problems of Mathematical Modelling in Ecology Involving 
Uncertainties, Phytologia Balcanica, 3/2-3, 155-165. 

49. Markov S. (2000). Mathematical Modelling of Dieting, In: Kenderov P. (Ed.), 
Mathematics and Education of Mathematics 29, Institute of Mathematics and Informatics, 
Bulg. Acad. of Sci., Sofia, 119-127 (in Bulgarian). 

50. Markov S. (2004). On Quasilinear Spaces of Convex Bodies and Intervals, J. Comp. 
Appl. Math., 162, 93-112. 



BIO

Autom
ati

on

Bioautomation, 2005, 3, 1 - 9 ISSN 1312 – 451X 
 

 8

51. Markov S. (2004). On Quasivector Spaces of Convex Bodies and Zonotopes, Numerical 
Algorithms, 37, 263-274. 

52. Markov S. (2005). Computer Algebra and Interval Analysis in the Modelling and 
Optimization of Biotechnological Processes, In: Tsonkov S. (Ed.), Bioprocess Systems 
(BioPS'2005), CLBME, BAS, Sofia, I.71-I.84. 

53. Markov S., Y. Akyildiz (1994). Mathematical Modelling of Biological Processes using 
Mathematica, In: Tsonkov S. (Ed.), Bioprocess Engineering, CLBA, BAN, Sofia, XXIX-
XXXI. 

54. Markov S., Y. Akyildiz (1996). Curve Fitting and Interpolation of Biological Data under 
Uncertainties, J. UCS 2 (2), 59-69. 

55. Markov S., D. Claudio (2004). On the Approximation of Centered Zonotopes in the 
Plane, In: Dimov I. et al. (Eds.), Large-Scale Scientific Computing, Lecture Notes in 
Computer Science 2907, 246-253. 

56. Markov S., R. Alt (2004). Stochastic Arithmetic: Addition and Multiplication by Scalars, 
Applied Numerical Mathematics, 50, 3-4, 475-488. 

57. Markov S., R. Alt, J.-L. Lamotte (2004). Stochastic Arithmetic: S-spaces and Some 
Applications, Numerical Algorithms, 37, 275-284. 

58. Markov S., E. Popova (1991). New Aspects of Mathematical Modelling: Curve Fitting, 
in: Andreev A. et al. (Eds.): Mathematical Modelling and Scientific Computations, Publ. 
House of Bulg. Acad. of Sci., Sofia, 49-63. 

59. Markov S., E. Popova (1991). Estimation and Identification using Interval Arithmetic, 
Proc. 9th IFAC/IFORS Symposium on Identification and System Parameter Estimation, 
Pergamon, 769-772. 

60. Markov S., E. Popova (1992). Curve Fitting under Interval Data for the Measurements: 
Software Tools and Numerical Examples, In: Mathematics and Mathematical Education, 
BAS, Sofia, 322-332. 

61. Markov S., E. Popova (1996). Linear Interpolation and Estimation Using Interval 
Analysis, In: Milanese M. et al., (Eds.), Bounding Approaches to System Identification, 
Plenum, New York, 139-157. 

62. Markov S., E. Popova, U. Schneider, J. Schulze (1996). On Linear Interpolation under 
Interval Data, Mathematics and Computers in Simulation, 42(1), 35-45. 

63. Markov S., P. Zlateva, M. Candev (1995). Mathematical Model of Bioconversion 
Processes in Living Organisms, Proc. 17th IFIP TC7 Conf. on System Modelling and 
Optimization, Praga, 168-171. 

64. Milanese M., J. Norton, H. Piet-Lahanier, E. Walter (Eds.) (1996). Bounding Approaches 
to System Identification, Plenum, New York. 

65. Moore R. E. (1966). Interval Analysis, Prentice Hall, Englewood Cliffs, N.J. 
66. Murray J. D. (1998). Mathematical Biology, Springer. 
67. Popova E., C. Ullrich (1996). Directed Interval Arithmetic in Mathematica: 

Implementation and Applications,Technical Report 96-3, Universitaet Basel, January, 1-
44. 

68. Popova E., C. Ullrich (1996). Embedding Directed Intervals in Mathematica, Revista de 
Informatica Teorica e Applicada, 3(2), 99-115. 

69. Popova E. (1997). Mathematica Tools for Explicit Manipulation of Interval Formulas, 
15th IMACS World Congress on Scientific Computation, Modelling and Applied 
Mathematics, Vol. 2 Numerical Mathematics, 389-394. 

70. Popova E., C. Ullrich (1998). Simplification of Symbolic-Numerical Interval 
Expressions, In: Gloor O. (Ed.), Proc. International Symposium on Symbolic and 
Algebraic Computation, ACM Press, 207-214. 



BIO

Autom
ati

on

Bioautomation, 2005, 3, 1 - 9 ISSN 1312 – 451X 
 

 9

71. Popova E. (2002). Solving Parametric Interval Linear Systems by Mathematica. In: 
Kelevedziev E., P. Boyvalenkov (Eds.), Mathematics and Education in Mathematics, Inst. 
Math. and Informatics, BAS, 391-396. 

72. Popova E. (2002). Quality of the Solution Sets of Parameter-Dependent Interval Linear 
systems. ZAMM 82, 10, 723-727. 

73. Popova E. (2004). Parametric Interval Linear Solver, Numerical Algorithms 37(1-4), 345-
356. 

74. Provost A., G. Bastin (2004). Dynamic Metabolic Modelling under the Balanced Growth 
Condition, Journal of Process Control, 14, 717-728. 

75. Raksanyi A., Y. Lecourtier, E. Walter, A. Venot (1985). Identifiability and 
Distinguishability Testing via Computer Algebra, Math. Bisosci., 77(1–2), 245. 

76. Rihm R. (1994). Interval Methods for Initial Value Problems in ODEs, In: Herzberger J. 
(Ed.), Topics in Validated Computations, Elsevier Studies in Computational Mathematics, 
Elsevier. 

77. Smith H. L., P. Waltman (1995). The Theory of the Chemostat. Dynamics of Microbial 
Competition, Cambridge University Press. 

78. Stephanopoulos G. N., A. A. Aristidou, J. Nielsen (1998). Metabolic Engineering: 
Principles and Methodology, Academic Press. 

79. Vermaseren J. A. M. (1995) How Useful is FORM?, In: Fleischer J. et al. (Eds.), 
Computer Algebra in Science and Engineering, World Scientific, 67–76. 

80. Voit E. O. (2000). Computational Analysis of Biochemical Systems, Cambridge 
University Press. 

81. Walter E. (1982). Identifiability of State Space Models, Berlin: Springer-Verlag. 
82. Walter E., L. Pronzato (1997). Identification of Parametric Models from Experimental 

Data, Springer. 
83. Wolfram S. (1999). The Mathematica Book, Cambridge University Press. 
84. Yeargers E. K., R. W. Shonkwiller, J. V. Herod (1996). An Introduction to the 

Mathematics of Biology: With Computer Algebra Models, Birkhaeuser. 
85. Yildirim N., M. Bayram (2000). Analysis of the Kinetics of Unstable Enzymatic Systems 

using MAPLE, App. Math. Comp., 112(1), 41-48. 
86. Yildirim N., M. Ciftci, O. I. Kufrevioglu (2002). Kinetic Analyses of Multi-enzyme 

Systems: A Case Study of the Closed System of Creatine Kinase, Hexokinase and 
Glucose 6-phosphate dehydrogenase, J. Math. Chem., 31(1), 121–130. 

87. Zeng Q. (1998). Computer Algebra is Indispensable in Some Problems of Mathematical 
Biology, Math. Biosci., 151(2), 219–225. 

88. Zlateva P., N. Dimitrova (2003). Sensitivity Analysis of a Nonlinear Model for a 
Continuous Culture of Saccharomyces cerevisiae Involving Uncertainty, Proc. BioPS'03, 
Sofia, I.58-I.62. 

89. Zlateva P., N. Dimitrova (2005). Stability Analysis of a Nonlinear Model of Wastewater 
Treatment Processes, In: Li Zh., L. Vulkov, J. Wasniewski (Eds.), Numerical Analysis 
and Its Applications, Lecture Notes in Computer Science 3401, 606-612. 

 


