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Abstract: The objective of this work was to model the biodegradation kinetics of toxic 
compounds toluene and benzene as pure substrates and in a mixture. As a control, Monod 
and Andrews models were used. To predict substrates interactions, more sophisticated 
models of inhibition and competition, and SKIP (sum kinetics interactions parameters) 
model were applied. The models evaluation was performed based on the experimental data 
from Pseudomonas putida F1 activities published in the literature. In parameter 
identification procedure, the global method of particle swarm optimization (PSO) was 
applied. The simulation results show that the better description of the biodegradation 
process of pure toxic substrate can be achieved by Andrews’ model. The biodegradation 
process of a mixture of toxic substrates is modeled the best when modified competitive 
inhibition and SKIP models are used. The developed software can be used as a toolbox of a 
kinetics model catalogue of industrial wastewater treatment for process design and 
optimization. 
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Introduction 
The mono-aromatics hydrocarbons benzene and toluene are found in oil derivatives and are 
widely used in chemical industries as raw materials for synthesis of other products [10]. The 
benzene is involved in the production of rubber, plastics, pesticides and inks. The toluene is 
an important commercial chemical product generally used as a dilution agent of inks and as a 
solvent in the production of resins, glues and oils. These composites are considered dangerous 
substances to the human health mainly for being depressors of the central nervous system, 
besides causing damages to the respiratory, gastrointestinal and reproductive system. The 
benzene is proved to be a carcinogenic and mutagen substance [2, 4], being able to cause 
leukemia. Hence, the extreme toxicity of benzene and toluene and their frequent presence in 
industrial discharges and fuel spillings as environmental contaminants have accelerated the 
research efforts to develop the green biodegradation technologies based on the last 
achievements of system modeling and optimization. The main goal of bioremediation 
processes is the costs minimization during the purification process where toxic compounds 
concentrations after the treatment are in accordance with environmental regulations. It means, 
the key knowledge for the biodegradation process optimization of aromatic hydrocarbons 
must be search in the microorganisms aerobic and/or anaerobic metabolite activity. 
 
Many pure bacterial cultures have been isolated on aromatic composites, as only carbon 
source, including Pseudomonas species. Hamed et al. [6], individually and in mixture, carried 
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through the experiments on biodegradation of the benzene and toluene, by using 
Pseudomonas putida (P. putida) F1 strain. The authors have experimentally investigated 
biodegradation of mixture of substrates their interactions during the process. However, their 
efforts did not extend to formalization of these phenomena in mathematical models. The 
knowledge about the biodegradation kinetic preserved in models leads to the successful 
application of bioremediation technologies for pollutants removal. 
 
The objective of this work was to evaluate microbial biodegradation kinetic of benzene and 
toluene by building different hypotheses on microbial degradation activity, and by validating 
them through the description of real experimental data published in the literature [6]. This 
goal was achieved by applying a modern particle swarm global optimizer method in the 
parameters identification procedure. 
 
Model development 
Microbial kinetics of toxic compounds utilization 
The kinetic models of biodegradation processes of benzene and toluene have been evaluated 
based on experimental data published by [6]. The modeling strategy was built on gradually 
increased sophistication of the kinetic hypotheses about biodegradation process on population 
level. The simplest (Monod and Andrews) were used for evaluation of pure substrates 
degradation by cells. When benzene-toluene mixture were degradated by the microbial 
population, more complex models of competitive, not-competitive, uncompetitive inhibition, 
and SKIP were applied. 
 
The Monod model for the ith substrate can be written as follows: 
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The inhibition phenomenon of the i th substrate on the specific growth rate can be representing 
by Andrews form: 
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The mathematical modeling of the multiple substrates microbial kinetics is sufficiently 
complex. The microorganisms grown on multiple substrates, show preference to some 
composites favoring their biodegradation [9]. When microorganisms grow on substrates 
mixture, some phenomena such as catabolite repression, induction and enzymatic inhibition 
must be considered, which promote the sequential or simultaneous substrates utilization. 
During the biodegradation competitive inhibition reaction, the inhibitor and the substrate 
compete for the same active site of the involved enzyme.  
 
The specific growth rates on benzene and toluene mixture are described by the competitive 
inhibition model [13] and are presented by equations (3) and (4), respectively: 
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Another model of enzymatic inhibition, evaluated in this work, corresponds to the model used 
by [12]. In this case, the inhibiting substrate binds to the enzyme-substrate complex, 
inactivating it, but not influencing the action of the free enzyme. The specific growth rates on 
benzene and toluene, where un-competitive inhibition phenomenon is involved, are presented 
by equations (5) and (6): 
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The not-competitive inhibition model [13] can be considered adequate when the inhibitive 
substrate is linked to the free enzyme and inactivates it. Hence, the specific growth rates on 
benzene and toluene can be written as follows: 
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The new developments in kinetics modeling show that when the iterations between substrates 
differ from enzyme inhibition type, it is possible to model the system by SKIP (Sum Kinetics 
Interaction Parameters) model. Yoon et al. [13], to describe adequately non-specific 
inhibitions, proposed the SKIP model between two substrates, where the key iteration Iij, 
indicates the effect of substrate i on biodegradation of a substrate j. 
 
Applying the SKIP model, the benzene and toluene specific growth rates can be written as 
follows: 
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Hamed et al. [6] have conducted batch experiments for degradation of single 45 mg.L-1 
benzene and 46.15 mg.L-1 toluene substrates, where the initial biomass concentrations were 
equal. The concentration of benzene-toluene mixture was 16.36 mg.L-1. 
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The biomass and key substrates balance equations can be written as follows: 
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Assuming that the total specific growth rate (SGR) can be expressed in an additive form of 
two individual SGRs, the system description can be completed as follows: 
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Based on the kinetics hypothesis about microbial behavior in a single and multiple substrate 
environment (see Eqs. 5 - 10, 14), the authors simulated different working conditions and 
analyzed sets of experimental data. 
 
Models parameters identification procedure 
The identification of model parameters values can be considered as a key step in model 
development procedure. In this work, a Particle Swarm Optimization (PSO) global optimizer 
created by Kennedy and Eberhardt [7] was used. 
 
The PSO method is similar to the evolutionary algorithms (EA) and is based on a population 
of individuals, called particle swarm [7]. However, the only difference between EA and PSO 
is in the space localization of individuals (particles) recognized by the operator speed. In 
genetic algorithms GA [5], the individuals pass through the operators reproduction, mutation 
and election. 
 
In the PSO method, each population individual (particle) is a vector that corresponds to a 
possible solution. Each particle possesses a position and a speed in the search space with a 
dimension equal to the parameters number. The particles act under three influences that are 
vectorly combine (current vector position; better vector position determined by the particle 
and better vector position determined by the group), where particles’ speed and space position 
were actualized in each iteration. 
 
The performance of each particle is measured in accordance with statistical criterion 
(objective function). The end of the search is determined based on the swarm better global 
position. 
 
The scheme of PSO algorithm is shown in Fig. 1. The following search parameters are pre-
defined for a population initialization: number of individuals or particles, number of 
iterations, number of parameters, limit of search, factors of inertion and acceleration 
constants. Further step includes an evaluation of the objective function global minimum. 
 
After a specified number of iterations, the best solution is used as information for search 
space restriction. It can be noticed that the parameters with high influence on global objective 
function are restricted. 
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Fig. 1 Scheme of PSO algorithm 

 
The above algorithm was used to evaluate model kinetics and stoichiometric parameters 
values based on published experimental data. The system of ordinary differential equations 
(see Eqs. 11-13) was solved by using RKF45 numerical method from the Maple symbolic 
mathematics software. For the search of an objective function (least square method) 
minimum, 300 vectors solution (particles) and 30 iterations were applied. 
 
Results and discussion 
The models efficiency evaluation was carried out on the objective function minimum value, 
which corresponds to the experimental data best fitting. The results obtained by using PSO 
global search method can be considered as good as expected. The minimum objective 
function values for each model describing pure substrate degradation are presented in Table 1, 
and for the benzene-toluene mixture in Table 2, respectively. 
 
 Table 1. Objective function values in the search of model parameters, 
 which describe the pure substrate utilization process 
 

Models Objective Function 
(Benzene) 

Objective Function 
(Toluene) 

Monod 51.3004 79.3665 
Andrews 28.0559 75.2279 
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 Table 2. Objective function values in the search of model parameters, 
 which describe the mixture substrates utilization process 
 

Models Objective Function 
Competitive inhibition 61.6835 
Uncompetitive inhibition 94.7615 
Non-competitive inhibition 132.8412 
SKIP 90.8251 

 
It can be notice, that the modified competitive inhibition and SKIP models have best fitted 
experimental data. However, the other evaluated models have also shown similar 
experimental data representation. 
 
The Andrews model was applied to describe set of experiments on single substrates taken 
from [6], where the initial 60 mg.L-1 benzene and 55 mg.L-1 toluene concentrations were used. 
The substrate inhibition effect occurred above 30 mg.L-1 benzene and 28 mg.L-1 toluene 
concentrations. Based on this observation, the authors considered to add the substrate 
inhibition term 2( / )S Ki  into the competitive inhibition model where degradation of the 
benzene-toluene mixture takes place. Thus, the specific growth rates on the substrates mixture 
are given by equations (15) and (16): 
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Following our strategy to model the single substrates degradation and to compare them with 
simultaneous degradation of two toxic substrates mixture, the authors applied Andrews model 
for description of the system where benzene is used as a single substrate (see Figs. 2 and 3). 
 
Experimental and simulation results of toluene degradation as a single substrate are presented 
in Figs. 4 and 5. Analyzing Figs. 2 - 5, one can see that the deviation between the model and 
experimental data occurs mainly in biomass concentration profile. As a key component of the 
system, the biomass experimental concentrations have to be determined with special attention. 
It means that every assay for biomass experimental points has to be carried through 
duplicates, triplicates etc. to minimize standard errors from the measurement of each point. 
Especially important for the parameters identification procedure is the knowledge about 
“exact” value of initial biomass concentration X0. 
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Fig. 2 Benzene utilization –  

experimental and simulation results obtained 
by using Andrews model 

Fig. 3 Biomass growth on benzene – 
experimental and simulation results 
obtained by using Andrews model 

Fig. 4 Toluene utilization –  
experimental and simulation results obtained 

by using Andrews model 

Fig. 5 Biomass growth on toluene – 
experimental and simulation results obtained 

by using Andrews model 
 
Applying different and more sophisticated models for description of substrate mixture 
biodegradation does not change the understanding about the system behavior. Experimental 
and simulation results of benzene-toluene microbial degradation by using the modified 
competitive inhibition model are shown in Figs. 6 and 7. As one can see, the model performs 
very well when describes benzene-toluene utilization. The simulated biomass and substrates 
profiles differ from the experimental ones because of prolonged lag phase (up to 3d hour) 
which description is not taken into account in kinetics models. Usually, in wastewater 
treatment, microbial adaptation to the toxic environment takes time and if the lag phase is 
long, the modeling efforts are concentrated on the point where the process starts. The 
indicator of the start-up has to be search in the substrates profile where the measurements of 
initial substrates concentrations are more correct than the initial biomass concentration 
measurements. 
 
Based on this understanding, one is able to evaluate more precisely the differences between 
models and experimental data. All the applied kinetics models to describe experimental data 
published by Hamed et al. [6] have faced difficulties to fit biomass concentration profiles. 
 
The evaluated parameters values by PSO method are shown in Table 3 for the biomass 
growth on single substrates, and in Table 4 for benzene-toluene mixture. 
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Fig. 6 Benzene-toluene utilization – 
experimental and simulation results obtained 

by using modified competitive inhibition 
model 

Fig. 7 Biomass growth on benzene-toluene 
mixture –experimental and simulation results 

obtained by using modified competitive 
inhibition model 

 
 Table 3. Estimated parameters values on the base of experimental data 
 for pure substrate (benzene and toluene) utilization 
 

Substrates Models µmax (h-1) Ks (mg. L-1) Yx/s (mg.mg-1) Ki (mg. L-1) 
Benzene Andrews 0.4825 3.1000 3.18 97.00 
Toluene Andrews 0.5800 15.8800 2.70 117.35 
Benzene Monod 0.3398 3.0000 3.15 - 
Toluene Monod 0.4565 12.1083 2.95 - 

 
 Table 4. Estimated parameters values on the basis of experimental data 
 of mixture substrates (benzene - toluene) utilization 
 

Substrates Models µmax 
(h-1) 

Ks 
(mg.L-1) 

Yx/s 
(mg.mg-1) 

Ki 
(mg.L-1) Itb Ibt 

Benzene Competitive inhibition 0.8375 28.5000 3.23 141.1500 - - 
Toluene Competitive inhibition 0.8440 7.6070 2.82 35.7050 - - 

Benzene Uncompetitive 
inhibition 0.8315 31.0000 2.12 - - - 

Toluene Uncompetitive 
inhibition 0.8045 9.4500 2.02 - - - 

Benzene Non-competitive 
inhibition 0.8500 38.6132 1.55 - - - 

Toluene Non-competitive 
inhibition 0.8500 12.4236 1.85 - - - 

Benzene SKIP 0.8500 15.0000 3.20 - 5 - 
Toluene SKIP 0.4087 2.0000 2.87 - - 0.2

 
During the search of stoichiometric and kinetics constants values by PSO method, the authors 
were guided by the microbiological meaning and on this bases the range of parameters 
changes were determined and the best current constants values were preserved. 
 
The descriptions of experimental data of the biodegradation process on pure substrate by 
using controls models of Monod and Andrews show that Andrews model gives more 

Benzene 
Toluene 
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information about the system response, when initial concentration of toxic substrate is close to 
the toxic critical values (see Table 1 as an example). 
 

Fig. 8 Benzene utilization –  
experimental and simulation results obtained 

by using Monod model 

Fig. 9 Biomass growth on benzene – 
experimental and simulation results obtained 

by using Monod model 

Fig. 10 Toluene utilization –  
experimental and simulation results obtained 

by using Monod model 

Fig. 11 Biomass growth on toluene – 
experimental and simulation results obtained 

by using Monod model 
 
Analyzing the system behavior represented in Figs. 12, 13, 14 and 15, one may highlight 
some phenomena to explain the differences after the 6th process hour between experimental 
and simulated data. We will consider the two-step analysis, which is based on the system 
response during the substrate metabolization, and the second it response, which connected 
with the biomass growth as a function of substrate degradation. 
 
First, the benzene concentration in the mixture is exhausted (see Figs. 12 and 14) and the 
remaining toluene concentration at 6th hour is about 20 mg.L-1. It means, that the biomass 
growth after the 6th hour continuous only by utilizing this remaining toxic compound. We 
assumed that the catabolite repression mechanisms or other internal cell control tools and 
these mechanisms are not involved in this case, and the specific growth rates and yield 
coefficients on benzene and toluene are similar (see Table 3 and 4). Hence, the biomass 
growth after the 6th hour is exclusively based on toluene remaining concentration and 
accordingly, the biomass concentration values are expected to be lower. The both utilized 
models (see Figs. 13 and 15) clearly show this trend. 
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The overall response of the SKIP model is better (see Fig. 17) which can be explained by an 
influence of the interaction parameters tb b tI Ks Ks=  and bt t bI Ks Ks= . 
 

Fig. 12 Benzene-toluene utilization – 
experimental and simulation results obtained 

by using uncompetitive inhibition model 

Fig. 13 Biomass growth on benzene-toluene 
mixture – experimental and simulation results 

obtained by using uncompetitive inhibition 
model 

Fig. 14 Benzene-toluene utilization – 
experimental and simulation results obtained 
by using non-competitive inhibition model 

Fig. 15 Biomass growth on benzene-toluene 
mixture – experimental and simulation results 
obtained by using non-competitive inhibition 

model 

Fig. 16 Benzene-toluene utilization – 
experimental and simulation results obtained 

by using SKIP model 

Fig. 17 Biomass growth on benzene-toluene 
mixture – experimental and simulation 
results obtained by using SKIP model 

Benzene 
Toluene 

Benzene 
Toluene 

Benzene 
Toluene 
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A support for our hypothesis about microbial degradation of benzene-toluene mixture by 
P. putida F1 [6] is that the involved induced enzymes of this species may catalyze 
simultaneous utilization of similar substrates. The experimental data obtained by these authors 
show trend for simultaneous utilization of benzene-toluene mixture. The preferable substrate 
species was benzene. Hence, the interpretation of Iij iteration coefficients has to be directed on 
phenomenon – internal metabolite interactions in multi-substrate environment [1, 3, 8, 11]. 
 
In Fig. 18, one can see the metabolic pathways of aerobic biodegradation of toluene and 
benzene by P. putida F1. 
 

 

3-methylcatechol

2-hydroxy muconic
semialdehyde 

2-hydroxy-6-oxo-
2,4-heptadienoate 

Toluene  
cis-dihydrodiol

Benzene  
cis-dihydrodiol

CH3 

OH 

CH3 

OH 

OH

OH

OH

OH
H

H

Toluene Benzene 

catechol 

 toluene 
dioxygenase 

O

CH3CH CH3CCOO--

O

+
acetaldehyde pyruvate 

OH 

COOH 

O

O CH3 O 

OH 

OH 

OH 

CH3 

OH
H

H

 
Fig. 18 Metabolic pathways of toluene and benzene in P. putida F1 

 
The metabolic pathways show that the common enzyme toluene dioxigenase (TD) is involved 
in the catabolism of these compounds [14], and based on this fact, a simultaneous 
biodegradation of toluene-benzene mixture is possible as well .It means that a competition 
between substrates for the active sites of the enzyme can be involved, and this competition 
will depend on the substrates concentration ratio. For some particular ratios of substrates 
concentrations competition can be involved, for other ratios – simultaneous utilization of 
substrates will take place. The term which considers substrate inhibition in the competitive 
inhibition model shows good results, which is an evidence for substrates interactions and 
influence on microbial metabolite activity. 
 
Two examples of Andrews’ model response to the pure substrate concentration influences are 
shown in Figs. 19 and 20. 



BIO

Autom
ati

on

Bioautomation, 2007, 7, 9 – 22 ISSN 1312 – 451X 
 

 20

Fig. 19 SGR simulations by Andrews model 
as a function of benzene concentration 

Fig. 20 SGR simulations by Andrews model 
as a function of toluene concentration 

 
Taking the first derivative of Eq. 2 and equalizing it to zero gives the critical substrate 
concentration and SGR maximum values (see Eqs. 17 and 18). 

KiKsS =*  (17) 

1
2

max*

+
=

Ki
KiKs

µµ  (18) 

 
The maximum SGRs on benzene were determined to be 0.3554 h-1 and 0.3341 h-1 for toluene, 
and their corresponding critical substrate concentrations’ values were 17.34 mg.L-1 and  
43.17 mg.L-1, respectively. 
 
Finally, the SGR models development was analyzed by using response surface analysis 
methodology. In Figs. 21 and 22 one can see the SGR response as a function of toluene-
benzene concentration changes where the modified competitive inhibition model is applied. 
 

Fig. 21 SGR simulation by modified 
competitive inhibition model as a function of 

benzene and toluene concentrations 
(benzene is an inhibitor) 

Fig. 22 SGR simulation by modified 
competitive inhibition model as a function of 

benzene and toluene concentrations 
(toluene is an inhibitor) 

 
The analysis shows the influence of the benzene-toluene mixture on the SGR and shows faster 
decreasing compare with the growth on pure substrates. 
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Conclusions 
In this work, the biodegradation kinetics models were applied to describe SGR and microbial 
physiology on toluene and benzene toxic compounds as pure substrates and in a mixture. To 
evaluate pure substrate influence on microbial physiology, the simple Monod and Andrews 
models were used as controls. Substrates inhibition of toxic compounds and their interaction 
in mixture were modeled by using more sophisticated kinetic hypothesis where non-
competitive, competitive and SKIP models were applied. The models evaluation was 
performed based on the experimental data from P. putida F1 activities [6]. In parameter 
identification procedure, the global method of particle swarm optimization (PSO), created by 
[7], was applied. The simulation results show that the better description of the biodegradation 
process of pure toxic substrate can be achieved by Andrews’ model. The biodegradation 
process of a mixture of toxic substrates is modeled the best when modified competitive 
inhibition and SKIP models are used. Evaluation of SGR models capacity to predict microbial 
behavior in the range of operational conditions was performed by using surface response 
analysis. The developed software can be used as a toolbox in a kinetics model catalogue of 
industrial wastewater treatment for process design and optimization. 
 
Nomenclature 

S  –  substrate concentration (mg.L-1) 
xµ  –  specific growth rate (h-1) 

maxµ  –  maximum specific growth rate (h-1) 
X  –  biomass concentration (mg.L-1) 
Ks  –  saturation constant (mg.L-1) 
Ki  –  inhibition constant (mg.L-1) 
Iij –  interaction parameter between two toxic substrates (-) 

SXY /  –  yield coefficient (mg cells/ mg substrate) 
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