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Abstract: A multiple objective optimization is applied for finding an optimum policy of fed-
batch processes of whey fermentation and L-lysine production. The multiple objective 
optimization problems are transformed to a standard problem of optimization with single 
objective function by a general utility function with weight coefficients for each single utility 
coefficient criteria. A combined algorithm is applied when solving the maximizing decision 
problem. The algorithm includes a method for random search of finding an initial point and 
a method based on the fuzzy sets theory, combined in order to find the best solution of the 
optimization problem. The application of the combined algorithm eliminates the main 
disadvantage of the used fuzzy optimization method, namely it decreases the number of 
discrete values of the control variables. Thus, the algorithm allows problems with larger 
scale to be solved. After this multiple optimization, the useful product quality rises and the 
residual substrate concentration at the end of the process  decreases. In this way, the process 
productivity is increased. 
 
Keywords: Multiple objective optimization, Combined algorithm, Method of random search, 
Fuzzy sets theory, Fuzzy optimization, L-lysine, Whey fermentation. 

 
Introduction 
Multiple objective optimization is a natural extension of the traditional optimization of a 
single objective function. If the multiple objective functions are commensurate, minimizing a 
single objective function, it is possible to minimize all criteria and the problem can be solved 
using traditional optimization techniques. On the other hand, if the objective functions are 
incommensurate, or competing, then the minimization of one objective function requires a 
compromise in another objective function. The competition between multiple objective 
functions is a key distinction between multiple objective optimization and traditional single 
objective optimization. 
 
Multiple objective optimizations provide a framework for understanding the connections 
between the various objective functions and allow the engineer to make decisions on how to 
trade-off among the objectives to achieve performance considered to be “the best”. It is an 
inherently interactive algorithm, with the engineer constantly making decisions. 
 
In [19] a Pareto optimization technique has been used to locate the optimal conditions for an 
integrated bioprocessing sequence and the benefits of first reducing the feasible space by the 
development of a series of operation windows to provide a smaller search area for the 
optimization. 
 
In [11, 14] a general multiple objective optimization framework of biochemical systems is 
shown. It applies for optimizing several metabolic responses involved in the ethanol 
production process by using Saccharomyces cerevisiae strain. 
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In [13] a procedure for solving multiple objective optimization problems is illustrated.  
A fuzzy set is used to model the engineer’s judgment on each objective function. The 
properties of the obtained compromise solution were investigated along with the connections 
between the present method and based fuzzy logic one. An uncertainty, which affects the 
parameters, is modeled by means of fuzzy relations or fuzzy numbers, whose probabilistic 
meaning is clarified by a random set and possibility theory. Constraint probability bounds that 
find a solution can be calculated and procedures that consider the lower bound as a constraint 
or as an objective criterion are presented. Some theorems make the computational effort 
particularly limited regarding a vast class of practical problems. The relations with a recent 
formulation in the context of convex modeling are also pressured. 
 
In [3, 16, 17] a fuzzy-decision-making procedure is used to find the optimal feed policy of a 
fed-batch fermentation process for fuel ethanol production using a genetically engineered 
Saccharomyces yeast 1400 as well as the fuzzy optimization of a two-stage fermentation 
process with cell recycling including an extractor for lactic acid production. By using an 
assigned membership, a function for each of the objectives, the general multiple objective 
optimization problems were converted into maximizing decision problems. In order to obtain 
a global solution, a hybrid search method of differential evolution is introduced. 
 
In [5-9] you can see an application of dynamic and neuro-dynamic programming for single 
objective optimal control of fed-batch fermentation processes by strains E. coli, 
Kluyveromyces marxianus var. lactis MC 5 and a fermentation process for L-lysine 
production. The results show that the neuro-dynamic programming lightened the computing 
procedure and decreased the computing time in comparison with dynamic programming. 
These priorities make the method suitable for on-line single objective optimization. 
 
In [10] a simple combined algorithm guideline is used to find a satisfactory solution to the 
general multiple objective optimization problem of a fed-batch fermentation process for 
lactose oxidation from a natural substratum of the strain Kluyveromyces marxianus var. lactis 
MC 5. The obtained optimal control results show an increase of the process productivity and a 
decrease of the residual substrate concentration. 
 
In this study multiple objective optimization of aerobic fed-batch cultivation of 
Kluyveromyces marxianus var. lactis MC 5 and L-lysine production by strain Brevibacterium 
flavum 22 LD is developed. The single objective functions reflect the biomass process and 
L-lysine productivity, degree of the substrate utilization and the separation cost in downstream 
processing. The multiple objective optimization problems are transformed to problems with a 
single objective function. The combined algorithm applies for the optimal problem solution. 
The algorithm includes a method for random search of an initial point and a method based on 
fuzzy sets theory. 
 
Materials and methods 
The processes models 
 
The models of the processes have the types [10, 15]: 
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Model of fed-batch process of whey fermentation 
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Model of fed-batch process of L-lysine biosynthesis 
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In the models (1) and (2) the symbols are as follows: 
 
C* – equilibrium dissolved oxygen concentration [g⋅l-1]; CL – dissolved oxygen concentration 
[g⋅l-1]; F – feed flow rate [l⋅h-1]; kla – volumetric mass transfer coefficient [h-1]; 
S – concentration of substrate [g⋅l-1]; Sin – input feed substrate concentration [g⋅l-1]; t – process 
time [h]; X – biomass concentration [g⋅l-1]; ρ  – liquid density [kg⋅m-3]; µ  – specific growth 
rate [h-1]; µm – maximal grown rate [h-1]; V – working volume, [l]; D – bioreactor  
diameter [m]; d – impeller diameter [m]; n – agitation speed [s-1]; P – power input [W];  
QG – gas flow rate [m3⋅s-1]; Re – Reynolds number; WG – gas velocity [m⋅s-1]; εG  – gas  
hold-up; L – concentration of L-lysine [g⋅l-1]; Tr – threonine concentration [mg⋅l-1];  
Trin – input feed threonine concentration [g⋅l-1]; η  – specific rate of L-lysine [h-1]. 
 
The initial conditions and coefficients in models are given as follows: 
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Model of fed-batch process of whey fermentation 
X(0) = X0 = 0.2, S(0) = S0 = Sin = 50, C(0) = C0 = C* 

 = 6.0x10-3, V(0) = V0 = 1, µm = 0.89, 
kS = 1.62, kC = 3.37x10-3, ki = 0.47; Y1 = 2.25, Y2 = 3.4x10-3. 
 
Model of fed-batch process of L-lysine biosynthesis 
X(0) = X0 = 3, S(0) = S0 = Sin = 100, Tr(0) = Tr0 = Trin = 80, CL(0) = C* = C0 = 6.1x10-3, 
L(0) = 0, V(0) = V0 = 10, k1 = 20.8, k2 = 42, k3 = 28, k4 = 1.1, k5 = 1.01, k6 = 0.07, k7 = 0.51, 
k8 = 62, k9 = 28, k10 = 37, k11 = 4, k12 = 0.12, k13 = 6.1, k14 = 448, k15 = 22, k16 = 209, 
kla = 120. 
 
System constraints of the both processes 
Nearly all engineering processes will have physical constraints. In this study, the flow rate is 
bounded and the volume of the bioreactor is constrained, i.e. 

max)(0 FtF ≤≤  (3) 
0)(1 ≤−= fVtVg  (4) 

 
For the both processes the glucose (5), oxygen (6) and threonine (9) concentration must be 
positive all the time; otherwise, an unrealistic solution in the optimization problem will be 
obtained. Therefore we have the following: 

0)(2 ≤−= tSg  (5) 
0)(3 ≤−= tCg L  (6) 

 
In addition, here are the following constrains for stoichiometry by the processes: 
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If the constraints in (7)-(8) and (10)-(12) are not included in the optimization problem, 
unrealistic predicted values may be found. 
 
Formulation of multiple objective optimizations 
A production-planning problem is considered in this study when the decision maker designs a 
control policy to find the optimal feed flow rate – F(t); input feed substrates concentration – 
Sin and Trin; initial substrates concentration – S0 and Tr0 of the both processes, and the 
associated objective function values. Such an optimal solution can be obtained by multiple 
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objective optimization techniques. This problem is simply called multiple objective 
optimization problem and is expressed like this: 

[ ] fff tVXtVtXQ 001 )()()(max −=u  (13) 
[ ] 002 )()(max StSSQ f−=u  (14) 
[ ] 0003 )()(min VSVtVSQ fin +−=u  (15) 

[ ] fff ttVtLQ )()()(max 4 =u  (16) 
[ ] 005 )()(max TrtTrTrQ f−=u  (17) 

[ ] 0006 )()(min VTrVtVTrQ fin +−=u  (18) 
 
The objective functions (13) and (16) correspond to the productivity of the processes – 
biomass production, for process (1) and L-lysine production for process (2). The objective 
functions (14) and (17) are the degree of the substrates utilizing. The objective functions (15) 
and (18) are the separation cost in downstream processing. 
 
The control variables are satisfied in the following intervals: 

1. For whey fermentation: 0 ≤ F(t) ≤ 0.02;  40 ≤ S0 ≤ 120;  40 ≤ Sin ≤ 80. 
2. For L-lysine production:  0 ≤ F(t) ≤ 0.05;  80 ≤ S0 ≤ 120;  80 ≤ Sin ≤ 120; 

 60 ≤ Tr0 ≤ 100;  60 ≤ Trin ≤ 100. 
 
Since the feed rate F(t) is time-dependent variable, the optimal control problem can be 
considered for an infinite dimensional problem. To solve this problem efficiently, the feed 
flow rate is represented by a finite set of control parameters in the time interval tj-1 < t < tj as 
follows F(t) = F(j) for j = 1, …, K – number of time partitions. 
 
The multiple objective optimization problem (13)-(18) is transformed to a problem with a 
single objective function by general utility function with weight coefficients for each single 
utility coefficients criterion. The single objective functions Qj(u) are transformed in the utility 
coefficients ηj(u) by the formula [12]: 
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value of the criterion; Qc,j – more unprofitable result of criterion; Qmax,j and Qmin,j – utility 
borders, i.e. the maximal and minimal values of Qj(u). 
 
After transformation, the generalized utility function is composed from the type: 
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Generalized utility function for the whey fermentation is composed from the type: 
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Generalized utility function for the L-lysine biosynthesis is composed from the type: 
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The optimal decision u0 maximizing the general utility function for the both processes was 
found by using  a combined optimization algorithm. The algorithm includes two optimization 
methods: a method for random search of an initial point and a method based on fuzzy sets 
theory. 
 
A combined algorithm for optimization 
Random search with back step (RSBS) algorithm 
The method of RSBS does not require a calculation of gradients, it is simple for 
programming; allows organizing adaptive algorithms and algorithms for searching a global 
extremum. RSBS is more effective when there are many control variables (more than four), 
because the study space is always divided in two areas – felicitous and infelicitous, and the 
probability for falling in the one or the other does not depend on the number of variables. 
RSBS algorithm is well known from the literature [12]. 
 
Fuzzy algorithm 
The fuzzy sets theory (FST) has a great application in modeling, optimization, and optimal 
control of biotechnological processes [1-3, 16-18]. In this paper, a method based on FST is 
used [1, 2]. The Fuzzy algorithm includes only fuzzy criteria from  type “The optimum 
criterion Qa to be possibly higher” and it is presented by the following membership function: 
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where  and  are low and upper values for criterion. L

aQ U
aQ

 
The following optimization problem in the class of the fuzzy mathematical programming 
problems can be formulated: 

)(xa~m)( uu
u aa QQ ≅  (24) 

 
where “ xa~m ” means “in possibility maximum”; “≅” means “is come into view approximately 
in following relation”. 
 
For determination of this problem, an approach generalizing the Bellman-Zadeh’s method [2] 
is used: 

( )[ ]θθ ηγηγη )(11)()1()( aaaD QQQ −−+−=  (25) 
 
where: γ – parameter characterized the compensation degree; θ – parameter, those give weight 
of η(Qa). 
 
The solution is received using the common defuzzification method BADD [4]: 
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where q is the number of discrete values of the vector u. 
 
The generalized COMBINED algorithm scheme is: 
 
BEGIN 

1. Input number of control variables m, integer constant IY, and number of discrete 
values q of vector u. 

2. Input possible area for each control variables umin, u0, umax, and steps h. 
3. Input fuzzy sets parameters γ  and θ. 
4. Computing models before optimization from (1) and (2). 
5. CALL RSBS(m, IY, umin, umax, h, u0, Qa). 
6. Beginning point u0 is accepted as equal to the one received from RSBS. 
7. Computing models after RSBS optimization and optimal value of the each criterions 

Qj and Qa. 
8. CALL FUZZY(m, q, Gamma, Theta, u0, Qa). 
9. Returns optimal values of control variables u0 after COMBINED optimization. 
10. Computing models after COMBINED optimization and optimal value of the each 

criterions Qj and Qa. 
11. Print results: optimal values of control variables u0 and criterions Qj(u) and Qa(u); 

time, models (1) and (2) before optimization, after COMBINED optimization; 
criterions Qj(t, u), Qa(t, u), and F(t). 

END 
 
The generalized FUZZY algorithm scheme is: 
BEGIN 

1. Computing discrete values of each control variable: 
( )[ ] ( )1minmaxmin −−+= qki uuuu , for k = 0, 1, …, q and I = 1, 2, …, m. 

2. Computing low and upper values for fuzzy criterion received from RSBS: 
. )(2.1,)(8.0 00 uu a

U
aa

L
a QQQQ ==

3. Computing of membership function ηD(Qa) from (23). 
4. Computing of membership function of the decision ηD(Qa) from (25). 
5. Obtaining solution u0 using defuzzification operator from (26). 
6. Returns optimal values of control variables u0 and criterions Qj(u) and Qa(u). 

END 
 
All that is programmed using FORTRAN 77. All computations are performed on an Intel 1.8 
GHz computer using Microsoft Windows XP Pro Edition operating system. 
 
Results and discussion 
Fed-batch process for whey fermentation 
The obtained results after optimization are S0 = 57.0 g⋅l-1 and Sin = 69.00 g⋅l-1. The results for 
the basic kinetic variables, productivity and feed rate are shown from Fig. 1 to Fig. 4. 
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The obtained results show that the biomass concentration increases by more than 32%, the 
substrate concentration decreases by 9% (Fig. 1), also the oxygen after optimization is better 
utilized (Fig. 2) i.e. here is a decrease with 7%. The process productivity has increased with 
more than 30% (Fig. 3). 
 
Fed-batch process for L-lysine production 
The obtained results after optimization for the substrate concentrations (glucose and 
threonine) in the feeding solution are: Sin = 114 g⋅l-1and Trin = 94 g⋅l-1, as their input values are 
S0 = 89 g⋅l-1 and Tr0 = 86 g⋅l-1. The general kinetic variables – productivity and feed rate are 
shown from Fig. 5 to Fig. 8. 
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The obtained results show that the substrates concentration decreases: for the glucose by more 
than 48% and for threonine by 20% (Fig. 5), the oxygen after optimization (Fig. 6), here is 
decreased by more than 43%. The L-lysine concentration increases by more than 12% and the 
process productivity by more than 30% (Fig. 7). 
 
Conclusions 
1. The applied multiple objective optimization of the process  shows а vastly increase of 

their productivity, respectively decrease of the residual substrate concentration. This 
result leads to a higher economical effectiveness for each of them at smaller outlay. 

2. The obtained results from the study show that multiple objective optimization is a more 
complex approach minimizing the risk in the procedure of decision making and 
maximizing the formulated objective. 

3. Proposed combined algorithm for optimization includes a method for random search of an 
initial point and a method based on fuzzy sets theory, combined in order to find the best 
solution of the optimization problem. The application of the combined algorithm 
eliminates the main disadvantage of the used fuzzy optimization method, namely 
decreases the number of discrete values of control variables. In this way, the algorithm 
allows the solvattion of problems with larger scale. Developed combined algorithm can 
be used for the solution of other optimization problems in the area of bioprocess systems. 
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