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On the concept of Generalized net 
The concept of a Generalized Net (GN) is described in the books [3, 6]. 

 

GNs are defined in a way that is principally different from the ways of defining the other 

types of Petri nets [13].  

 

Let us first give some informal remarks concerning GN notations. A GN is shown in Fig. 1. 

Its places are marked with Ο. Each part of the net which looks like the one shown in Fig. 2, is 

called transition (more precisely a graphic structure of the transition). Transition's conditions 

are denoted by . GNs, like other nets, contain tokens which transfer from place to place. 

Every token enters the net with an initial characteristic. During each transfer, the token 

receives new characteristics. So, they “collect” their “history” and in some sense they 

transform in individuals. This is the first essential difference with the other types of Petri nets. 

 

Every GN-place has at most one arc entering and at most one arc leaving it. The places with 

no entering arcs are called input places for the net (l1, l2 in Fig. 1) and those with no leaving 

arcs are called output places (l14 and l15 in Fig. 1). 

 

The input places are always at the transition’s left, and the output places are always at the 

transition’s right. Every place has at most one input and at most one output arc. 

 

When tokens enter the input places of a transition, it becomes potentially fire able and at the 

moment of their transfer towards the transition’s output places, it is being fired. 

 

The transition becomes active at a given time-moment and is active up to another predefined 

moment. 

 

Another basic difference between GNs and the ordinary Petri nets is that here transitions are 

objects of a more complex nature. A transition may contain m input and n output places where 

m, n ≥ 1. 
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Fig. 1 

 

 
 

Fig. 2 

 

The third basic difference is related to the time during which the GN functions. It can be 

determined from some global time-scale and in this case the net is not invariant about the 

time-parameters.  

 

In the present form of the GN-definition, time is discrete. It increases with discrete steps. We 

can see the status of the GN-model in each current time-moment. 

 

Some notations: 

• Ν = {0, 1, 2, …} ∪ {∞}; 

• priX is the i-th projection of the n-dimensional set, where n ∈ Ν, n ≥1 and 1 ≤ k ≤ n.  

 

More generally, for a given n-dimensional set X(n ≥ 2) 

1 2

1
k j

k

i ,i ,...,i i

j

pr X pr X
=

= ∏  

(1 ≤ ij ≤ n, 1 ≤ j ≤ k, ij' ≤ ij'' for j' ≠ j''); 
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• card(X) is the cardinality of set X. 

Formally, every transition is described by a seven-tuple: 

Z= 〈L′, L″, t1, t2, r, M, □〉, 

 

where: 

(a) L′ and L″ are finite, non-empty sets of places (the transition’s input and output places, 

respectively); for the transition in Fig. 2 these are 

L′ = {
1 2 ml' ,l' ,...,l' } 

 

and 

L″ = {
1 2 nl" ,l" ,...,l" }; 

 

(b) t1 is the current time-moment of the transition’s firing; 

(c) t2 is the current value of the duration of its active state; 

(d) r is the transition’s condition determining which tokens will transfer from the 

transition’s inputs to its outputs. Parameter r has the form of an Index Matrix (IM, see, e.g., 

[2, 3, 5, 6]): 

  
1l"  … 

jl"  … 
nl"  

 
1l'       

r = �  ri,j 

 
il'  (ri,j  – predicate) 

 �  (1 ≤ i ≤ m, 1 ≤ j ≤ n) 

 
ml'       

where ri,j is the predicate which gives the condition for transfer from the i-th input place to the 

j-th output place. When ri,j has truth-value “true”, then a token from the i-th input place can be 

transferred to the j-th output place; otherwise, this is impossible; 

(e) M is an IM of the capacities of transition’s arcs: 

  
1l"  … 

jl"  … 
nl"  

 
1l'       

M = �  
 

il'  

 �  

mi,j 

(mi,j ≥ 0 – natural number or ∞) 

(1 ≤ i ≤ m, 1 ≤ j ≤ n) 

 
ml'       

 

(f) □ is called transition type and it is an object having a form similar to a Boolean 

expression. It may contain as variables the symbols that serve as labels for a transition’s input 

places, and it is an expression built up from variables and the Boolean connectives ∧ and ∨ 

determining the following conditions: 

� ∧ (
1 2 ui i il ,l ,..., l ) – every place 

1 2 ui i il ,l ,..., l  must contain at least one token, 

� ∨ (
1 2 ui i il ,l ,..., l ) – there must be at least one token in all places 

u21 iii l,...,l,l , where 

{
u21 iii l,...,l,l } ⊂ L′. 

 

When the value of a type (calculated as a Boolean expression) is “true”, the transition can 

become active, otherwise it cannot. 

 

The ordered four-tuple 
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E= 〈〈A, πA, πL, c, f, θ1, θ2〉, 〈K, πK, θK〉, 〈T, t
o
, t

*
〉, 〈X, Φ, b〉〉 

is called a Generalized Net (GN) if: 

(a) A is a set of transitions (see above); 

(b) πA is a function giving the priorities of the transitions, i.e., πA: A → N; 

(c) πL is a function giving the priorities of the places, i.e., πL: L → N, where  

L = pr1A∪ pr2A 

 

Obviously, L is the set of all GN-places; 

(d) c is a function giving the capacities of the places, i.e., c: L → N; 

(e) f is a function which calculates the truth values of the predicates of the transition’s 

conditions (for the (ordinary) GNs, described in this section, function f obtain values “false” 

or “true”, or values from set {0, 1}. If P is the set of the predicates used in a given model, then 

we can define f as f: P → {0, 1}; 

(f) θ1 is a function giving the next time-moment for which a given transition Z can be 

activated, i.e., θ1(t) = t′, where pr3Z = t, t′∈ [T, T + t
*
] and t ≤ t′. The value of this function is 

calculated at the moment when the transition terminates its functioning; 

(g) θ2 is a function giving the duration of the active state of a given transition Z, i.e.,  

θ2(t) = t′, where pr4Z = t ∈ [T, T + t
*
] and t′ ≥ 0. The value of this function is calculated at the 

moment when the transition starts functioning; 

(h) K is the set of the GN’s tokens. In some cases, it is convenient to consider this set in 

the form 

I ll Q
K K

∈
= ∪ , 

where Kl is the set of tokens which enter the net from place l, and Q
I
 is the set of all input 

places of the net; 

(i) πK is a function giving the priorities of the tokens, i.e., πK: K → N; 

(j) θK is a function giving the time-moment when a given token can enter the net, i.e., 

θK(α) = t, where α ∈ K and t ∈ [T, T + t
*
]; 

(k) T is the time-moment when the GN starts functioning. This moment is determined 

with respect to a fixed (global) time-scale; 

(l) t
o
 is an elementary time-step, related to the fixed (global) time-scale; 

(m) t*
 is the duration of the GN functioning; 

(n) In all publications on GNs [3] it is defined that X is the set of all initial characteristics 

that the tokens can receive when they enter the net. In [6], for a first time another 

interpretation of X will be introduced: X is a function which assigns initial characteristics to 

every token when it enters input places of the net; 

(o) Φ is the characteristic function which assigns new characteristics to every token when 

it makes a transfer from an input to an output place of a given transition; 

(p) b is a function giving the maximum number of characteristics a given token can 

receive, i.e., b: K → N. 

 

For example, if b(α) = 1 for any token α, then this token will enter the net with some initial 

characteristic (marked as its zero-characteristic) and subsequently it will keep only its current 

characteristic. When b(α) = ∞, token α will keep all its characteristics. When 

b(α) = k < ∞, except its zero-characteristic, token α will keep its last k characteristics 

(characteristics older than the last k will be “forgotten”). Hence, in general, every token α has 

b(α)+1 characteristics when it leaves the net. 
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We must note that this definition is intentionally not fully formalized. If we fully formalize 

the transition conditions and the characteristic functions of the GNs, the applicability of GNs 

would obviously decrease. 
 

A given GN may not have some of the above components. In these cases, an asterisk will be 

written in place of every missing component. The GNs of this kind generate a special class 

called reduced GNs. 
 

The static structure of a given GN is determined by the elements of the set pr1,2,6,7A, i.e., the 

static structure of a GN is determined by the collection of the following elements for each 

transition: the input and output places, the index matrix of the arcs and the transition type. The 

dynamical character of the net is due to the GN’s tokens and the transitions’ conditions 

(pr5A), the temporal character comes from the components T, t
o
, t

*
 and from the elements of 

the set pr3,4A. Finally, the components Φ, X and b play the role of a memory in the GN. 
 

Various functions are also related to these four GN components: the functions πA, πL, c to the 

static structure; f, πK to the dynamical elements; θ1, θ2 and θK to the temporal components. 
 

A variety of different types of GN-extensions are defined and each of them is proved [3, 6] to 

be a conservative extension of the ordinary GNs. The basic types of GN-extensions are: 

• Intuitionistic fuzzy GNs of types 1, 2, 3, and 4; 

• Colour GNs; 

• GNs with interval activation time; 

• GNs with complex structure; 

• GNs with global memory; 

• GNs with optimization components; 

• GNs with additional clocks; 

• GNs with stop-conditions; 

• Opposite GNs; 

• Generalized net with tokens duration of “life”; 

• GNs with tokens possessing enhanced memory capabilities; 

• Generalized nets in which the tokens obtain variables as characteristics; 

• Generalized nets with three-dimensional structure; 

and others. 
 

The algebraic aspect of the GN theory is the oldest one. In its frames different operations and 

relations over transitions of GNs, and operations and relations over GNs are defined. 
 

The idea of defining operators over the set of GNs dates back to 1982 [3]. It is an essential 

extension of the Valk’s idea from [14]. 
 

Now, the operator aspect has an important place in the theory of GNs. Six types of operators 

are defined in its framework. Every operator assigns to a given GN a new GN with some 

desired properties. The defined groups of operators are: 

• global (G –) operators; 

• local (P –) operators; 

• hierarchical (H –) operators; 

• reducing (R –) operators; 

• extending (O –) operators; 

• dynamical (D –) operators. 
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The global operators transform, according to a definite procedure, an entire given net or all its 

components of a given type. There are operators that change: the form and structure of the 

transitions, temporal components of the net; the duration of its functioning, the set of tokens, 

the set of the initial characteristics; the characteristic function of the net; the evaluation 

function, or other net’s functions. 

 

The second type of operators are local operators. They transform single components of some 

of the transitions of a given GN. There are 3 types of them: 

• temporal, that change temporal components of a given transition; 

• matrix, that change some of the index matrices of a given transition; 

• other operators: they alter the transition's type, the capacity of some of the places 

in the net, the characteristic function of an output place, the evaluation function 

associated with the transition condition predicates of the given transition. 

 

The third type of operators are the hierarchical operators. They are of 6 different types and 

fall into two groups by their way of action:  

• expanding, 

• shrinking; 

a given GN, and by their object of action – into three groups: 

• acting upon or giving as a result of their work a place, 

• acting upon or giving as a result of their work a transition, 

• acting upon or giving as a result of their work a subnet. 
 

The next (fourth) group of operators defined over GNs produces a new, reduced GN from a 

given net. They would allow the construction of elements of the classes of reduced GNs. To 

find the place of a given Petri net modification among the classes of reduced GNs, it must be 

compared to some reduced GN obtained by an operator of this type. These operators are 

called reducing operators. 

 

Finally, the operators from the last-sixth-group are related to the ways of the GN functioning 

so they are called dynamical operators. They are the following: 

• operators that determine the procedure of evaluating the transition condition 

predicates; 

• operators governing tokens splitting: one that allows and one that prohibits 

splitting, respectively; and operators governing the union of tokens having a 

common predecessor: allowing and prohibiting; 

• operators that determine  the strategies of the tokens transfer: one at a time vs. in 

packs; 

• operators related to the ways of evaluating the transition condition predicates: 

predicate checking; expert estimations of predicate values; predicates depending 

on a solution to an optimization (e.g., transportation) problem; 

• operators used to change the direction of the tokens transfer. 

 

The operators of different types, as well as the other that can be defined, have an important 

theoretical and practical value. On the one hand, they help the properties and the behaviour of 

GNs to be studied, and on the other hand, facilitate the modelling of many real processes. 

Information on the research about GNs can be found in [1, 11].  
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Examples of GN-models of biological and medical processes 
Here we shall give a series of examples illustrating the process of development of a GN-

model. The GNs that we will construct here are reduced ones. The present models have 

independent sense. Part of them are based on [4]. 

 

Let us start with the GN-interpretation of the system “environment – organism” (Fig. 3), 

following [4]. 

 

Here we shall construct two separate types of GN-models and we shall show their 

development with complication of the modelled biological process. 

 

The first interpretation is shown in Fig. 4 and the second one – in Fig. 5. The places which 

interpret equal objects are marked by equal signs. Place E in both GNs corresponds to the 

“environment” and place O – to the “organism”. Place l is an additional one, which is 

necessary for the GN-correctness. In the first model the relation “environment – organism” is 

described by the GN-transitions Z1 and Z2. The GN will contain one token, which will 

circulate through places E and O, obtaining as current characteristics the evaluation of the 

status of the environment and of the organism (by some criteria). The second model also 

contains the same two transitions, but now their sense is detected at determining of the result 

of the same relation. This result can be accounted as the current characteristic of the token in 

place l. This token will split into two tokens which will enter places E and O, obtaining 

characteristics as above and after that they will unite in one token in place l. 

 

 
Fig. 3 

 
Fig. 4 

 

 

 
Fig. 5 

 

Additional factors are added in Fig. 6 to the model from Fig. 3. These factors are marked in 

the GN-interpretations from Figs. 7 and 8 by place A in which enters a token with initial 

characteristic the values of these additional factors. In the first model the new token will unite 
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with the interior token in place O. The same situation will occur in the second model, but now 

the form of the first transition condition is more complex: 

  E O  

Z1 = <{A, l}, {E, O},  A false true >.  

 l true true  

 

 
Fig. 6 

 

 
Fig. 7  

Fig. 8 

 

The next step of complication of the model in [4] is related to the process of environment 

parameters accounting (without their control – see Fig. 9). The values of these environment 

parameters are marked in the GN-interpretation from Figs. 10 and 11 by the token 

characteristic, which will obtain the token entering place P from place E. This token is a result 

of splitting the token from place E to two separate tokens. In both cases place P is an output 

place for the net and the token's characteristic is used for collecting statistical data for the 

modelled process, which will be calculated after finishing the simulation. 

 

The form of the first transition of the first GN-model now is: 

  O P  

Z1 = <{E, A}, { O, P},  E true true >,  

 A true false  

 

and the form of the second transition of the second GN-model is: 

 

  P l  

Z2 = <{E, O}, { P, l},  E true true >.  

 O false  true  
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The concept of feedback is among the most important ones in the cybernetics. It appears in 

the models from [4] in the form from Fig. 12 and it is represented in the two GN-

interpretations with the forms of Figs. 13 and 14, respectively. In both cases, the new (third) 

transition is added to the GNs. Also, in the two cases, the token's characteristic in place A is 

determined on the base of the previous token's characteristic, obtained in place P. Therefore, 

the relation “environment – organism” now has two separate forms: “direct” and “indirect” 

one. 

 

The first of them is represented by the token's characteristic in place O for the first type of 

GN-models, which is based on the previous token's characteristic (in place E); and by the 

token's characteristic in place O for the second type of GN-models, which is based on the 

token's characteristics in places E and l (if the token obtains any characteristic in the latter 

place). 

 

The new (indirect) token's characteristic is obtained in place E on the base of the token's 

characteristic obtained sequentially in places P, A and O for the first GN-model and in places 

P, A, O and l for the second GN-model. 

 

Of course, the feedback is related to the control of the process. 

 

The model from Fig. 12 can be generalized in the form of Fig. 15. 

 

 
Fig. 11 

 

 
Fig. 9 

 

 
Fig. 10 

 
Fig. 12 
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Fig. 13      Fig. 14 

 

 

 
Fig. 15 

 

Now there are exterior factors F1, F2, ... acting on the environment and having an influence on 

the process of environment parameters accounting. Also, the additional parameters can be of 

different types (in the GN-interpretations they are marked with A1, A2,... – see Figs. 16-17). 

 

The first GN-model must contain one additional (fictive) place l and the second one – one 

more such place m. 

 

Finally, the model from Fig. 15 can be generalized in the form of Fig. 18. Now the role of the 

Intellect (of the Organism) is drowned. In the GN-interpretations in Figs. 19-20 (that are 

extensions of the GNs from Figs. 16-17) it is marked with place I. 

 

The constructed GN-models use only a part of the possible GN-components, i.e., these models 

are reduced ones. For example, we do not use the temporal components of the transitions. We 

can add these components and in result we shall have the possibility to account the effects 

during the model time. These time-parameters can be as constants, as well as values of 

complex functions (which will be interpreted by functions Θ1 and Θ2). We can also add in the 

GN-models other parameters, e.g., place- and arc-capacities (which correspond to the 

capacities of the sensor and motive channels); place-, transition- and token-priorities (which 
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correspond to the orders of the influences); global time-components (which will help to 

construct more complex GN-models, which will be compositions of simpler GN-models from 

the above discussed types) and others. Really, if we have a set of GN-models (from the first 

and/or from the second type) we can construct larger GN-models, which are a union of these 

models. The global time components will help to determine the causal relations among the 

separate sub-GNs. 

 

 
 

Fig. 16 

 

 
 

Fig. 17 



 Bioautomation, 2008, 10, 41-58 ISSN1312 – 451X 
 

 52 

 

 
 

Fig. 18 

 

 
 

Fig. 19 

 

The already constructed GN-models of biological processes can be changed adaptively, using 

different types of operators, defined over the GNs. The hierarchical operators can play very 

important role in constructing complex hierarchical models. For example, the human body is a 

very complex system and the process of its GN-modelling will be very interesting and 

important. Up to now, all models related to the human body are based on analytical 

mathematical means. In the GN-models the existing models can be used for determining of 

some of the tokens characteristics and for calculating the truth-values of some of the transition 

condition predicates. But the apparatus of the GNs gives the possibility for us to work not 

only with analytical and statistical mathematical means, but also with elements of the 

mathematical logic. For example, the GNs give us the possibility to describe in an implicit 

form the logical conditions that determine the order of application of the other separate 

mathematical tools. This will make the models more detailed. 
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Fig. 20 

 

Now, we shall discuss these models. 

 

Firstly, a GN-model of the human body will be used for investigating the behaviour of the 

separate systems and the relations between them. In the framework of such a model various 

biological processes at various levels can be studied. 

 

For instance, in the input position of the GN-model corresponding to “mouth” a token enters 

with an initial characteristic “food (chemical composition, quantity, etc.)”. This leads to the 

emergence of new tokens with characteristics “saliva”, “gastric juice”, etc. Replacing some of 

the characteristic functions of transition condition predicates with random functions of the 

corresponding kind in the GN-model, we can simulate processes related to acceptance, 

digestion and excretion of food. On the other hand, the initial characteristic of the token might 

be “medicine” or “poison” instead of “food” and the processes would flow in a different way. 

Therefore the GN-model of a human body would be useful for studying the behaviour of 

individual organs and systems, with no need of actual experiments. Of course, the values of 

the random functions built in the model will be subject of various modifications in order to 

obtain a better approximation of reality. 

 

Another application of such a GN-model would be prediction of various processes in the 

human organism and suggesting possible preventing measures. For example, while our 

monograph [12] was in press, the authors realized that the GN-model of pancreas functioning 

described there could be used for the purposes of prediction. It is known that patients with 

advanced diabetes must receive insulin several times a day, after which they can accept 

certain foods while they must abstain from others. In the GN-model of pancreas functioning, 

the following situation could be modelled: a token enters with an initial characteristic “food of 

a certain kind” (which is strongly desired by the patient, independently from whether it is 

allowed or not). The process of pancreas functioning at different moments of injecting insulin 

with different quantities of it is investigated (for this purpose, a GN with varying tokens' 

characteristics could be used). Thus we would answer the question: “When and how much 

insulin should be injected to the patient so that he might be able to accept the desired food”. It 
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must be immediately noted that the technical implementation of such an idea is by no means 

difficult. Moreover, a patient with no serious illnesses bar diabetes should not all need the 

overall GN-model of the whole human body – the subnet reflecting the work of the pancreas 

and several other subnets related to it would suffice. 

 

Thirdly, the so developed GN-model will be naturally linkable to the GN-models of the 

processes of medical diagnostic. The latter include: collecting information about the patient 

(quantitative observations – blood, urine, blood pressure, etc., as well as qualitative 

observations). This information is put in as initial characteristics of the tokens belonging to 

the GN-model of the human body; within the frames of it, the functioning of the system of 

organs of the particular patient is simulated. The results of the simulation are supplied back to 

the diagnostic model to be used for a more complete description of the processes flowing in 

the patient's body. 

 

It must be noted that the above described top-down approach for modelling the functioning of 

the human body organs and systems may be combined with Ivan Dimitrov's “Informational 

Theory of Diseases” [9] and its GN interpretation [8]. 

 

Now, following [10], we will construct an abstract GN that will describe the structure of the 

system “object – interior/exterior environment” and its relationships. 

 

The GN on Fig. 21 has three types of tokens – α-, β- and γ-tokens. 

 

Place l1 stays for the interior environment. It contains token α* with an initial characteristic 

“current status of the interior environment”. This token will stay in place l1 for the whole time 

of the GN-functioning. In some moments it will split to two tokens – the same token α* (that 

continues staying in l1, and token αcu that will represent the signals from the interior 

environment to the object. Here cu is the current number of the signal. For brevity, we shall 

write below α instead of αcu. 

 

Place l2 represents the exterior environment. It contains token β* with an initial characteristic 

“current status of the exterior environment”. This token, similarly to the above one, will stay 

in place l2 during the GN-functioning. In some moments it will split to two or three tokens – 

the same token β* (that in l2), token '

cuβ  that will represent the signals from the exterior 

environment to the object as whole, and token "

cuβ  that will represent energetic resources from 

the exterior environment necessary for the object. Here cu is again the current number and 

again, for brevity, we shall write below 'β  and "β  instead of '

cuβ  and "

cuβ . 

 

Place l13 stays for the object memory. It contains token γ* with an initial characteristic 

“current status of the object memory”. This token, similarly to those above, will stay only in 

place l13 for the whole time of the GN-functioning. In some moments it will split to two 

tokens – the same token γ* (that in l13) and token '

cuγ  that will represent the signals from the 

memory to the object component for a decision making, representing by place l12. As above, 

for brevity, below we shall write 'γ  instead of '

cuγ . 

 

In some moments other tokens, generated by the object, will enter places l1 and l2 and will 

unite with tokens α* and β*, respectively. They symbolize the object effects over the interior 

and exterior environments. 
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Fig. 21 

 

  l1 l2  

Z1 = <{l1, l10}, {l1, l2},  l1 true W1,2  >, 

 l10 true false  

where 

W1,2 = “the interior environment signal to the object is higher than a given level”. 

 

If predicate W1,2 = true, then token α* splits to tokens α* and α, as we discussed above, and 

the new token α will obtain the characteristic “parameters of the interior environment signal 

to the object”. 

  l3 l4 l5  

Z2 = <{l3, l11}, {l3, l4, l5},  l3 true W3,4 W3,5  >, 

 l11 true false false  

where 

W3,4 = “the exterior environment signal to the object is higher that a given level”; 

W3,5 = “the object would like/must receive energy resources from the exterior environment”. 

 

Token β* can split to two (β*, and 'β  or "β ) or three (β*, 'β  and "β ) tokens. Token β* 

obtains the above mentioned characteristic, token 'β  obtains a characteristic “parameters of 
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the exterior environment signal to the object”, and token "β  obtains a characteristic 

“parameters of the energy resources from the exterior environment for the object”. 

 

We must note that words “would like/must” show that the object can obtain the energy 

resources from the exterior environment in a result of purposeful activities (for example, we – 

the people – obtain energy resources from the food, water, etc.), but the object can obtain 

some energy resources without its desire (for example, electric or sun shock). 

  l6 l7  

Z3 = <{l5}, {l6, l7},  l5 true true >. 

 

Token "β  splits to two tokens 
1

"β  and 
2

"β  with characteristics “parameters of the energy 

resources from the exterior environment for the object effectors” and “parameters of the 

energy resources from the exterior environment for the object memory”. 

  l8 l9 l10  

Z4 = <{l6, l15}, {l8, l9, l10},  l6 true false false  >, 

 l15 false W15,9 W15,10  

where 

W15,9 = “there is a command from the processor for an effect to the interior environment”; 

W15,10 = “there is a command from the processor for an effect to the exterior environment”. 

 

Token 'β  enters place l8 with a characteristic “parameters of the used energy resources from 

the exterior environment by the effectors”. 

 

Token "γ  (it will be described below) can enter place l9 or l10 with respect to its current 

characteristic, or it can split to two tokens entering both these places. In place l9 this token 

obtains the characteristic “object effect over the interior environment”, while in place l10 it 

obtains the characteristic “object effect over the exterior environment”. 

  l11  

Z5 = <{l2, l4}, {l11},  l2 true >. 

 l4 true  

 

Tokens α and 'β  enter place l11 without any characteristic. 

  l12 l13  

Z6 = <{l7, l8, l11, l13, l14}, {l12, l13},  l7 false true >, 

 l8 false true  

 l11 false true  

 l13 W13,12 true  

 l14 false true  

where W13,12 = “it is necessity to reach some solution”. 

 

The tokens from places l7, l8, l10 and l14 enter place l13 and unite with token γ staying there. It 

obtains the characteristic, mentioned above. If predicate W13,12 = true, then token γ splits to 

two tokens – γ that continues staying in place l13 and 'γ  that enters place l12 with the 

characteristic “decision making for the current problem”. This problem can be generated in a 

result of an effect from interior and/or exterior environment, as well as in a result of a 

reminiscence in the object memory. 
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  l14 l15  

Z7 = <{l12}, {l14, l15},  l12 true true >. 

 

Token 'γ  splits to two tokens 
1

'γ  and 
2

'γ  with characteristics “the solution that must be 

memorized” and “command to the effectors for effects over the interior or exterior 

environment”. 

 

So described GN-model represents the functioning of an abstract system, having memory, 

effectors and receptors and its relations with its interior and exterior environment. 

 

The above described GN-model can be used for simulation, investigation and control of 

relationships “object – environment”. 

 

The present paper is included in the book of Vihren Chakarov, Anthony Shannon, Joseph 

Sorsich (1939-2002) and the author [7] as Chapter 1. 
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