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Abstract: A common problem in statistics is finding a distribution that fits to a certain 
dataset. Many theoretical distributions have been developed to give a good description of the 
empirical observations, and consequently, theory offers a variety of algorithms to test the 
quality of the resulting fits. It is reasonable to expect that each set of measurements should 
be described with the same theoretical distribution if one and the same experimental 
mechanism was applied. This paper presents procedures to find a theoretical distribution 
that best fits to several datasets. The procedure goes further, answering the questions of 
whether the given datasets come from the same general population, and assessing if the 
difference between the fitted distributions of two datasets are statistically significant. Kuiper 
test is used in all steps of the analysis. In two of those a Monte Carlo simulation procedure is 
elaborated to construct the Kuiper statistic’s distribution. A platform with original program 
functions in MATLAB R2009a is created on the basis of the described procedures. It is 
applied to datasets from a biochemical experiment, which investigates the resulting density 
of fibrin network under different thrombin concentrations. The developed procedure has 
wide applications in different fields, as it models the behavior of datasets, generated through 
the same mechanism. The possibility to fit one type of distribution over different datasets 
allows comparing samples, performing interpolation and extrapolation procedures, and 
investigating the influence of the input conditions of an experiment over the parameters of 
the fitted distributions. 
 
Keywords: Datasets, Distribution fits, Stair-case distributions, Kuiper test, Monte Carlo, 
MATLAB. 

 
Introduction 
Statisticians often face a problem, where they have to analyze many datasets, derived in a 
similar way. It is possible to find a theoretical distribution that fits to each dataset. If the 
mechanism (experiment) to generate the samples was the same, then the distribution type that 
describes the datasets will also be the same. In that case, the difference between the sets will 
be captured not by changing the type of the distribution, but rather through change in its 
parameters. Finding a type of theoretical distribution that fits several datasets has several 
advantages. On one hand, it allows comparing the samples from the datasets and performing 
interpolation or extrapolation to generate new data without conducting experiments again. It is 
also possible to investigate how the variation of the input parameters influenced the 
parameters of the theoretical distribution. In some experiments it might be proven that the 
quantitative increase of the input parameters leads to qualitative changes in the output. In 
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other cases that variation may lead only to quantitative changes in the output (i.e. changes in 
the parameters of the distribution). Then it is of importance to investigate the statistical 
significance of the quantitative differences, i.e. to compare the statistical difference of the 
distribution parameters. In some cases it may not be possible to find a single type of 
distribution that fits all datasets. A possible option in these cases is to construct empirical 
distributions according to known techniques [8], and investigate whether the differences are 
statistically significant. In any case, proving that the observed difference between theoretical, 
or between empirical distributions, are not statistically significant allows uniting datasets and 
operating on larger amount of samples, which is a prerequisite for higher precision of the 
statistical results. This task is similar to testing for stability in regression analysis [10]. 
 
This paper approaches the problems of finding an appropriate distribution fit to datasets and 
testing the statistical significance of the observed differences. This problem shall be split into 
three tasks. The first task aims at identifying a theoretical distribution that fits the samples in 
all datasets by altering its parameters. The second task is to test the statistical significance of 
the difference between two empirical distributions. The third task is to test the statistical 
significance of the difference between two distribution fits over two arbitrary datasets. 
 
Task 2 can be performed whether or not a suitable theoretical distribution fit was identified. 
Therefore, comparing and eventually uniting the samples will always be possible. This task 
requires comparing two independent discontinuous (stair-case) empirical CDFs. It is a 
standard problem and the approach here is based on the Kuiper two-sample test (a variation of 
the Kolmogorov-Smirnov test [15]). The last essentially does an estimate of the closeness of a 
pair of independent stair-case CDFs by finding the maximum deviation above and below the 
two [4]. 
 
Tasks 1 and 3 bring the novel elements of the paper. Task 1 searches for a type of theoretical 
distribution that fits multiple datasets by simply varying its specific parameter values. The 
performance of a distribution fit is assessed through four criteria, namely the Akaike 
Information Criterion (AIC) [1], the Bayesian Information Criterion (BIC) [5], the average 
and the minimal pvalue of a distribution fit to all datasets. Since the datasets contain random 
measurements, the values of the parameters for each acquired fit in task 1 are random, too. 
That is why it is necessary to check whether the differences are statistically significant, for 
each pair of datasets. If not, then both theoretical fits are identical and the samples may be 
united. A distribution of the Kuiper statistic cannot be constructed in task 1, because the setup 
of the last compares a distribution with its own fit so independence is violated. A distribution 
of the Kuiper statistic cannot be constructed in task 3 either, because the last compares two 
distribution fits, and not stair-case CDFs. For that reason the distribution of the Kuiper 
statistic in tasks 1 and 3 is constructed via a Monte Carlo procedure [11]. 
 
The described statistical procedures are embodied into original program function in 
MATLAB R2009a environment. The platform tests 11 types of theoretical distributions in 
order to find the best fit. Additionally, new types of distributions can be easily added to this 
set. In addition to on-screen results, the programs also generate graphical output. 
 
A biochemical problem is analyzed with the help of the statistical procedures and the 
platform. It concerns the analysis of the different density of the fibrin network under varying 
concentrations of thrombin. The 12 analyzed datasets contain measurements of the length of 
fibrin fibers in sectors between two nodes. Each dataset is collected under a given thrombin 
concentration and a given buffer. The measurements are taken from dry fibrin samples, 
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examined in Zeiss Evo40 scanning electron microscope. To enhance the data collection, an 
original program function in MATLAB R2009a is created to estimate lengths in electron 
microscope images.  
 
Metods 
Setup 
Consider N datasets ( )1 2 i

i i i i
nx ,x ,...,xχ = , for i = 1, 2, …, N. The data set iχ  contains ni > 65 

sorted positive samples ( 1 20
i

i i i
nx x ... x< ≤ ≤ ≤ ) of a given random quantity under equal 

conditions. The datasets iχ  and jχ , for j i≠ , contain samples of the same random quantity, 
but under slightly different conditions. 
 
Assume that M types of theoretical distributions are analyzed. Each of them has a probability 
density function ( ),j jPDF x p , a cumulative distribution function ( ),j jCDF x p , and an 

inverse cumulative distribution function ( ),j jinvCDF P p , for j = 1, 2, …, M. Each of these 

functions depend on p
jn -dimensional parameter vectors jp  (for j = 1, 2, …, M), dependent on 

the theoretical distribution type. 
 
There are three problems that have to be solved: 1) find the best theoretical distribution type, 
which fits the data in all datasets and identify the specific parameter values of this theoretical 
distribution type for each dataset; 2) check whether two different datasets are drawn from the 
same general population; 3) check the statistical significance of the difference between two 
theoretical distributions of one type fitted to two different arbitrary datasets.  
 
First problem 
The empirical cumulative distribution function ( )i

eCDF .  is initially linearly approximated 

over (ni + 1) nodes as (ni – 1) internal nodes ( )12 2i i i
e k k iCDF x / x / k / n++ =   for k = 1, 2, …, 

ni–1 and 2 external nodes ( )1 0i i i
e dCDF x ∆− =  and ( ) 1

i
i i i

e unCDF x ∆+ = , where 

( )( )1 16 1 30i i i i
d min x , x x /∆ = −  and ( )15 30

i i
i i i
u n nx x /∆ −= −  are the halves of mean inter-sample 

intervals in the lower and upper ends of the dataset iχ , but the down external node is never 

with a negative abscissa  ( )1 0i i
dx ∆− ≥ . 

 
It is convenient to introduce “before-first” 0 1 2i i i

dx x ∆= −  and “after-last” 1 2
i i

i i i
un nx x ∆+ = +  

samples. When for some k = 1, 2, …, ni and for p>1 it is true that 
1 1 2 1

i i i i i i
k k k k k p k px x x x ... x x− + + + + +< = = = = <  then the initial approximation of ( )i

eCDF .  contains 
a vertical segment of p nodes. In that case the p nodes on that segment are replaced by a 
single node in the middle of the vertical segment ( ) ( )2 1 2i i

e k iCDF x k p / / / n= + − . The 

described two-step procedure [8] results in a strictly increasing function ( )i
eCDF .  in the 

closed interval 1 ;
i

i i i i
d unx x∆ ∆⎡ ⎤− +⎣ ⎦ . That is why it is possible to introduce ( )i

einvCDF .  with 

the domain [0; 1] as the inverse function of ( )i
eCDF .  in 1 ;

i
i i i i

d unx x∆ ∆⎡ ⎤− +⎣ ⎦ . The median and 
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the interquartile range of the empirical distribution can be estimated from ( )i
einvCDF . , 

whereas the mean and the standard deviation are easily estimated directly from the dataset iχ :  

- mean: 
1

1 in
i i
e k

ki
mean x

n =
= ∑ ; 

- median: ( )0 5i i
e emed invCDF .= ; 

- standard deviation: ( )
2

2

1

1
1

in
i i i
e k e

ki
std x mean

n =
= −

−
∑ ; 

- interquartile range: ( ) ( )0 75 0 25i i i
e e eiqr invCDF . invCDF .= − . 

 
The non-zero part of the empirical density ( )i

ePDF .  is determined in the closed interval 

1 ;
i

i i i i
d unx x∆ ∆⎡ ⎤− +⎣ ⎦  as a histogram with bins of equal area (each bin has equal product of 

density and span of data). The number of bins bi is selected as the minimal from the Scott [6], 
Sturges [7] and Freedman-Diaconis [2] suggestions. The lower and upper margins of the k-th 
bin i

d ,km  and i
u ,km  are determined as quantiles (k – 1)/bi and k/bi respectively:  

( )1i i
d ,k e i im invCDF k / b / b= −  and ( )i i

u ,k e im invCDF k / b= . The density of the k-th bin is 

determined for i i
d ,k u ,km x m≤ ≤  as ( ) ( )1i i i

e i u ,k d ,kPDF x b / m m−= − . The described procedure [8] 

results in a histogram, where the relative error of the worst ( )i
ePDF .  estimate is minimal from 

all possible separation of the samples into bi bins. The improper integral ( )
x

i
ePDF x dx

−∞
∫  of the 

density is a smoothened version of ( )i
eCDF .  linearly approximated over (bi + 1) nodes: 

( )( );i
e i iinvCDF k / b k / b  for k = 0, 1, 2, …, bi. 

 
The likelihood of the dataset iχ  , if the samples are distributed with density ( ),j jPDF x p , is 

( ) ( )
1

,
in

i i
j j j k j

k
L p PDF x p

=
= ∏ . The maximum likelihood estimates (MLEs) of jp  are 

determined as those i
jp , which maximize ( )i

j jL p , that is ( )
j

i i
j j j

p
p arg max L p⎧ ⎫⎡ ⎤= ⎨ ⎬⎣ ⎦⎩ ⎭

. The 

numerical characteristics of the j-th theoretical distribution fitted to the dataset iχ  are 
calculated as: 

- mean: ( ),i i
j j jmean x.PDF x p dx

+∞

−∞
= ∫ ; 

- median: ( )0 5,i i
j j jmed invCDF . p= ; 

- mode:  ( ){ },i
j j j

x
mode arg max PDF x p⎡ ⎤= ⎣ ⎦ ; 

- standard deviation: ( ) ( )2
2 ,i i i

j j j jstd x mean .PDF x p dx
+∞

−∞
= −∫ ; 

- interquartile range: ( ) ( )0 75, 0 25,i i i
j j j j jiqr invCDF . p invCDF . p= − . 
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The quality of the fit can be assessed using a statistical hypothesis test. The null hypothesis H0 
is that ( )i

eCDF x  is equal to ( ), i
j jCDF x p , which means that the sample iχ  is drawn from 

( )i
jCDFj x, p . The alternative hypothesis H1 is that ( )i

eCDF x  is different from ( ), i
j jCDF x p , 

which means that the fit is not good. The Kuiper statistic i
jV  [3] is a suitable measure for the 

goodness-of-fit of the theoretical cumulative distribution functions ( ), i
j jCDF x p  to the 

dataset iχ :  

( ) ( ){ } ( ) ( ){ }, ,i i i i i
j e j j j j e

x x
V max CDF x CDF x p max CDF x p CDF x .= − + −  (1) 

 
The distribution of V, if H0 is true, can be estimated by a Monte Carlo procedure, because the 
original Kuiper’s distribution refers to two independent distributions, but not to the case when 
one is fitted to the data of the other [4]. In nMC simulation cycles, ni samples are drawn from 
the fitted distribution ( ), i

j jCDF x p , and nMC synthetic datasets { }1 2, , ,
i

i ,syn i ,syn i ,syni ,syn
r ,r ,r n ,rx x ... xχ = , 

for r = 1, 2,…, nMC  are formed.  The dataset i ,syn
rχ  contains ni sorted positive samples 

( 1 20
i

i ,syn i ,syn i ,syn
,r ,r n ,rx x ... x< ≤ ≤ ≤ ).  It is possible to do the following for each synthetic dataset 

i ,syn
rχ  using the described algorithms:  

1. Construct the synthetic empiric distribution ( )i ,syn
e,rCDF . ; 

2. Find the synthetic maximum likelihood estimates i ,syn
j ,rp ; 

3. Fit the synthetic theoretical distribution function  ( )syn i ,syn
j ,r j ,rCDF x, p  to i ,syn

rχ ; 

4. Estimate the synthetic Kuiper statistic i ,syn
j ,rV  . 

 
The p-value fit ,i

value, jP of the statistical test (the probability to reject a true hypothesis H0 that the 

j-th type theoretical distribution fits well to the samples in dataset iχ ) is estimated as the 
frequency of generating synthetic Kuiper statistic greater than the actual Kuiper statistic i

jV : 

1

1 1
mc

i ,syni
j j ,r

nfit ,i
value, j mc

r
V V

P
n =

<

= ∑  (2) 

In fact, (2) is the sum of the indicator function of the crisp set, defined as all synthetic datasets 
with a Kuiper statistic greater than  i

jV . 
 
The performance of each theoretical distribution should be assessed according to its 
goodness-of-fit measures to the N datasets simultaneously. If a given theoretical distribution 
cannot be fitted even to one of the datasets, then that theoretical distribution has to be 
discarded from further consideration. The other theoretical distributions have to be ranked 
according to their ability to describe all datasets. One basic and three auxiliary criteria are 
useful in the required ranking.  
 
The basic criterion is the minimal p-value of the theoretical distribution fits to the N datasets: 

{ }1 2, , ,fit fit , fit , fit ,N
value, j value, j value, j value, jminP min P P ... P= , for j = 1, 2, ..., M.  (3) 
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The first auxiliary criterion is the average of the p-values of the theoretical distribution fits to 
the N datasets: 

1

1 Nfit fit ,i
value, j value, j

j
meanP P

N =
= ∑ , for j=1, 2, .., M.  (4) 

 
The second and the third auxiliary criteria are the AIC-Akaike Information Criterion [1] and 
the BIC-Bayesian Information Criterion [5], which corrects the negative log-likelihoods with 
the number of the assessed parameters: 

( )( ) ( )

( ) ( )
1

1 1

2 2

2 , 2

N pi i
j j j j

i
N M pi i

j k j j
i j

AIC log L p log N.n

log PDF x p log N.n

=

= =

= − + =

= − +

∑

∑∑
, (5) 

 

( )( ) ( )

( ) ( )
1 1

1 1 1

2 2

2 , 2

N Mpi i
j j j ij

i i

N M Mpi i
j k j ij

i j i

BIC log L p log N.n .log n

log PDF x p log N.n .log n

= =

= = =

⎛ ⎞= − + =⎜ ⎟
⎝ ⎠
⎛ ⎞= − + ⎜ ⎟
⎝ ⎠

∑ ∑

∑∑ ∑
, (6) 

 
for j = 1, 2, .., M. The best theoretical distribution type should have maximal values for 

fit
value, jminP  and fit

value, jmeanP , whereas its values for AICj and BICj should be minimal. On top, 

the best theoretical distribution type should have 0 05fit
value, jminP .> , otherwise no theoretical 

distribution from the initial M types fits properly to the N datasets.  
 
That solves the problem for selecting the best theoretical distribution type for fitting the 
samples in the N datasets. 
 
Second problem 
The second problem is the estimation of the statistical significance of the difference between 
two datasets. It is equivalent to calculating the p-value of a statistical hypothesis test, where 
the null hypothesis H0 is that the samples of 1iχ   and 2iχ  are drawn from the same underlying 
continuous population, and the alternative hypothesis H1 is that the samples of 1iχ   and 2iχ  
are drawn from different underlying continuous populations. The two-sample asymptotic 
Kuiper test is designed exactly for that problem, because  1iχ   and 2iχ  are independently 
drawn datasets. That is why “staircase” empirical cumulative distribution functions [9] are 
build from the two datasets  1iχ   and 2iχ : 

( )
1

1
i

k

n
i

sce i
k
x x

CDF x / n
=
≤

= ∑ , for i∈{i1, i2}. (7) 

 
The ”staircase” empirical cumulative distribution function ( )i

sceCDF .  is a discontinuous 

version of the already defined empirical cumulative distribution function ( )i
eCDF . . The 

Kuiper statistic 1 2i ,iV  [3] is a measure for the closeness of the two ‘staircase’ empirical 
cumulative distribution functions ( )1i

sceCDF .  and ( )2i
sceCDF . : 
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( ) ( ){ } ( ) ( ){ }1 2 1 2 2 1i ,i i i i i
sce sce sce sce

x x
V max CDF x CDF x max CDF x CDF x= − + − . (8) 

 
The p-value 1 2i ,i

value,eP  of the statistical test (the probability to reject a true null hypothesis H0, 

that the samples in 1iχ  and in 2iχ  result in the same ‘staircase’ empirical cumulative 
distribution functions) is estimated as a series [4]: 

( ) 2 21 2 2 -2

j=1
=2 4 1 e  i ,i j

value,eP j λλ
+∞

−∑ , (9) 

where 

1 2 1 22 21 2
1 2 1 2

1  + 0.155 + 0.24i i i i
i ,i

i i i i

n n n n
n n n nV

λ
⎛ ⎞+

= ⎜ ⎟⎜ ⎟+⎝ ⎠
. (10) 

 
If 1 2i ,i

value,eP <0.05 the hypothesis H0 is rejected.  
 
Third problem 
The last problem is to test the statistical significance of the difference between two fitted 
distributions of the same type. This type most often would be the best type of theoretical 
distribution, which was identified in the first problem, but the test is valid for any type. The 
problem is equivalent to calculating the p-value of statistical hypothesis test where the null 
hypothesis H0 is that the theoretical distribution ( )1, i

j jCDF x p  and ( )2, i
j jCDF x p  fitted to the 

datasets 1iχ  and 2iχ  are identical, and the alternative hypothesis H1 is that ( )1, i
j jCDF x p  and 

( )2, i
j jCDF x p  are not identical.  

 
The test statistic again is the Kuiper one 1 2i ,i

jV  : 

( ) ( ){ } ( ) ( ){ }1 2 1 2 2 1, , , ,i ,i i i i i
j j j j j j j jj

x x
V max CDF x p CDF x p max CDF x p CDF x p .= − + −  (11) 

 
The distribution of V, if H0 is true, can be estimated by a Monte Carlo procedure, because the 
original Kuiper’s distribution refers to two independent ”staircase” empirical cumulative 
distribution functions, but not to the case of two independent theoretical cumulative 
distribution functions. If H0 is true, then ( )1, i

j jCDF x p  and ( )2, i
j jCDF x p  should be identical 

to the merged distribution ( )1 2, i i
j jCDF x p + , fitted to the artificial dataset  1 2i iχ +  formed by 

merging the samples of 1iχ  and 2iχ . In nMC simulation cycles, 2 datasets containing 
respectively ni1 samples and ni2 samples are drawn from the merged distribution 

( )1 2, i i
j jCDF x p + , and nMC  pairs of  synthetic datasets { }1

1 1 11
1 2, , ,

i

i ,syn i ,syn i ,syni ,syn
r ,r ,r n ,rx x ... xχ =  and 

{ }2

2 2 22
1 2, , ,

i

i ,syn i ,syn i ,syni ,syn
r ,r ,r n ,rx x ... xχ = ,  for r = 1, 2, …, nMC  are formed. It is possible to do the 

following for each synthetic dataset pair 1i ,syn
rχ  and 2i ,syn

rχ  using the described algorithms for: 
1. Estimate the synthetic maximum likelihood estimates 1i ,syn

j ,rp  and 2i ,syn
j ,rp ; 



 BIOAUTOMATION, 2009, 13 (2), 27-44 
 

 34

2. Fit the synthetic theoretical distribution functions ( )1syn i ,syn
j ,r j ,rCDF x, p  and 

( )2syn i ,syn
j ,r j ,rCDF x, p  to 1i ,syn

rχ and to 2i ,syn
rχ ; 

3. Estimate the synthetic Kuiper statistic 1 2i ,i ,syn
j ,rV . 

 
The p-value 1 2i ,i

value, jP of the statistical test (the probability to reject a true hypothesis H0 that the 

j-th type theoretical distribution  function ( )1, i
j jCDF x p  and ( )2, i

j jCDF x p  are identical) is 

estimated as the frequency of generating synthetic Kuiper statistic greater than the actual 
Kuiper statistic 1 2i ,i

jV :  

1 2,1 2

1 2

1

1 1
mc

i ,i syni ,i
j j ,r

ni ,i
value, j mc

r
V V

P
n =

<

= ∑ . (12) 

Formula (12), similar to (2), is the sum of the indicator function of the crisp set, defined as all 
synthetic dataset pairs with a Kuiper statistic greater than  1 2i ,i

jV . 
 
If 1 2i ,i

value, jP <0.05 the hypothesis H0 is rejected.  
 
Software 
A platform of program functions, written in MATLAB R2009a environment, is created to 
execute the statistical procedures from the previous section. At the present state of 
development, the platform allows users to test the fit of 11 types of distributions on the 
datasets. A description of the parameters and PDF of the embodied distribution types is given 
in Тable 1 [12, 14]. The platform also permits the user to add additional types of distribution.  
 
The platform contains several main functions. The function set_distribution.m contains the 
information about the 11 distributions, particularly their names, and the links to the functions 
that operate with the selected type distribution. Also, the function permits the inclusion of a 
new distribution type. In that case, the necessary information the user must provide as input is 
the procedures to find the CDF, PDF, the maximum likelihood measure, the negative log-
likelihood, the mean and variance and the methods of generating random arrays from the 
given distribution type. The function also determines the screen output for each type of 
distribution.  
 
The program function kutest2.m performs a two-sample Kuiper test to determine if the 
independent random datasets are drawn from the same underlying continuous population, i.e. 
it solves the second statistical problem, outlined in the Methods section (to check whether two 
different datasets are drawn from the same general population).  
 
Another key function is fitdata.m. It constructs the fit of each theoretical distribution over 
each dataset, evaluates the quality of the fits, and gives their parameters. It also checks 
whether two distributions of one type fitted to two different arbitrary datasets are identical. In 
other words, this function is associated with the statistical problems involving the Monte 
Carlo procedures. To execute the Kuiper test the function calls kutest2.m. Finally, the function 
plot_print_data.m provides the on-screen results from the statistical analysis and plots figures 
containing the pair of distributions that are analyzed.  
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Materials 
The statistical procedures and the program platform developed in this paper are implemented 
in an example, focusing on the morphometric evaluation of the effects of thrombin 
concentration on fibrin structure. Fibrin is a biopolymer formed from the blood-borne 
fibrinogen by an enzyme activated in the damaged tissue (thrombin) at sites of blood vessel 
wall injury to prevent bleeding. Following regeneration of the integrity of the blood vessel 
wall, the fibrin gel is dissolved to restore normal blood flow, but the efficiency of the 
dissolution strongly depends on the structure of the fibrin clots. The purpose of the evaluation 
is to establish any differences in the density of the branching points of the fibrin network 
related to the activity of the clotting enzyme (thrombin), the concentration of which is 
expected to vary in a broad range under physiological conditions. 
 
For the purpose of the experiment, fibrin is prepared on glass slides in total volume of 100 µl 
by clotting 2 mg/ml fibrinogen (dissolved in different buffers) by varying concentrations of 
thrombin for 1 h at 37 °C in moisture chamber. The thrombin concentrations in the 
experiments vary in the range 0.3 – 10 U/ml, whereas the two buffers used are: 1) buffer1 – 
25 mM Na-phosphate pH 7.4 buffer containing 75 mM NaCl; 2) buffer2 - 10 mM N-(2-
Hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (abbreviated as HEPES) pH 7.4 buffer 
containing 150 mM NaCl. At the end of the clotting time the fibrins are washed in 3ml 100 
mM Na-cacodilate pH 7.2 buffer and fixated with 1% glutaraldehyde in the same buffer for 
10 min. Thereafter the fibrins are dried in a series of ethanol dilutions (20 – 96 %), acetone 
and finally hexamethyldisilazane. The dry samples are examined in Zeiss Evo40 scanning 
electron microscope (Carl Zeiss, Jena, Germany) and images are taken at an indicated 
magnification. A total of 12 dry samples of fibrins are elaborated in this fashion, each having 
a given combination of thrombin concentration and buffer. Electron microscope images are 
taken for each dry sample (one of the analyzed dry samples of fibrins is given in Fig. 1). 
Some main parameters of the 12 collected datasets are given in Table 2. 
 
An automated procedure is elaborated in MATLAB R2009a environment (embodied into the 
program function find_distance.m) to measure lengths of fibrin strands (i.e. sections between 
two branching points in the fibrin network) from the electron images. The procedure takes as 
input the file name of the fibrin image (see Fig. 1) and the planned number of measurements.  
Each file contains the fibrin image with legend at the bottom part, which gives the scale, the 
time the image was taken, etc.  
 
The first step requires settling of the scale. A prompt appears, asking the user to type the 
numerical value of the length of the scale in microns. Then on screen appear the image and a 
red line, which has to be moved and resized to fit the scale (Fig. 2a and 2b). A double click 
signifies the end of scaling. The third step requires a red rectangle to be placed over the actual 
image of the fibrin (in other words, the legend and caption are excluded from the rectangle) 
(Fig. 2c). With this, the preparations of the image are done, and the user can start taking the 
desired number of measurements for the lengths of fibrins between adjacent nodes (Fig. 2d). 
After that, on screen appear the length of each selected fibrin part, and the numerical 
characteristics of this dataset. 
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Table 1. Parameters, support and formula for the PDF of the eleven types of theoretical 
distributions embodied into the MATLAB platform 

 Beta distribution   Lognormal distribution 
Parameters α >0, β >0  Parameters ( ); µ∈ −∞ +∞  , σ >0,  
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Table 2. Sample size (N), mean (meane in microns), median (mede  in microns), standard 
deviation (stde), interquartile range (iqre, in microns) of the empirical distributions over 

the 12 datasets (t given thrombin concentration (in U/ml) and buffer), containing 
measurements of lengths between branching points of fibrin fibers 

Datasets N meane  mede stde  iqre 
Thrombin  

concentration  Buffer 

DS1 274 0.9736  0.8121 0.5179 0.6160 1.0  buffer1 
DS2 68 1.023 0.9374 0.5708 0.7615 10.0 buffer1 
DS3 200 1.048 0.8748 0.6590 0.6469 4.0 buffer1 
DS4 276 1.002 0.9003 0.4785 0.5970 0.5 buffer1 
DS5 212 0.6848 0.6368 0.3155 0.4030 1.0 buffer2 
DS6 300 0.1220 0.1265 0.04399 0.05560 1.2 buffer2 
DS7 285 0.7802 0.7379 0.3253 0.4301 2.5 buffer2 
DS8 277 0.9870 0.9326 0.4399 0.5702 0.6 buffer2 
DS9 200 0.5575 0.5284 0.2328 0.2830 0.3 buffer1 
DS10 301 0.7568 0.6555 0.3805 0.4491 0.6 buffer1 
DS11 301 0.7875 0.7560 0.3425 0.4776 1.2 buffer1 
DS12 307 0.65000 0.5962 0.2590 0.3250 2.5 buffer1 

 

 
 

Fig. 1 Image of a dry sample of fibrin 
 

 
a) 

 
b) 
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c) 

 
d) 

 
Fig. 2 Steps of the automated procedure for measuring lengths of fibrins from the dry sample 
images. Fig. 2a) and 2b) show scaling. Fig. 2c) shows the image selection. Fig. 2d) shows a 

phase of measurement taking. 
 
Results 
The three statistical tasks are applied over the 12 datasets containing measurements of lengths 
between branching points of fibrin fibers (see Table 2).  
 
Task 1 – Finding a distribution fit 
A total of 11 types of distributions (see table 1) are tested over the datasets, and the criteria 
(3)-(6) are evaluated. The Kuiper statistic’s distribution is constructed with 1000 Monte Carlo 
simulation cycles. Table 3 presents the results regarding the distribution fits, where only the 
maximal values for fit

value, jminP  and fit
value, jmeanP , and the minimal values for AICj and BICj 

across the datasets are given. The results allow ruling out the beta and the uniform 
distributions. The first outputs NaN since it does not apply to values of x∉[0; 1]. The later has 
the lowest values of (3) and (4), and the highest of (5) and (6), i.e. it is the worst fit. The types 
of distributions worth using are mostly the lognormal distribution (having the lowest AIC and 
BIC), and the generalized extreme value (having the highest possible fit

value, jmeanP ). Fig. 3 
presents 4 of the 11 distribution fits to DS4. Similar graphical output is generated for all other 
datasets and for all distribution types.  
 
Task 2 – Equality of empirical distributions 
Table 4 contains the p-value calculated according to (9) for all pairs of distributions. The 
bolded values indicate the pairs, where the null hypothesis fails to be rejected and it is 
possible to assume that those datasets are drawn from the same general population. The 
results show that it is possible to unite the following datasets: 1) DS1, DS2, DS3, and DS4; 2) 
DS2, DS3, DS4, and DS8; 3) DS7, DS10, and DS11; 4) DS5 and DS10; 5) DS5 and DS12. 
All other combinations are not allowed and may give misleading results in a further statistical 
analysis, since the samples are not drawn from the same general population. Figure 4a 
presents the stair-case distributions over DS4 (with 4

emean  = 1.002, 4
emed  = 0.9003,  

4
estd  = 0.4785, 4

eiqr  = 0.5970) and DS9 (with 9
emean  = 0.5575, 9

emed  = 0.5284,  
9
estd  = 0.2328, 9

eiqr  = 0.2830). The Kuiper statistic for identity of the empirical distributions, 
calculated according to (8), is 4 9,V  = 0.5005, whereas according to (9), 4 9,

value,eP  = 3.556e–25 < 
0.05. Therefore the null hypothesis is rejected, which is also evident from the graphical 
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output. In the same fashion, figure 4b presents the stair-case distributions over DS1 (with 
1
emean  = 0.9736, 1

emed  = 0.8121, 1
estd  = 0.5179, 1

eiqr  = 0.6160) and DS4. The Kuiper 
statistic for identity of the empirical distributions, calculated according to (8), is 1 4,V  =0.1242, 
whereas according to (9), 4 9,

value,eP  = 0.1242 > 0.05. Therefore the null hypothesis fails to be 
rejected, which is also confirmed by the graphical output.  
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d) 

Fig. 3 Graphical results from the fit of the lognormal (a), generalized extreme value (b), 
exponential (c), and uniform (d) distributions over DS4 

 
Task 3 – Equality of fitted distributions 
As concluded in task 1, the lognormal distribution provides possibly the best fit to the 12 
datasets. Table 5 contains the p-values calculated according to (12) for the lognormal 
distribution fitted to the datasets with 1000 Monte Carlo simulation cycles. The bolded values 
indicate the pairs, where the null hypothesis fails to be rejected and it is possible to assume 
that the distribution fits are identical. The results show that the lognormal fits to the following 
datasets are identical: 1) DS1, DS2, DS3, and DS4; 2) DS1, DS4, and DS8; 3) DS7, DS10, 
and DS11; 4) DS5 and DS10; 5) DS5 and DS12. These results correlate with the identity of 
the empirical distribution. Figure 5a presents the fitted lognormal distribution over DS4 (with 
µ = –0.1081, σ =0.4766, 4

7mean  = 1.005, 4
7med  = 0.8975, 4

7mod e  = 0.7169, 4
7std  = 0.5077, 

4
7iqr  = 0.5870) and DS9 (with µ  = –0.6694, σ  = 0.4181, 9

7mean  = 0.5587, 9
7med  = 0.5120, 

9
7mod e  = 0.4322, 9

7std  = 0.2442, 9
7iqr  = 0.2926). The Kuiper statistic for identity of the fits, 

calculated according to (11), is 4 9
7

,V  = 0.4671, whereas according to (12), 4 9
7

,
value,P  = 0<0.05. 

Therefore the null hypothesis is rejected, which is also evident from the graphical output. In 
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the same fashion, figure 5b presents the lognormal distribution fit over DS1 (with µ  = –1477, 
σ  = 0.4843, 1

7mean  = 0.9701, 1
7med  = 0.8627, 1

7mod e  = 0.6758, 1
7std  = 0.4988,  

1
7iqr = 0.5737) and DS4. The Kuiper statistic for identity of the fits, calculated according to 

(11), is 1 4
7

,V  = 0.03288, whereas according to (12), 1 4
7

,
value,P  = 0.5580>0.05. Therefore the null 

hypothesis fails to be rejected, which is also evident from the graphical output.  
 

Table 3. Results from the fit of 11 types of distributions over the datasets with 1000 Monte 
Carlo simulation cycles. The table contains the maximal values for fit

value, jminP  and 
fit

value, jmeanP , and the minimal values for AICj and BICj across the datasets for each 
distribution type. The bolded and the italic values are respectively the best and the worst 

achieved for a given criterion. 
Distribution type 1 2 3 4 5 6 

AIC NaN 3.705e+3 3.035e+3 8.078e+2 7.887e+2 1.633e+3 
BIC NaN 3.873e+3 3.371e+3 1.144e+3 1.293e+3 2.137e+3 

fit
valueminP  5.490e–1  0 0 5.000e–3  1.020e–1 0 

fit
valuemeanP  NaN 0 0 5.914e–1 6.978e–1 7.500e–4 

       
Distribution type 7 8 9 10 11  

AIC 7.847e+2 1.444e+3 1.288e+3 3.755e+3 1.080e+3  
BIC 1.121e+3 1.781e+3 1.457e+3 4.092e+3 1.416e+3  

fit
valueminP  8.200e–2 0 0 0 0  

fit
valuemeanP  5.756e–1 2.592e–2 8.083e–2 0 1.118e–1  

Legend: The numbers of the distribution types stand for the following: 1 – beta, 2– exponential, 3– extreme 
value, 4 – gamma, 5 – gen. extreme value, 6 – generalized Pareto; 7 – lognormal, 8 – normal, 
9 – Rayleigh, 10 – uniform, 11 – Weibull 
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Fig. 4 Comparison of the stair-case empirical distributions over DS4 

and DS9 (a), and over DS1 and DS4 (b). 
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Table 4. P-values of the statistical test for equality of stair-case distributions on pairs of datasets. The values on the main diagonal are shaded. 
The bolded values are those that exceed 0.05, i.e. indicate the pairs of datasets whose stair-case distributions are identical. 

Datasets DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 
DS1 1.00 2.75e–1 5.21e–1 1.24e–1 1.92e–6 7.20e–126 1.51e–3 2.79e–2 8.99e–20 6.48e–5 9.28e–3 6.72e–11 
DS2 2.75e–1 1.00 5.96e–1 5.13e–1 6.69e–6 6.85e–45 9.03e–4 1.99e–1 4.62e–10 2.87e–4 2.39e–3 1.14e–8 
DS3 5.21e–1 5.96e–1 1.00 1.28e–1 4.37e–8 1.65e–102 2.51e–5 8.93e–2 3.40e–21 1.66e–6 6.44e–4 3.65e–13 
DS4 1.24e–1 5.13e–1 1.28e–1 1.00 1.38e–11 1.41e–124 1.83e–5 8.94e–1 3.56e–25 2.75e–8 1.23e–5 4.14e–18 
DS5 1.92e–6 6.69e–6 4.37e–8 1.38e–11 1.00 2.35e–101 4.50e–3 3.93e–12 2.66e–4 1.51e–1 7.99e–3 9.29e–2 
DS6 7.20e–126 6.85e–45 1.65e–102 1.41e–124 2.35e–101 1.00 6.06e–125 1.37e–126 2.92e–95 5.96e–126 8.07e–127 1.42e–125 
DS7 1.51e–3 9.03e–4 2.51e–5 1.83e–5 4.50e–3 6.06e–125 1.00 3.48e–5 1.81e–11 1.02e–1 3.49e–1 8.65e–6 
DS8 2.79e–2 1.99e–1 8.93e–2 8.94e–1 3.93e–12 1.37e–126 3.48e–5 1.00 1.78e–26 3.34e–9 2.11e–6 1.68e–19 
DS9 8.99e–20 4.62e–10 3.40e–21 3.56e–25 2.66e–4 2.92e–95 1.81e–11 1.78e–26 1.00e 1.13e–6 1.47e–12 2.06e–3 

DS10 6.48e–5 2.87e–4 1.66e–6 2.75e–8 1.51e–1 5.96e–126 1.02e–1 3.34e–9 1.13e–6 1.00 9.51e–2 4.26e–3 
DS11 9.28e–3 2.39e–3 6.44e–4 1.23e–5 7.99e–3 8.07e–127 3.49e–1 2.11e–6 1.47e–12 9.51e–2 1.00 7.76e–5 
DS12 6.72e–11 1.14e–8 3.65e–13 4.14e–18 9.29e–2 1.42e–125 8.65e–6 1.68e–19 2.06e–3 4.26e–3 7.76e–5 1.00 

 
Table 5. P-values of the statistical test that the lognormal fitted distributions over two datasets are identical. The values on the main diagonal are 

shaded. The bolded values indicate the distribution fit pairs that may be assumed identical. 
Datasets DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12 

DS1 1.00 1.39e–1 1.90e–1 5.58e–1 0.00 0.00 0.00 3.49e–1 0.00 0.00 0.00 0.00 
DS2 1.39e–1 1.00 6.37e–1 1.05e–1 0.00 0.00 0.00 3.40e–2 0.00 0.00 1.00e–3 0.00 
DS3 1.90e–1 6.37e–1 1.00 2.01e–1 0.00 0.00 0.00 3.20e–2 0.00 0.00 0.00 0.00 
DS4 5.58e–1 1.05e–1 2.01e–1 1.00 0.00 0.00 0.00 6.65e–1 0.00 0.00 0.00 0.00 
DS5 0.00 0.00 0.00 0.00 1.00 0.00 1.00e–3 0.00 0.00 5.70e–2 1.00e–3 5.10e–2 
DS6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
DS7 0.00 0.00 0.00 0.00 1.00e–3 0.00 1.00 0.00 0.00 8.70e–2 7.90e–1 0.00 
DS8 3.49e–1 3.40e–2 3.20e–2 6.65e–1 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
DS9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

DS10 0.00 0.00 0.00 0.00 5.70e–2 0.00 8.70e–2 0.00 0.00 1.00 1.86e–1 0.00 
DS11 0.00 1.00e–3 0.00 0.00 1.00e–3 0.00 7.90e–1 0.00 0.00 1.86e–1 1.00 0.00 
DS12 0.00 0.00 0.00 0.00 5.10e–2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
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Fig. 5 Comparison of the lognormal distribution fits over DS4 and DS9 (a)  
and over DS1 and DS4 (b). 

 
Conclusions 
The paper addressed the problem of finding a single type of theoretical distribution that fits to 
different datasets by altering its parameters. The identification of such type of distribution is a 
prerequisite for comparing the results, performing interpolation and extrapolation over the 
data, and studying the dependence between the input parameters (e.g. initial conditions of an 
experiment) and the distribution parameters. Additionally, the procedures included hypothesis 
tests over the equality of empirical (stair-case) and of fitted distributions. In the first case, the 
failure to reject the null hypothesis proves the samples come from one and the same general 
population.  In the second case, the failure to reject the null hypothesis proves that although 
parameters are random (as the fits are also based on random data), the differences are not 
statistically significant. The implementation of the procedures is facilitated by the creation of 
a platform in MATLAB R2009a that executes the necessary calculation and evaluation 
procedures. The program functions of that platform are available free of charge upon request 
from the authors.  
 
A current biochemical problem served as a demonstration of the procedures. The influence of 
thrombin concentration over the density of the fibrin network is tested. Datasets under 
different thrombin concentration and buffer are analyzed, each containing measures of the 
length of fibrin fibers between branching points. The measurements are taken from electron 
microscope images of dry fibrin samples using an automated procedure in MATLAB (its 
corresponding program function is also available free of charge upon request from the 
authors). The results proved that the most appropriate fit to the datasets is achieved by the 
lognormal distribution, whereas the worst fit is that of the uniform distribution. The 
comparison of the empirical and of the fitted lognormal distributions gives approximately the 
same results regarding the possibilities to unite samples and conduct further analysis over 
larger datasets.  
 
Further extension of the statistical procedures developed in this paper may focus on the 
inclusion of additional statistical tests evaluating the quality of the fits and the equality of the 
distributions. The required simulation procedures may be realized also via Bootstrap, as this 
method relies on less assumptions about the underlying process and the associated 
measurement error [13]. Other theoretical distribution types should also be included in the 
program platform, especially those that can interpret different behavior of the data around the 
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mean and at the tails. Finally, further research could focus on new areas (e.g. economics, 
finance, management, other natural sciences, etc.) to implement the described procedures.  
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