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Abstract: In the paper is presented preferences based control design and stabilization of the 
growth rate of fed-batch cultivatiion processes. The control is based on an enlarged Wang-
Monod-Yerusalimsky kinetic model. Expected utility theory is one of the approaches for 
utilization of conceptual information (expert preferences). In the article is discussed 
utilization of stochastic machine learning procedures for evaluation of expert utilities as 
criteria for optimization. 
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Introduction 
The incorporation of human preferences in complex systems is a contemporary trend in the 
scientific investigations. The aim is to develop iterative control design with a merger of 
empirical knowledge (subjective preferences) with the mathematical exactness and optimal 
control algorithms [1, 8]. People preferences contain characteristic of uncertainty due to the 
cardinal type of the empirical expert information. The appearance of this uncertainty has 
subjective and probabilistic nature. Probability theory and expected Utility theory address 
decision making under these conditions in mathematics [2, 5]. The necessity of a merger of 
empirical knowledge with mathematical exactness causes difficulties. A possible approach for 
solving these problems is the stochastic approximation. The uncertainty of the subjective 
preferences may be viewed as a noise that could be eliminated as typical for the stochastic 
approximation procedures and machine learning [8]. A main requirement of the stochastic 
assessment is the representation of the qualitative nature of preferences. 
 
This article deals with an investigation of Monod and Yerusalimsky kinetic models with an 
approach based both on the differential geometry and on the optimal control theory [1, 6]. 
This approach permits new control solutions for some optimal control problems in the field. 
Stochastic algorithms for assessment of Decision-maker’s (DM) expected utility function on 
the basis of the expressed expert preferences are included in the control design. 
 
The objective of this paper is to present comfortable tools and mathematical methodology that 
are useful for dealing with the uncertainty of human behavior in complex control problems. 
The incomplete information is some times compensated with participation of imprecise 
human estimations. This article deals with a possible mathematical description of the system 
“technologist-fed-batch process”. The dialogue “DM’s preferences – computer” realizes a 
machine learning. 
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Description of Wang-Yerusalimsky kinetic model 
Unstructured biotechnological models take cell mass as a uniform quality without internal 
dynamic. The reaction rates depend only upon the macroscopic conditions in the liquid phase 
of the bioreactor. Mathematical unstructured models of fed-batch process can be written based 
on mass balance equation [7, 12]. Below we investigate an enlarged form of the Yerusalimsky 
kinetic model (Wang-Yerusalimsky model [10, 12]): 
 
 
 
 
 
 

(1) 
 
 
 
 
 
 
 
 
where X is the concentration of biomass, g·l-1; S – the concentration of substrate (glucose), 
g·l-1; V – bioreactor volume, l; F – substrate feed rate, h-1; S0 – substrate concentration in the 
feed, g·l-1; µma x – maximum specific growth rate, h-1; KS – saturation constant, g·l-1; k, k2 , k3 
and kE – constant, g·g-1; m – coefficient, - ; E – the concentration of ethanol, g·l-1; A – the 
concentration of acetate, g·l-1. 
 
We preserve the notation U(.) for the criteria for optimization (a unimodal polynomial expert 
utility function). The parameters are as follows: µm = 0.59 h-1; KS = 0.045 g·l-1; m = 3; 
S0 = 100 g·l-1; k = 2; k2 = 3.79; k3 = 1/71; kE  = 50; Fmax = 0.19 h-1; Vmax = 1.5 l. The dynamics 
of µ is modeled as a first order lag process with rate constant m, in response to the deviation 
in µ. The 5th equation describes the production of ethanol (E). The last equation describes the 
production of acetate (A). The first and the last equations become dynamically equivalent with 
a simple transformation: 
 

(2) 
 
That is why in the non-linear kinetic model we omit the last equation. The initial values of the 
state variables are: Xi(0) = 0.99; Si(0) = 0.01; µi(0) = 0.1; EI(0) = 0.1; Vi(0) = 0.5. The 
parameters are taken from different sources [9, 10].  
 
Expected utility, formulations and evaluation 
Standard description of the utility function application is presented by Fig 1. There are a 
variety of final results that are consequence of the expert or DM activity and choice. This 
activity is motivated by a technological objective that possibly includes economical, social, 
ecological or other important characteristics. A utility function u(.) assesses each of this final 
results (xi, i = 1÷n). The DM judgment of the process behavior based on the DM choice is 
measured quantitatively by the following equation: 
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Fig. 1 Utility application 
 
 (3) 
  
We denote with pi subjective or objective probabilities that reflect the uncertainty of the final 
result. 
 
The strong mathematical formulation is the following. Let Z is a set of alternatives and P is a 
subset of discrete probability distributions over Z. A utility function is any function u(.) which 
fulfils: 
 
( p⎬q, (p, q)∈P2 ) ⇔ ( ∫u(.)dp>∫u(.)dq ), (p, q)∈P2 (4) 
 
The DM’s preference relation over P, Z⊆P is expressed by (⎬). Its induced indifference 
relation (∼) is defined thus: ((x∼y) ⇔ ¬( (x⎬y) ∨ (x⎨y) ), (x, y)∈Z2). The existence of an 
utility function u(.) over Z determines the preference relation (⎬) as a negatively transitive and 
asymmetric one [2, 5]. We mark the lottery “appearance of the alternative (x) with probability 
α and appearance of the alternative (y) with probability (1-α)” as <x, y, α>. It is assumed that 
an utility function u(.) exists and that is fulfilled ((q,p)∈P2 ⇒ (αq+(1–α)p)∈P, for 
∀α ∈[0,1]). These conditions determine the utility function with precision up to an affine 
scale (interval scale), u1(.)∼u2(.)⇔u1(.)=au2(.)+b, a>0 [2, 8]. The following notations will be 
used Au={(α,x,y,z)/(αu(x)+(1-α)u(y))>u(z)} and (Bu={(α,x,y,z)/(αu(x)+(1-α)u(y))<u(z)}). 
The expected DM utility is constructed by pattern-recognition of Au and Bu [8]. Key element 
is the next proposition [8]: 
 
PROPOSITION 1: If Au1=Au2 than u1(.)=au2(.)+b, a>0. 
 
The following presents the procedure for evaluation of the utility functions: 
The DM compares the "lottery" <x,y,α> with the simple alternative z, z∈Z (“better-⎬, f(x, y ,z, 
α) = 1”, “worse-⎨, f(x, y, z, α)= - 1” or “can’t answer or equivalent- ∼, f(x, y, z, α) = 0”,  f(.) 
denotes the qualitative DM answer). This determins a learning point ((x, y, z, α), f(x, y, z, α)). 
The next recurrent stochastic algorithm constructs the utility polynomial approximation 
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In the equation  are used the following notations (based on Au): t = (x, y, z, α),  
ψi(t)=ψi(x, y, z, α) =αΦi(x)+(1 – α)Φi(y) – Φi(z), where Φi(x)  is a family of polynomials. The 
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line above ny (c , (t))= Ψ  means 1=y  if y > 1, )1(−=y  if y < (–1) and y y=   
if (–1) < y< 1 [8]. The learning points are set with a pseudo random sequence [11]. 
 
The expert relates intuitively the “learning point” (x, y, z, α)) to the set Au with probability 
D1(x, y, z, α) or to the set Bu with probability D2(x, y, z, α). The probabilities D1(x, y, z, α) and 
D2(x, y, z, α) are mathematical expectation of f(.) over Au and Bu, respectively, 
D1(x, y, z, α) = M(f/x, y, z, α), if M(f/x, y, z, α )> 0, D2(x, y, z, α) = (-M(f/x, y, z, α)),  
if M(f/x, y, z, α) < 0. Let D'(x, y, z, α) be the random value: D'(x, y, z, α) = D1(x, y, z, α), 
M(f/x, y, z, α) > 0; D'(x, y, z, α) = (-D2(x, y, z, α)), M(f/x, y, z, α) < 0; D'(x, y, z, α) = 0,  
M(f/x, y, z, α) = 0. We approximate D'(x, y, z, α) by a function of the type  
G(x, y, z, α)=(αg(x)+(1–α)g(y)–g(z)), where ∑=

i
ii xcxg )()( Φ . The function g(x) is an 

approximation of the utility u(.). The coefficients ci
n take part in the decomposition 

∑
=

Φ=
N

i
ii

nn xcxg
1

)()(  and ),,,()()())())(,( ααα zyxGzgygxgtc nnnnn =−−(1+=Ψ . The function 

Gn(x, y, z, α) is positive over Au and negative over Bu depending on the degree of 
approximation of D'(x, y, z, α). The convergence of the procedure is analyzed in [8]. 
 
The learning points ((x, y, z, α), f(x, y, z, α)) are set with a pseudo random Lpτ sequence. An 
important property of the Lpτ sequences is their optimally spacing, in an arbitrary number of 
dimensions. As discussed in [11] pseudo random numbers are characterized by enhance 
convergence when estimating e.g. a multidimensional integral. This defines a priori the 
number of the learning points in the procedure (n = 2p, 64, 128 or 256,…). 
 
The proposed procedure and its modifications are machine learning [8]. The computer is 
taught to have the same preferences as the DM. The DM is comparatively quick in learning to 
operate with the procedure. For example a session with 128 questions (learning points) takes 
approximately no more than 45 minutes. 
 
Preferences and utility evaluation of the “best” growth rate of the process 
The specific growth rate of the fed-batch processes determines the nominal technological 
condition [7] The complexity of the biotechnological fermentation process makes difficult the 
determination of the “best” process parameters [5, 7]. The incomplete information usually is 
compensated with the participation of imprecise human estimations. Our experience is that the 
human estimation of the process parameters of a cultivation process contains uncertainty in 
the range of 10% to 30%. Here a value-based decision support system for elimination of the 
uncertainty in the DM preferences and evaluation of the DM’s utility is used. The system is 
mathematically based on the stochastic procedure (5). The approach permits iterative and 
precise evaluation of the “best” specific growth rate of the fed-batch process in agreement 
with the DM’s preferences.  
 
Let Z be the set of alternatives (Z={specific growth rates – µ}=[0, 0.6]h-1) and P is the convex 
subset of discrete probability distributions over Z. The expert “preference” relation over P is 
expressed through (⎬) and this is also true for those over Z (Z⊆ P). As mentioned above the 
utility function is defined with precision up to affine transformation (interval scale). The 

process of utility evaluation and the polynomial utility approximation 
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shown on Fig. 2 and Fig. 3. The utility function is evaluated with 64 learning points and 
expert answers. This number of questions is for a primary orientation. The seesaw line  
(Fig. 4) is pattern recognition of Au and Bu. This seesaw line recognizes correctly more then 
97% of the expert answers. The polynomial approximation of the DM utility U(µ) is the 
smooth line (the mathematical expectation). 
 

         
 
 Fig. 2 Fig. 3 
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Fig. 4 Utility evaluation of the growth rate Fig. 5 Stabilization of the growth rate 
 
The expert utility recognizes correctly more then 81% of the expert answers (used learning 
points). The maximum of the utility function determines the “best” set point of the fed-batch 
process after the technologist. 
 
Control design and stabilization of the fed-batch process 
in the “best” growth rate 
The polynomial representation of the DM”s utility permits exact analytical determination of 
the derivative of the utility function and determination of the optimal technological 
parameters, optimal specific growth rate (optimal set point).  
 
We begin the control design by determination of the Brunovsky normal form of Wang-
Yerusalimsky model. On the bases of this equivalent normal form is analytically determined 
“time minimization” control and chattering robust control stabilization of the growth rate on 
the “best” utility point.  
 
In the beginning we investigate the Wang-Yerusalimsky model which describes a continuous 
cultivation process. After that it is shown that the time minimization optimal control of the 
fed-batch process has the same form as that of the continuous process. The continuous 
process is described dynamically by the following model:  
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Here D denotes the dilution rate. We apply the next transformation to model (6): 
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The dynamical model (6) obtains the next equivalent form: 
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The next step is application of the GS algorithm for exact linearization to Brunovsky normal 
form, published by Gardner and Shadvwick in 1992 [1, 3]. The new equivalent model of 
model (6) and model (8) has the form [1, 9, 10]: 
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The state vector of model (9) has the next explicit extended form:  
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The control input of the model (9) is W and it has the next huge analytical form:   
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The last equation of model (9) can be solved by separation of variables. Consecutively the 
variable Y4 depend only from Y1 and can be described analytically by Y1. The solution is: 
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That is why (6), (8) and (9) are dynamically equivalent to the next Brunovsky normal form [1, 
3, 10]: 
 
 

 (13) 
 
 
 
 
The input D of the continuous model (9) takes part in the last mathematical expression of this 
equation. Now we can solve the following optimal control problem, where U(µ) is a unimodal 
polynomial function, criteria for optimisation and control [9, 10]: 
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We apply the Pontryagin’s maximum principle to the Brunovsky form (13) step by step for 
sufficiently small time periods T [6]. The control law has the analytical form:   
 
 

( )

.0,0)(, 0 , 1 ) ( : 

1
2

)21()(
max

1
6

1 
) 1( 

≤=> = 
⎠

⎞
⎜ ⎜ 
⎝ 

⎛ 
⎥⎦
⎤

⎢⎣
⎡ −

−−
−  

⎠ 

⎞ 
⎜ 
⎝ 

⎛ 
= ∑ 

= 
− 

rrsignr rsign where 

DkYtTtT icsign D 
i

i
iopt

µµ  (15) 

 
The time interval T is chosen close to the step of discretization of the differential equation 
solver. The sum in equation  (15) is the derivative of the polynomial function U(µ). It is clear 
that the “time-minimization” control is determined from the sign of the derivative of the 
function U(µ). Thus, the control is D = Dmax or D = 0. The solution is a “time-minimization” 
control (if the time period T is sufficiently small). The control brings the system back to the 
working point for minimal time in the case of growth rate deviations [9, 10]. 
 
The previous solution permits easy determination of the control law of the fed-batch process. 
The control law is based on the solution of the following optimization problem: 
Max(U(µ(Tint))), where the variable µ is the specific growth rate, (µ∈[0, µmax], F∈[0, Fmax]). 
Here U(µ) is a unimodal utility function and F is the control input (the substrate feed rate):  
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The control law of the fed-batch process has the same form (15) because D(t) is replaced with 
F(t)/V(t) in model (1). Thus, the feeding rate F(t) takes F(t) = Fmax or F(t) = 0. 
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We conclude that the control law (15) brings the system  to the set point (“best” growth rate) 
with a ”time minimization” control, starting from any deviation of the specific growth rate 
(Fig. 5). 
Thus, we design the next robust control law for attainment of the “best” growth rate and 
stabilization of the process in this set point [9, 10]: 
 

• Time interval – [0, t1]: the control is a “time-minimization” control (Eq. (15)), where 
µ(t1) = (x30–ε), ε  >0, x30 = max(U(µ)). The input D is replaced with F = γFmax,  
1 ≥ γ  > 0, when D = Dmax. The choice of γ depends on the step of the equation solver 
and is not a part of the optimization (in this investigation); 

• Time interval - [t1, t2]: the control is  F = 0 (µ(t1) = (x30–ε), µ(t2) = x30 and d/dt(µ(t2))= 0 
(to  avoid an over-regulation, (Fig. 5)); 

• After the moment t2 the control is the control (15) with F = γFmax, when D = Dmax 

(chattering control with 1 ≥ γ > 0).  
 
The performances of the fed-batch process with this control law are shown on Fig. 6. After 
that the stabilization of the fed-batch process can be maintained around the optimal 
parameters with a sliding mode control (Fig. 6) [9, 10].  
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Interesting moment is the determination of approximations of the moments t1 and t2. A 
manifold is determined and applied for numeric approximation of the moments t1 and t2 when 
the fed-batch process is described by a Wang-Monod kinetic model [12]. We denote with µe 
the growth rate and Xe is the biomass concentration in steady state. The moment t1 is 
determined when the state vectors of the Monod model intersects this manifold [9]. The 
moment t2 is the moment of intersection of another manifold (µ = µe)∩(dµ/dt =0). This 
solution needs determination of the substrate concentration Se in steady states (the “best” 
point of the process): The substrate concentration Se of the Monod model is determined by the 
equation: 
 
 (17) 
 
When the Wang-Yerusalimsky kinetic model is used the situation is a litle different. The 
substrate concentration Se now depends both from the growth rate µe and from the biomass 
concentration Xe. 
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The growth rate µe and the biomass concentration Xe depend on the moment of intersection 
with the manifold. A possible way out of this situation is replacement of the biomass 
concentration Xe with X(t1) and calculation of the manifold in each step of the equation solver. 
 

(19) 
 

 
In all cases this will lead to augmentation of the calculations. 
 
Sliding mode control and stabilization in the “best utility” growth rate  
The sliding mode (SM) control is realized with Wang-Monod model (20). The solution is 
obtained with alternations of the maximum specific growth rate µm(to, pH) through 
changes of the  temperature (to) and the acidity of the bioreactor medium (pH). 
 
 
 
 
 

(20) 
 
 
 
 
 
 
This control choice gives us the possibility for utilization of the temperature (to) and the 
acidity (pH) as control values. More classical SM solutions with substrate concentration S as 
control value could be seen in the scientific literature. The sliding affine subspace is defined 
by the equation: 
 

1( ) ( 0.31) 0Sl µ µ= − =  (21) 
 
The general stability conditions are derived from the Liapunov’s function 2

1)(Sl . The 
equivalent growth rate control is determined exactly and the SM control is possible: 
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The substrate concentration S is also a constant eS 0.0498=  (Eq. (17)). The feeding rate F(t) 
is derived from the substrate concentration: F(t)=(kX(t)µ(t)V(t)/(S0 – Se), where X(.) is the 
quantity of biomass in the bioreactor. The mathematical model and the corresponding stability 
conditions determine the SM control law: 
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supplementary value. 
 
The Russian scientists Emelyanov, Korovin and Levant evolve high-order sliding mode 
methods in control systems [4]. We propose in our investigation a second order sliding mode 
control following Emelyanov and Korovin. Out of this approach the second order SM 
manifold becomes:  

            (24) 
 

Here is used the so-called “contraction” algorithm [4]. After Emelyanov the SM control input 
in second order “contraction” algorithm becomes: 
 
 

(25) 
 
 
 
It is well known that this algorithm ends for finite time [4]. The performances of the system 
with this SM control are shown on Fig. 6. The input in second order SM is smoother but the 
control is litle more imprecise. 
 
Conclusions 
The proposed utility evaluation procedure and its modifications are a machine learning 
approach. The computer is taught to have the same preferences as the DM in the specific 
problem. The DM’s utility function determines with mathematical exactness the “best” 
growth rate of the fed-batch process. The following points should be highlighted:  

• After understanding the term "lottery", the DM is comparatively quick in learning to 
operate in the software environment. He is able to answer to the maximum of his 
abilities. For example, a session with 128 questions takes approximately 50 minutes. In 
practice, increasing the number of questions adds only little extra time to the dialogue; 

• The recurrent stochastic utility procedures are easy to implement in software. The 
questions in these procedures are homogeneous and require only qualitative answers; 

• The Monod kinetic model is a restricted form of the Yerusalimsky kinetic model  
(kE → ∞). The control law is based on measurements of the specific growth rate. 

 
This approach permits iterative preferences based engineer control design. The stochastic 
utility evaluation and the designed decision support system can be used in complex control 
peroblems. 
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