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Abstract: This study presents an automated algorithm for fast pulse wave detection, directed 
to establishing the presence of cardiac activity in an emergency. The method relies on real-
time estimation of similarity of closely positioned rising edges of the waveform and decision 
logic. The algorithm was tested on a set of pressure pulse waves from the MGH/MF 
waveform database from PhysioNet. Our approach to assessing the algorithm performance 
was based on location and classification of suspicious 10 s signal epochs by means of 
detection of dissimilar peak-to-peak intervals. The detected epochs were visually inspected 
and compared to the corresponding ECG-based expert beat annotations. The main epoch 
and error types were summarized. The performance of the algorithm and the visual 
interpretation of the results were illustrated by means of examples. The review of the 
recordings showed that the proposed algorithm correctly identifies cardiac pulsations even 
under considerable artefacts. Our conclusion is that the algorithm reliably detects critical 
periods in cardiac activity and is applicable to fast pulse wave detection in real-time 
applications and ambulatory measurement setups. 
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Introduction 
In a series of resuscitation guidelines produced by International Liaison Committee on 
Resuscitation (ILCOR), European Resuscitation Council (ERC) and American Heart 
Association (AHA) is emphasized that checking the carotid pulse by palpation is an 
inaccurate method of confirming the presence or absence of circulation [7]. The time for a 
single pulse check is limited to no more than 10 s for healthcare providers. In relation to this, 
the design and usage of a specialized pulse wave detector in an emergency would be of great 
diagnostic significance. 
 
In the course of blood circulation through the arteries three coherent phenomena can be 
observed: blood flow (flow pulse), the increase of blood pressure (pressure pulse wave) and 
extension of transverse profile (volume pulse wave) [8]. There are several non-invasive 
methods for peripheral pulse measurement based on different principles and depending on the 
type of measured pulse wave. The most widespread method for volume pulse wave detection 
is photoplethysmography (PPG) [1]. The blood volume pulse has similarities with the blood 
pressure pulse, with similar changes occurring in vascular disease, such as damping and a loss 
of pulsatility. The typical pulse wave morphology has two phases: the anacrotic phase being 
the rising edge of the pulse, and the catacrotic phase being the falling edge of the pulse. The 
first phase is primarily concerned with systole, and the second phase with diastole and wave 
reflections from the periphery. A dicrotic notch, followed by a dicrotic peak, is usually seen in 
catacrotic phase of subjects with healthy compliant arteries [1]. The pulse wave contour is 
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influenced by physiological conditions and diseases and varies in different parts of the 
circulation [13].  
 
Beat detection algorithms with different level of complexity are published, including 
computer-based filtering, feature extraction, adaptive thresholding, derivative calculation etc 
[2-4, 9, 10, 16]. Automatic beat detection in presence of severe movement artifacts and low 
signal-to-noise ratio is a non-trivial task in computer signal processing. Ambulatory pulse 
wave measurements are very sensitive to noise and artifacts. In addition, the waveform 
morphology can be highly variable, even over short periods of time, in response to altered 
pathologic or physiologic stresses. Most pulse and pulse-component detection algorithms 
identify the peak of the pulse as the fiducial mark of the waveform. Traditionally, the pulse 
contour analysis extracts evaluation parameters through identification of characteristic points 
of the pulse. From the literature, many features have been investigated, including beat-to-beat 
pulse rise time, foot-to-peak amplitude, dicrotic wave amplitude, dicrotic wave time, total 
pulse duration, pulse transit time, etc [1, 8]. Morphological analysis of pulsatile signals is a 
popular technique for assessing vascular disease. 
 
This study presents an automated algorithm for fast pulse wave detection. It is directed to 
establishing the presence of cardiac activity in an emergency and is applicable in an 
ambulatory measurement setup, such as a photoplethysmograph. The method relies on real-
time estimation of similarity of closely positioned rising edges of the waveform and decision 
logic. The algorithm was developed in the signal processing environment Matlab and was 
tested on pulse signals from a subset of the publicly available MGH/MF waveform database 
from PhysioNet [5]. 
 
Method 
The presented pulse wave detection algorithm was originally developed using non-invasive 
PPG waveforms recorded from the region of the neck by an especially designed pulse wave 
detector [11]. A pulse wave detector must be able to recognize cardiac pulsations with a heart 
rate from 0.5 Hz (30 bpm (beats per minute)) to 4-5 Hz (240-300 bpm). In an emergency, the 
monitoring devices operate under unfavorable environment and intensive movement artifacts. 
Moreover, the identification of presence of pulsations, not the shape of the waveform is 
important. We recommend the use of first order hardware filters with a relatively narrow pass-
band – between 0.5 and about 12 Hz. A sampling frequency of 250 Hz and a small amplitude 
resolution of 8 bits were adopted in our implementation. The signal processing was performed 
in the signal processing environment Matlab 7.0 (The MathWorks, Inc.). 
 
Preprocessing filtration 
A real-time digital filtering of the registered pulse wave is necessary to reject the baseline 
drift, as well as other low-frequency signal components, and to smooth the pulse waveform. 
This facilitates the subsequent waveform interpretation. A particular benefit of the proposed 
digital filters is the simple implementation using minimal computing resources. Short 
description of the filters follows. 
 
A. High-pass filter for real-time baseline drift reduction 
The filtering procedure is similar to the ECG baseline drift reduction found in [6, 15], but 
adapted to pulse wave signals [12]. The proposed filter implements moving average of a 
number of signal samples, N, at a predefined distance between them, D (as a number of 
samples):  
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where x[i] is the input signal and y[i] is the output 
signal. For the predefined sampling frequency, we 
applied averaging over 25 samples distanced by  
15 samples, thus realizing a comb filter with a 
high-pass cut-off frequency of 0.5 Hz 
(corresponding to the lowest heart rate of 30 bpm) 
and a zero at 50 Hz – Fig. 1. The filter has time-
interval for averaging of about 1.5 s, which defines 
the operational time-delay of the filter’s output. A 
disadvantage is the ripples in the pass-band. 
 
B. Smoothing filter 
The moving average low-pass filter [12, 14] operates by averaging a number of consecutive 
points, N, from the input signal: 
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In the our implementation (sampling frequency of 250 Hz) we applied averaging over  
20 consecutive samples to achieve a comb filter with a low-pass cut-off frequency of 5.5 Hz 
(to accommodate the highest heart rate of 240-300 bpm) and a zero at 50 Hz – Fig. 1. 
 
Pulse wave detection algorithm 
The pulse wave detection algorithm includes the following steps. 
 
1. Identification of extrema – possible peaks and foots of individual pulsations 

1.1. Maximum (MAX) identification  
• The waveform is divided into consecutive 200 ms time intervals and the absolute 
maximum is determined for every segment. Some of these maximums are rejected 
according to the following criteria. 
• The maximums lying below a predetermined amplitude threshold near the middle 
line of the waveform are rejected. The threshold was set to 3 bits above the middle 
line to ignore a very low-amplitude noise. 
• If the distance between two maximums is less than or equal to 200 ms, the lower-
amplitude maximum is rejected. This will also remove the false maximums which 
appear along the slopes of the waveform, at the boundaries of the 200 ms intervals.  

1.2. Minimum (MIN) identification 
The absolute minimums between every two adjacent maximums are determined. If a 
minimum is above a predetermined amplitude threshold near the middle line of the 
waveform the minimum is rejected. The threshold was set to 3 bits below the middle 
line to ignore a very low-amplitude noise. The lower-amplitude maximum of the two 
maximums adjacent to a rejected minimum is discarded too. 

 
The characteristic points along a pulse wave are illustrated in Fig. 2. 

 
 
 

Fig. 1 Frequency responses of the 
digital filters, calculated for 250 Hz 
sampling frequency: A – high-pass 

filter; B – smoothing filter. 

A 

B 
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2. Examination and verification of the rising 
edges of the waveform  
Two threshold points are defined along a 
rising edge (Fig. 2), based on the values of its 
maximum, MAX, and its amplitude  
AMPL = MAX – MIN:  

• HAT – the first point of the waveform 
to the left of the maximum that is lower 
than or equal to a high amplitude 
threshold of (MAX – 0.1AMPL);  
• LAT – the first point of the waveform 
to the left of the maximum that is lower 
than or equal to a low amplitude 
threshold of (MAX – 0.7AMPL). 

2.1. Validation criteria concerning the 
characteristics of a single rising edge  
If the following criteria are not fulfilled 
the rising edge is discarded (its minimum 
and maximum are rejected). 

• Minimum amplitude (AMPL) of the rising edge. An amplitude threshold 
of 20 bits is set on the assumption of an 8-bit resolution and normalized 
amplitude of the input signal (automatic gain control). 
• Minimum duration of the rising edge between the two threshold points 
LAT and HAT: SHAT – SLAT ≥ 10 (or 40 ms for the 250 Hz sampling 
frequency), where SHAT, SLAT are the sample indexes of the threshold points. 
• A requirement for a smooth rising edge between the two threshold points 
LAT and HAT: PWi – PWi-1 ≥ 0, where PWi is the amplitude of the i-th signal 
sample in the interval, i = (SLAT + 1), … , SHAT. 

2.2. Estimation of the similarity of a rising edge to accepted as valid preceding rising 
edges and to following rising edges  
2.2.1. Criteria for similarity of two rising edges 

Two rising edges are considered similar if the following criteria are fulfilled. 
• Amplitude similarity  

The amplitude of the lower-amplitude rising edge must be greater than 
50% of the amplitude of the higher-amplitude rising edge. 

• Position similarity  
- The maximum of the lower-amplitude rising edge must be in the 
interval defined by the maximum of the higher-amplitude rising edge  
± 60% of the amplitude of the higher-amplitude rising edge. 
- The minimum of the lower-amplitude rising edge must be in the 
interval defined by the minimum of the higher-amplitude rising edge  
± 60% of the amplitude of the higher-amplitude rising edge. 

• Duration similarity of the upslope segments between the threshold points 
LAT and HAT 
The duration (SHAT – SLAT) of the shorter upslope segment must be greater 
than 33% of the duration of the longer upslope segment. 

2.2.2. Estimation of the similarity of the current rising edge to the accepted as valid 
preceding rising edges whose maximums are within 2 s before the maximum 
of the current rising edge 

Fig. 2 Characteristic points along a 
pulse wave: 1 – MIN; 2 – LAT;  
3 – HAT; 4 – MAX; 5, 6 – the 

amplitude thresholds  
(MAX – 0.1AMPL) and  

(MAX – 0.7AMPL); 7, 8 – the 
sample indexes SLAT, SHAT. 
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The following data are obtained, applying the criteria for similarity of two 
rising edges: 
• SIM_BEF – the number of the accepted as valid rising edges having a 
maximum within 2 s before the maximum of the current rising edge and 
which are similar to the current rising edge. 
• NOTSIM_BEF – the number of the accepted as valid rising edges having 
a maximum within 2 s before the maximum of the current rising edge and 
which are not similar to the current rising edge. 

2.2.3. Estimation of the similarity of the current rising edge to the following rising 
edges whose maximums are within 2 s after the maximum of the current rising 
edge 
The following data are obtained applying the criteria for similarity of two 
rising edges: 
• SIM_AFT – the number of the rising edges having a maximum within 2 s 
after the maximum of the current rising edge and which are similar to the 
current rising edge. 
• HIGH_AFT – the number of the rising edges having a maximum within 
2 s after the maximum of the current rising edge which are not similar to the 
current rising edge and are higher in amplitude than the current rising edge. 

2.3 Verification of the current rising edge 
The decision logic uses the quantities obtained above from the estimation of 
similarity of closely positioned rising edges. The decision rules are specified on 
separate lines in Table 1. The current rising edge is considered a valid edge of a pulse 
wave if one of the decision rules is fulfilled. For example, the decision rule 2, stated 
in words, reads as follows: “In comparison to the current rising edge: 

1) There are 2 or more similar and 1 or more not similar accepted for valid rising 
edges within 2 s before the maximum of the current rising edge. 
2) Within 2 s after the maximum of the current rising edge there are 1 or more 
similar rising edges, and the number of the higher-amplitude not similar rising 
edges is at least lesser by 1 than the number of the similar rising edges (in the 
same time-interval)“. 

The last means that, if there is 1 similar edge within 2 s after the maximum of the 
current edge, no higher-amplitude not similar edges are allowed in the same interval; 
if the similar edges are 2, 1 higher-amplitude not similar edge is allowed and so on.  

 
 Table 1 

Decision rule № SIM_BEF NOTSIM_BEF SIM_AFT HIGH_AFT 

1 >= 2 0   
2 >= 2 >= 1 k, k >= 1 <= k – 1 
3 1 0 k, k >= 1 <= k – 1 
4 1 >= 1 k, k >= 2 <= k – 2 
5 0 >= 1 k, k >= 3 <= k – 3 
6 0 0 1* 0 
7 0 0 k, k >= 2 <= k – 2 

* The maximum of this rising edge must be more than 0.9 s after the maximum of the 
current rising edge. 
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Performance assessment of the pulse wave detection algorithm 
1. Test signals 
There is an abundance of publicly available digital recordings containing expert-annotated 
electrocardiographic (ECG) signals, such as those accessible from PhysioNet 
(http://www.physionet.org) [5] – a large database collection of a variety of physiologic 
signals. Generally, however, there is a lack of benchmark databases with approved beat 
annotations for the evaluation of pulse wave detection algorithms. The small CSL database 
(http://bsp.pdx.edu) [3] containing six 60 minutes manually annotated recordings from six 
patients, may be mentioned as an exception (two arterial blood pressure, two pulse oximetry 
and two intracranial pressure recordings). 
 
To test the performance of the proposed algorithm a set of signals from an internationally 
recognized database was selected – The Massachusetts General Hospital/Marquette 
Foundation (MGH/MF) Waveform Database from PhysioNet. This is a collection of 
recordings from 250 patients in critical care units and represents a broad spectrum of 
physiologic and pathophysiologic states. The typical recording contains as a subset an arterial 
pressure pulse wave as well as synchronously-sampled ECG waveforms with approved beat 
annotations. The database is classified as Class 1 (completed reference databases) which 
means that these data have been carefully scrutinized and have been thoroughly annotated. 
Although there are no reference beat annotations for the pulse wave signals, the ECG based 
beat annotations can indirectly help the assessment of the algorithm performance. Obviously, 
a direct comparison between the number of the detected by this algorithm pulses and the 
number of the ECG based beat annotations is not appropriate. 
 
The algorithm performance was tested on the first 12 recordings (mgh001, …, mgh012) from 
the MGH/MF Waveform Database discussed above. These signals are digitized by a 12 bit 
resolution ADC and are relatively low-amplitude which does not comply with the assumption 
of an 8-bit resolution and normalized amplitude of the input signal (automatic gain control). 
Reducing the resolution to the 8 most significant beats in order to simulate an 8 bit analog-to-
digital conversion would produce a very low-amplitude signal. We chose to test the algorithm 
on the original 12 bit resolution signal and to adapt the threshold for the minimum amplitude 
(AMPL) of the rising edge from 20 to 160 bits (point 2.1. of the pulse wave detection 
algorithm). Since the sampling frequency of the recordings is 360 Hz, the signals were 
downsampled to 250 Hz prior to the test. 
 
2. Test procedure 
We adopted an approach to assessing the algorithm performance based on detection and 
visual inspection of suspicious signal epochs featuring abrupt peak to peak interval 
shortenings or prolongations (like arrhythmia or other major disturbances of heart rate 
periodicity). The aim is to check if the algorithm correctly recognizes the absence of valid 
pulsations. The test procedure uses the maximums (peaks) of the detected by the algorithm 
pulse wave rising edges. 

 
2.1. Detection of dissimilar peak to peak (PP) intervals 

Every peak to peak interval, PPi, is compared to a current average value of eight peak to peak 
intervals, PPmeanj. PPi = Pi – Pi-1, where Pi denotes the sample index of the maximum of the 
i-th accepted for valid rising edge from the beginning of the recording. PPmeanj is initialized 
with the average value of the first eight PP intervals having duration between 50 and  
500 samples (or 0.2 s to 2 s). Then PPmeanj is updated with every detected similar peak to 



 INT. J. BIOAUTOMATION, 2010, 14(3), 203-216 
 

 209

peak interval. This could be written as 
8

1
8j m n

n
PPmean PP /−

=

= ∑ , where PPm-1 is the last 

element of an array starting with the first eight PP intervals with a duration between 50 and 
500 samples and continuing consecutively with the detected similar peak to peak intervals.  
 
The i-th peak to peak interval, PPi, is considered dissimilar to the current average value, 
PPmeanj, if PPi < 0.5PPmeanj or PPi > 1.5PPmeanj. The intervals from the beginning of the 
recording to the first maximum and from the last maximum to the end of the recording are 
also considered as dissimilar, if they exceed 1.5 times the corresponding PPmeanj (the first 
interval is compared to the initial average PP interval PPmean1). 

 
2.2. Location of suspicious 10 s signal epochs and classification of the epochs 

Based on the detected dissimilar peak to peak intervals, suspicious signal epochs are located 
and classified. The duration of each epoch is 10 s (2500 samples). The location of the epochs 
is as follows. 

• If the interval from the beginning of the recording to the first maximum is 
dissimilar the beginning of the recording is a beginning of a 10 s epoch. 
• If a signal segment that is not a part of an epoch and is free from dissimilar 
intervals is followed by a dissimilar PP interval the beginning of the dissimilar  
PP interval (the first peak) is a beginning of a 10 s epoch. 
• If the end of a suspicious 10 s epoch intersects a dissimilar PP interval the epoch 
is immediately followed by a new epoch. 
• If the end of the recording occurs before the end of a 10 s epoch the epoch is 
discarded. 

 
For every epoch the total duration and number of dissimilar PP intervals are calculated. An 
interval portion at an epoch boundary is also added to the total duration and number of 
dissimilar intervals for that epoch. The suspicious 10 s epochs are classified as follows.  

• Epochs with presence of pulse – epochs with detected maximums and in which 
the dissimilar intervals add up to less than or equal to 40% of the epoch duration AND 
there are less than 5 dissimilar intervals. 
• Bad epochs – epochs with at least one detected maximum after the beginning of 
the epoch and in which the dissimilar intervals add up to more than 40% of the epoch 
duration OR there are more than or equal to 5 dissimilar intervals. 
• Empty epochs – epochs without detected maximums after the beginning of the 
epoch.  

 
2.3. Visual inspection of the detected epochs in the pulse wave signal  

The detected epochs (especially the bad and empty ones) are subjected to careful visual 
inspection with the help of ECG based beat annotations as a means of verification. 
 
Results and discussion 
The total duration of the examined recordings was 13 h 59 min. The pulse wave detection 
algorithm identified 62363 heart beats. The test procedure located 1495 suspicious 10 s 
epochs. They were classified as follows: 976 empty epochs, 113 bad epochs and 406 epochs 
with presence of pulse. The recordings were visually reviewed and the detected epochs were 
checked for errors with the aid of ECG based beat annotations. All of the quantities cited 
below should be taken as approximate only, because of the lack of pulse wave based expert 
annotations.  
 



 INT. J. BIOAUTOMATION, 2010, 14(3), 203-216 
 

 210

1. Visual inspection of the empty epochs 
In 964 of all 976 empty epochs no errors were found.  

1.1. Empty epochs with undetected beats 
Undetected beats were found in 12 empty epochs. (In 9 of these epochs there was only one 
undetected beat, in the rest three epochs there were 2, 3 and 5 undetected beats respectively). 
The main types of errors could be summarized as follows.  

a) Undetected last beat before an empty segment at low heart rates 
In 7 epochs (all from recording mgh001) there was a single undetected beat lying between a 
series of similar valid pulses and an empty segment. An example is shown in Fig.3a). Such 
type of undetected beats would be common at the lowest heart rates from about 30 to 60 bpm 
because of the decision rules. At these low heart rates the adopted 2 s window for analysis 
around a rising edge could only accommodate one pulse upslope. We chose the decision rules 
to be tight in order to reduce false detections.  

b) Undetected beats distorted by the digital filtration  
In 3 epochs there were undetected beats distorted by the digital filtration. The worst case 
epoch with 5 undetected pulses is shown in Fig. 3b). Such waveform distortions could be 
expected at abrupt signal transitions because of the settling time of the filters. It should be 
noted that in many cases of signal transitions (e.g. at a boundary with an empty segment) the 
filters does not produce any problem. 
 
2. Visual inspection of the bad epochs 

2.1. Bad epochs without errors 
In 75 of all 113 bad epochs no errors were found – no falsely detected beats or undetected 
beats. The main types of free from errors bad epochs could be summarized as follows. 

a) Epochs with an empty segment within them  
In 29 epochs there were empty segments (without detected pulses) within them. In most of 
these epochs the empty segment continued from the previous epoch and the pulses started 
with a delay after the beginning of the epoch.  
 b) Epochs with low amplitude and/or missing pulses corresponding to abnormal 
ECG beats 
In 45 epochs there were low amplitude and/or missing pulses corresponding to abnormal 
beats in the ECG – Fig. 3c), Fig. 3d). The number of such pulses was between 3 and 4 in each 
epoch. The low amplitude pulses predominated. We considered that these undetected pulses 
were not errors of the algorithm since they were visually much lower in amplitude than the 
annotated as normal pulses. 
 
The amplitude range of the annotated as abnormal pulses is very wide – from a completely 
missing pulse to a pulse similar to the annotated as normal pulses. According to the criterion 
for amplitude similarity of two rising edges (step 2.2.1. of the algorithm), pulses with an 
amplitude below about 50% of that of the neighbouring ones would be undetected by the 
algorithm. This threshold was chosen to reduce false detections (e.g. mistaking of high 
amplitude dicrotic notches for valid pulses). An expert opinion is needed about the amplitude 
threshold above which a pulse resulting from abnormal ECG beat should be considered valid. 

2.2. Bad epochs with falsely detected beats 
Falsely detected beats were found in 16 bad epochs. (In 14 of these epochs there was only one 
false beat, in 1 epoch – two and in 1 epoch – multiple (10) false beats.) The main types of 
errors could be summarized as follows.  

a) False detection of a series of calibration pulses  
In 5 epochs a pulse waveform was not present and there was a series of falsely detected 
calibration pulses, probably related to some of the other parallel measurements from the 
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database. They were rectangular pulses smoothed by the digital filtration. Such calibration 
pulses are not expected to be present in real pulse wave measurements but they bring up some 
discussion. The smoothing of steep rising edges (including steep artifacts) by the filtering 
procedure is accompanied with an increase in the number of points forming a rising edge. 
That makes the validation criterion concerning the minimum duration of the rising edge 
between two amplitude thresholds (step 2.1. of the algorithm) ineffective in some cases. The 
benefit of applying this same criterion to a corresponding section of the original (unfiltered) 
signal could be considered against the corresponding software complication.   

b) False detection of the first of two adjacent false peaks with similar rising edges 
In 4 epochs there was a false detection of the first of two adjacent false peaks with similar 
rising edges. This error was caused by decision rule 6 which allows the current rising edge to 
be considered valid if there is one similar rising edge with a maximum between 0.9 s and 2 s 
after the maximum of the current rising edge. This decision rule is needed to “catch” the first 
pulse after an empty segment at the lowest heart rates (30-60 bpm). In two of the epochs the 
two adjacent peaks in the filtered signal resembled in shape their corresponding peaks in the 
original signal, Fig. 3e) (the first false detection from left to right). In the other two epochs the 
two adjacent peaks were formed as a result of smoothing of steep artefacts, Fig. 3f). 

c) False detection of a peak adjacent to a valid pulse  
In 7 epochs there was a false detection of a peak adjacent to a valid pulse. In 3 of all 7 epochs 
there was an obvious discrepancy between the ECG annotations and the position of the falsely 
detected rising edge, Fig. 3e) (the second false detection from left to right). In the rest  
4 epochs our opinion was based on a visual inspection of the rising edge in the original 
recording. In 2 of all 7 epochs the falsely detected rising edge was a smoothed steep artifact.  

d) Multiple false detections   
In one epoch a series of 10 falsely detected pulses were found – Fig. 3g). The origin of these 
pulses was unknown. They resembled a pulse wave in shape and frequency but it was evident 
from the ECG annotations that they were not cardiac pulsations. Moreover, the test procedure 
assessed only about a half of the PP intervals within this false series as dissimilar  
(4 dissimilar against 5 similar intervals). This was the worst epoch with respect to false 
detections and the most serious error of the algorithm.  

2.3. Bad epochs with undetected beats 
Undetected beats were found in 26 bad epochs. (In 14 epochs there was only one undetected 
beat and in 4, 2, 4 and 2 epochs there were 2, 3, 4 and 5 undetected beats respectively.) The 
main types of errors could be summarized as follows.  

a) Undetected beats distorted by the digital filtration      
In 9 epochs there were undetected beats distorted by the digital filtration.  

b) Undetected beats distorted by artifacts, noise or interference  
In 5 epochs there were undetected beats distorted by artifacts, noise or interference. One of 
the worst case epochs is shown in Fig. 3h) (3 undetected beats). Expert annotations are 
particularly necessary when the waveform is distorted. 
(The discussed in subsections a) and b) above distortions caused in rare cases a valid pulse 
next to a distorted pulse to be undetected in addition to or instead of the distorted one.) 

c) Undetected lower amplitude pulses corresponding to abnormal beats in the 
ECG 

In 5 epochs there were undetected lower amplitude pulses corresponding to abnormal beats in 
the ECG. These pulses were of the type shown in Fig.3c), but visually higher in amplitude.  

d) Undetected low amplitude beats 
In 4 epochs there were undetected low amplitude beats. The amplitudes of their rising edges 
were below the adopted minimum amplitude threshold of 160 bits. 



 INT. J. BIOAUTOMATION, 2010, 14(3), 203-216 
 

 212

  

i) 

3.02 3.025 3.03 3.035 3.04 3.045 3.05 3.055

x 10
5

-1000

-500

0    

-500

1000 

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

c) 

6.74 6.75 6.76 6.77 6.78 6.79 6.8

x 10
5

-1000

-500

0    

-500

1000 

1500

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

d) 

9.69 9.70 9.71 9.72 9.73 9.74

-1000

-500

0    

500

1000 

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

x 105

a) 

8.84 8.85 8.86 8.87 8.88 8.89 8.84 8.85

-1000

0    

1000 

2000

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

x 105

b) 

6.03 6.035 6.04 6.045 6.05 6.055 6.06 6.065

x 10
5

-1500

-1000

-500

0    

-500

1000 

1500

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

j) 

3.595 3.6 3.605 3.61 3.615 3.62

x 10
5

-1000

-500

0

500

1000

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

g) 

6.13 6.135 6.14 6.145 6.15 6.155

x 10
5

-2000

-1000

0    

1000 

2000

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

e) 

8.375 8.38 8.385 8.39 8.395 8.40
-2000

-1000

0    

1000 

2000

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

x 105

f) 

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07

x 10
5

-2000

-1000

0    

1000 

2000

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)

Fig. 3 Examples illustrating the performance of the algorithm and the visual interpretation 
of the results: a), b) – empty epochs with undetected beats; c), d) – bad epochs without 

errors; e), f), g) – bad epochs with falsely detected beats; h) – a bad epoch with undetected 
beats; i) – an epoch with presence of pulse without errors; j) – an epoch with presence of 
pulse with a falsely detected beat; ― – filtered signal, ― – original signal; ○ – detected 

beats;    – undetected beats;    – falsely detected beats;    – start of an epoch;   – end of an 
epoch;     – normal beat;    – abnormal beat (ECG annotations). 

h) 

2.57 2.575 2.58 2.585 2.59 2.595

x 10
5

-1000

-500

0

500

1000

Time (samples)

A
m

pl
itu

de
 (A

D
C

 u
ni

ts
)



 INT. J. BIOAUTOMATION, 2010, 14(3), 203-216 
 

 213

e) Undetected isolated pulses 
In a few epochs there were undetected isolated pulses (a single beat or the second of two 
adjacent beats). Omission of such beats would be common because of lack of enough similar 
pulses within the 2 s time windows around a rising edge covered by the decision rules. 
 
3. Visual inspection of the epochs with presence of pulse 
The large number of epochs with presence of pulse (406) is because of the fact that an epoch 
is classified as suspicious even if it contains only a part of a dissimilar PP interval.  

3.1. Epochs with presence of pulse and without errors   
In 325 (of all 406) epochs with presence of pulse no errors were found. The main types of free 
from errors epochs with presence of pulse could be summarized as follows. 

a) Epochs with an empty segment within them  
In most of these epochs the pulses started with a delay after the beginning of the epoch. Short 
empty segments with artifacts occurred in a few epochs. 

 b) Epochs with low amplitude and/or missing pulses corresponding to abnormal 
ECG beats  
Between 0 and 2 low amplitude and/or missing pulses corresponding to abnormal beats in the 
ECG occurred in each epoch. (0 means that only a part of the dissimilar PP interval that 
contains the annotated as abnormal beat is within the epoch (not the beat itself).)  

c) Epochs with irregular PP intervals (arrhythmia) 
The test procedure located epochs with irregularities in the rhythm of the heartbeat. It takes 
into account only the detected dissimilar PP intervals, i.e. the abrupt PP interval  
irregularities – shortenings or prolongations. (A PP interval is considered dissimilar if it is not 
within ±50% of a current average PP value.) Dissimilar PP intervals were observed between 
two annotated as normal beats, Fig. 3i), as well as between a normal and an abnormal beats. 

3.2. Epochs with presence of pulse and with falsely detected beats 
a) False detection of a peak adjacent to a valid pulse  

In 9 epochs there was a false detection of a peak adjacent to a valid pulse. An example is 
shown in Fig. 3j). 

b) Multiple false detections   
In one epoch multiple (3) falsely detected peaks were found. 

3.3. Epochs with presence of pulse and with undetected beats 
a) Undetected beats distorted by artifacts, noise or interference  
b) Undetected lower amplitude pulses corresponding to normal ECG beats     

The test procedure located epochs with undetected lower amplitude pulses corresponding to 
normal ECG beats. The algorithm (step 2.2.1.) rejects pulses with amplitude below about 50% 
of that of the neighbouring ones – a threshold chosen to reduce false detections. Expert-
annotated pulse waveform databases would be very valuable for adjustment of such algorithm 
parameters. 

 c) Undetected lower amplitude pulses corresponding to abnormal ECG beats  
d) Undetected beats distorted by the digital filtration     

 
(The examples in Fig. 3 were extracted from the following recordings from the MGH/MF 
database: a) – recording mgh001; d), g) – mgh002; e) – mgh007; b), h), j) – mgh010;  
c), f) – mgh011; i) – mgh012.) 
 
4. Visual inspection of the segments of the recordings that were not classified as suspicious 
A pulse wave was present in all segments of the recordings that were not classified as 
suspicious. Some very rare cases of undetected or falsely detected beats were noticed that 
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would not prevent the correct recognition of presence of pulse. On the whole, the test 
procedure correctly located the various epoch types. 
 
Conclusion 
In this study we presented an automated algorithm for fast pulse wave detection, directed to 
establishing the presence of cardiac activity in an emergency. The method relies on real-time 
estimation of similarity of closely positioned rising edges of the waveform and decision logic. 
The algorithm was tested on a set of arterial pressure pulse waves from the internationally 
recognized MGH/MF waveform database from PhysioNet. We adopted an approach to 
assessing the algorithm performance based on location and classification of suspicious 10 s 
signal epochs by means of detection of dissimilar peak-to-peak intervals. The detected epochs 
(especially the bad and empty ones) were subjected to careful visual inspection with the help 
of the available ECG-based expert beat annotations. The main epoch and error types were 
summarized.  
 
The review of the recordings showed that the proposed algorithm correctly identifies cardiac 
pulsations even under considerable artefacts. The algorithm performed very well with respect 
to falsely detected pulses with a single exception – a short burst of pulse wave – like artefacts. 
Our conclusion is that the algorithm reliably detects critical periods in cardiac activity and is 
applicable to fast pulse wave detection in real-time applications and ambulatory measurement 
setups. 
 
On the whole, the testing method correctly located and classified suspicious epochs in the 
pulse wave signal. The total time limitation of 10 s for pulse detection makes difficult and/or 
inappropriate the usage of criteria involving comparison of peak-to-peak intervals. If the 
situation, however, allows longer measurement time after the initial estimation of the patient’s 
condition, a similar test procedure could be incorporated into the signal analysis. 
 
We found difficulties in the interpretation of some peaks because of the lack of reference beat 
annotations for the pulse wave signals. The unavailability of benchmark databases of expert-
annotated pulse waveforms makes difficult the development, evaluation and tuning of pulse 
wave detection algorithms, as well as the comparison of results achieved by different authors. 
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